ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.152
Committed: Tue Jan 17 02:44:59 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.151: +24 -26 lines
Log Message:
improve sweepVotes implementation

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133 jsr166 1.140 * trailing node on appends. While this would be a terrible idea
134     * in itself, it does have the benefit of not requiring ANY atomic
135 jsr166 1.8 * updates on head/tail fields.
136     *
137     * We introduce here an approach that lies between the extremes of
138     * never versus always updating queue (head and tail) pointers.
139     * This offers a tradeoff between sometimes requiring extra
140     * traversal steps to locate the first and/or last unmatched
141     * nodes, versus the reduced overhead and contention of fewer
142     * updates to queue pointers. For example, a possible snapshot of
143     * a queue is:
144     *
145     * head tail
146     * | |
147     * v v
148     * M -> M -> U -> U -> U -> U
149     *
150     * The best value for this "slack" (the targeted maximum distance
151     * between the value of "head" and the first unmatched node, and
152     * similarly for "tail") is an empirical matter. We have found
153     * that using very small constants in the range of 1-3 work best
154     * over a range of platforms. Larger values introduce increasing
155     * costs of cache misses and risks of long traversal chains, while
156     * smaller values increase CAS contention and overhead.
157     *
158     * Dual queues with slack differ from plain M&S dual queues by
159     * virtue of only sometimes updating head or tail pointers when
160     * matching, appending, or even traversing nodes; in order to
161     * maintain a targeted slack. The idea of "sometimes" may be
162     * operationalized in several ways. The simplest is to use a
163     * per-operation counter incremented on each traversal step, and
164     * to try (via CAS) to update the associated queue pointer
165     * whenever the count exceeds a threshold. Another, that requires
166     * more overhead, is to use random number generators to update
167     * with a given probability per traversal step.
168     *
169     * In any strategy along these lines, because CASes updating
170 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
171     * However, they may be retried at any time to maintain targets.
172     * Even when using very small slack values, this approach works
173     * well for dual queues because it allows all operations up to the
174     * point of matching or appending an item (hence potentially
175     * allowing progress by another thread) to be read-only, thus not
176     * introducing any further contention. As described below, we
177     * implement this by performing slack maintenance retries only
178     * after these points.
179 jsr166 1.8 *
180     * As an accompaniment to such techniques, traversal overhead can
181     * be further reduced without increasing contention of head
182     * pointer updates: Threads may sometimes shortcut the "next" link
183     * path from the current "head" node to be closer to the currently
184     * known first unmatched node, and similarly for tail. Again, this
185     * may be triggered with using thresholds or randomization.
186     *
187     * These ideas must be further extended to avoid unbounded amounts
188     * of costly-to-reclaim garbage caused by the sequential "next"
189     * links of nodes starting at old forgotten head nodes: As first
190     * described in detail by Boehm
191 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 jsr166 1.8 * delays noticing that any arbitrarily old node has become
193     * garbage, all newer dead nodes will also be unreclaimed.
194     * (Similar issues arise in non-GC environments.) To cope with
195     * this in our implementation, upon CASing to advance the head
196     * pointer, we set the "next" link of the previous head to point
197 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
198 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
199     * retaining values held in other Node fields.) However, doing so
200     * adds some further complexity to traversal: If any "next"
201     * pointer links to itself, it indicates that the current thread
202     * has lagged behind a head-update, and so the traversal must
203     * continue from the "head". Traversals trying to find the
204     * current tail starting from "tail" may also encounter
205     * self-links, in which case they also continue at "head".
206     *
207     * It is tempting in slack-based scheme to not even use CAS for
208     * updates (similarly to Ladan-Mozes & Shavit). However, this
209     * cannot be done for head updates under the above link-forgetting
210     * mechanics because an update may leave head at a detached node.
211     * And while direct writes are possible for tail updates, they
212     * increase the risk of long retraversals, and hence long garbage
213     * chains, which can be much more costly than is worthwhile
214     * considering that the cost difference of performing a CAS vs
215     * write is smaller when they are not triggered on each operation
216     * (especially considering that writes and CASes equally require
217     * additional GC bookkeeping ("write barriers") that are sometimes
218     * more costly than the writes themselves because of contention).
219     *
220     * *** Overview of implementation ***
221     *
222     * We use a threshold-based approach to updates, with a slack
223     * threshold of two -- that is, we update head/tail when the
224     * current pointer appears to be two or more steps away from the
225     * first/last node. The slack value is hard-wired: a path greater
226     * than one is naturally implemented by checking equality of
227     * traversal pointers except when the list has only one element,
228     * in which case we keep slack threshold at one. Avoiding tracking
229     * explicit counts across method calls slightly simplifies an
230     * already-messy implementation. Using randomization would
231     * probably work better if there were a low-quality dirt-cheap
232     * per-thread one available, but even ThreadLocalRandom is too
233     * heavy for these purposes.
234     *
235 dl 1.16 * With such a small slack threshold value, it is not worthwhile
236     * to augment this with path short-circuiting (i.e., unsplicing
237     * interior nodes) except in the case of cancellation/removal (see
238     * below).
239 jsr166 1.8 *
240     * All enqueue/dequeue operations are handled by the single method
241     * "xfer" with parameters indicating whether to act as some form
242     * of offer, put, poll, take, or transfer (each possibly with
243     * timeout). The relative complexity of using one monolithic
244     * method outweighs the code bulk and maintenance problems of
245     * using separate methods for each case.
246     *
247     * Operation consists of up to three phases. The first is
248     * implemented within method xfer, the second in tryAppend, and
249     * the third in method awaitMatch.
250     *
251     * 1. Try to match an existing node
252     *
253     * Starting at head, skip already-matched nodes until finding
254     * an unmatched node of opposite mode, if one exists, in which
255     * case matching it and returning, also if necessary updating
256     * head to one past the matched node (or the node itself if the
257     * list has no other unmatched nodes). If the CAS misses, then
258     * a loop retries advancing head by two steps until either
259     * success or the slack is at most two. By requiring that each
260     * attempt advances head by two (if applicable), we ensure that
261     * the slack does not grow without bound. Traversals also check
262     * if the initial head is now off-list, in which case they
263 jsr166 1.128 * restart at the new head.
264 jsr166 1.8 *
265     * If no candidates are found and the call was untimed
266 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
267 jsr166 1.8 *
268     * 2. Try to append a new node (method tryAppend)
269     *
270     * Starting at current tail pointer, find the actual last node
271 jsr166 1.140 * and try to append a new node. Nodes can be appended only if
272     * their predecessors are either already matched or are of the
273     * same mode. If we detect otherwise, then a new node with
274     * opposite mode must have been appended during traversal, so
275     * we must restart at phase 1. The traversal and update steps
276     * are otherwise similar to phase 1: Retrying upon CAS misses
277     * and checking for staleness. In particular, if a self-link
278     * is encountered, then we can safely jump to a node on the
279     * list by continuing the traversal at current head.
280 jsr166 1.8 *
281     * On successful append, if the call was ASYNC, return.
282     *
283     * 3. Await match or cancellation (method awaitMatch)
284     *
285     * Wait for another thread to match node; instead cancelling if
286     * the current thread was interrupted or the wait timed out. On
287     * multiprocessors, we use front-of-queue spinning: If a node
288     * appears to be the first unmatched node in the queue, it
289     * spins a bit before blocking. In either case, before blocking
290     * it tries to unsplice any nodes between the current "head"
291     * and the first unmatched node.
292     *
293     * Front-of-queue spinning vastly improves performance of
294     * heavily contended queues. And so long as it is relatively
295     * brief and "quiet", spinning does not much impact performance
296     * of less-contended queues. During spins threads check their
297     * interrupt status and generate a thread-local random number
298     * to decide to occasionally perform a Thread.yield. While
299 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
300 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
301 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
302     * not known to be front but whose predecessors have not
303     * blocked -- these "chained" spins avoid artifacts of
304     * front-of-queue rules which otherwise lead to alternating
305     * nodes spinning vs blocking. Further, front threads that
306     * represent phase changes (from data to request node or vice
307     * versa) compared to their predecessors receive additional
308     * chained spins, reflecting longer paths typically required to
309     * unblock threads during phase changes.
310 dl 1.16 *
311     *
312     * ** Unlinking removed interior nodes **
313     *
314     * In addition to minimizing garbage retention via self-linking
315     * described above, we also unlink removed interior nodes. These
316     * may arise due to timed out or interrupted waits, or calls to
317     * remove(x) or Iterator.remove. Normally, given a node that was
318     * at one time known to be the predecessor of some node s that is
319     * to be removed, we can unsplice s by CASing the next field of
320     * its predecessor if it still points to s (otherwise s must
321     * already have been removed or is now offlist). But there are two
322     * situations in which we cannot guarantee to make node s
323     * unreachable in this way: (1) If s is the trailing node of list
324     * (i.e., with null next), then it is pinned as the target node
325 jsr166 1.23 * for appends, so can only be removed later after other nodes are
326 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
327     * predecessor node that is matched (including the case of being
328 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
329     * case some previous reachable node may still point to s.
330     * (For further explanation see Herlihy & Shavit "The Art of
331 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
332     * cases, we can rule out the need for further action if either s
333     * or its predecessor are (or can be made to be) at, or fall off
334     * from, the head of list.
335     *
336     * Without taking these into account, it would be possible for an
337 jsr166 1.152 * unbounded number of supposedly removed nodes to remain reachable.
338     * Situations leading to such buildup are uncommon but can occur in
339     * practice; for example when a series of short timed calls to poll
340     * repeatedly time out but never otherwise fall off the list because
341     * of an untimed call to take() at the front of the queue.
342 dl 1.16 *
343     * When these cases arise, rather than always retraversing the
344     * entire list to find an actual predecessor to unlink (which
345     * won't help for case (1) anyway), we record a conservative
346 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
347     * We trigger a full sweep when the estimate exceeds a threshold
348     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
349     * removal failures to tolerate before sweeping through, unlinking
350     * cancelled nodes that were not unlinked upon initial removal.
351     * We perform sweeps by the thread hitting threshold (rather than
352     * background threads or by spreading work to other threads)
353     * because in the main contexts in which removal occurs, the
354 jsr166 1.152 * caller is timed-out or cancelled, which are not time-critical
355     * enough to warrant the overhead that alternatives would impose
356     * on other threads.
357 dl 1.16 *
358     * Because the sweepVotes estimate is conservative, and because
359     * nodes become unlinked "naturally" as they fall off the head of
360     * the queue, and because we allow votes to accumulate even while
361 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
362 dl 1.16 * such nodes than estimated. Choice of a threshold value
363     * balances the likelihood of wasted effort and contention, versus
364     * providing a worst-case bound on retention of interior nodes in
365     * quiescent queues. The value defined below was chosen
366     * empirically to balance these under various timeout scenarios.
367     *
368 jsr166 1.152 * Because traversal operations on the linked list of nodes are a
369     * natural opportunity to sweep dead nodes, we generally do so,
370     * including all the operations that might remove elements as they
371     * traverse, such as removeIf and Iterator.remove. This largely
372     * eliminates long chains of dead interior nodes, except from
373     * cancelled or timed out blocking operations.
374     *
375 dl 1.16 * Note that we cannot self-link unlinked interior nodes during
376     * sweeps. However, the associated garbage chains terminate when
377     * some successor ultimately falls off the head of the list and is
378     * self-linked.
379 jsr166 1.8 */
380    
381     /** True if on multiprocessor */
382     private static final boolean MP =
383     Runtime.getRuntime().availableProcessors() > 1;
384    
385     /**
386     * The number of times to spin (with randomly interspersed calls
387     * to Thread.yield) on multiprocessor before blocking when a node
388     * is apparently the first waiter in the queue. See above for
389     * explanation. Must be a power of two. The value is empirically
390     * derived -- it works pretty well across a variety of processors,
391     * numbers of CPUs, and OSes.
392     */
393     private static final int FRONT_SPINS = 1 << 7;
394    
395     /**
396     * The number of times to spin before blocking when a node is
397     * preceded by another node that is apparently spinning. Also
398     * serves as an increment to FRONT_SPINS on phase changes, and as
399     * base average frequency for yielding during spins. Must be a
400     * power of two.
401     */
402     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
403    
404     /**
405 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
406     * to tolerate before sweeping through the queue unlinking
407     * cancelled nodes that were not unlinked upon initial
408     * removal. See above for explanation. The value must be at least
409     * two to avoid useless sweeps when removing trailing nodes.
410     */
411     static final int SWEEP_THRESHOLD = 32;
412    
413     /**
414 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
415 jsr166 1.142 * them after use. Writes that are intrinsically ordered wrt
416     * other accesses or CASes use simple relaxed forms.
417 jsr166 1.8 */
418 jsr166 1.14 static final class Node {
419 jsr166 1.8 final boolean isData; // false if this is a request node
420     volatile Object item; // initially non-null if isData; CASed to match
421 jsr166 1.14 volatile Node next;
422 jsr166 1.142 volatile Thread waiter; // null when not waiting for a match
423 jsr166 1.1
424 jsr166 1.8 /**
425 jsr166 1.140 * Constructs a data node holding item if item is non-null,
426     * else a request node. Uses relaxed write because item can
427     * only be seen after piggy-backing publication via CAS.
428 jsr166 1.8 */
429 jsr166 1.101 Node(Object item) {
430 jsr166 1.104 ITEM.set(this, item);
431 jsr166 1.101 isData = (item != null);
432 jsr166 1.8 }
433 jsr166 1.1
434 jsr166 1.142 /** Constructs a (matched data) dummy node. */
435 jsr166 1.140 Node() {
436     isData = true;
437     }
438    
439 jsr166 1.142 final boolean casNext(Node cmp, Node val) {
440     // assert val != null;
441     return NEXT.compareAndSet(this, cmp, val);
442     }
443    
444     final boolean casItem(Object cmp, Object val) {
445     // assert isData == (cmp != null);
446     // assert isData == (val == null);
447     // assert !(cmp instanceof Node);
448     return ITEM.compareAndSet(this, cmp, val);
449     }
450    
451 jsr166 1.8 /**
452     * Links node to itself to avoid garbage retention. Called
453     * only after CASing head field, so uses relaxed write.
454     */
455 jsr166 1.142 final void selfLink() {
456     // assert isMatched();
457 jsr166 1.121 NEXT.setRelease(this, this);
458 jsr166 1.8 }
459 jsr166 1.1
460 jsr166 1.140 final void appendRelaxed(Node next) {
461     // assert next != null;
462     // assert this.next == null;
463     NEXT.set(this, next);
464     }
465    
466 jsr166 1.8 /**
467 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
468     * to avoid garbage retention after matching or cancelling.
469     * Uses relaxed writes because order is already constrained in
470     * the only calling contexts: item is forgotten only after
471 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
472     * of request nodes only ever check whether item is null.
473     * Similarly, clearing waiter follows either CAS or return
474     * from park (if ever parked; else we don't care).
475 jsr166 1.8 */
476     final void forgetContents() {
477 jsr166 1.105 // assert isMatched();
478     if (!isData)
479     ITEM.set(this, this);
480 dl 1.97 WAITER.set(this, null);
481 jsr166 1.8 }
482 jsr166 1.1
483 jsr166 1.8 /**
484     * Returns true if this node has been matched, including the
485     * case of artificial matches due to cancellation.
486     */
487     final boolean isMatched() {
488 jsr166 1.105 return isData == (item == null);
489 jsr166 1.11 }
490    
491 jsr166 1.142 /** Tries to CAS-match this node; if successful, wakes waiter. */
492     final boolean tryMatch(Object cmp, Object val) {
493     if (casItem(cmp, val)) {
494     LockSupport.unpark(waiter);
495     return true;
496     }
497     return false;
498     }
499    
500 jsr166 1.11 /**
501 jsr166 1.8 * Returns true if a node with the given mode cannot be
502     * appended to this node because this node is unmatched and
503     * has opposite data mode.
504     */
505     final boolean cannotPrecede(boolean haveData) {
506     boolean d = isData;
507 jsr166 1.105 return d != haveData && d != (item == null);
508 jsr166 1.8 }
509 jsr166 1.1
510 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
511 jsr166 1.1 }
512    
513 jsr166 1.140 /**
514     * A node from which the first live (non-matched) node (if any)
515     * can be reached in O(1) time.
516     * Invariants:
517     * - all live nodes are reachable from head via .next
518     * - head != null
519     * - (tmp = head).next != tmp || tmp != head
520     * Non-invariants:
521     * - head may or may not be live
522     * - it is permitted for tail to lag behind head, that is, for tail
523     * to not be reachable from head!
524     */
525 jsr166 1.14 transient volatile Node head;
526 jsr166 1.8
527 jsr166 1.140 /**
528     * A node from which the last node on list (that is, the unique
529     * node with node.next == null) can be reached in O(1) time.
530     * Invariants:
531     * - the last node is always reachable from tail via .next
532     * - tail != null
533     * Non-invariants:
534     * - tail may or may not be live
535     * - it is permitted for tail to lag behind head, that is, for tail
536     * to not be reachable from head!
537     * - tail.next may or may not be self-linked.
538     */
539 jsr166 1.14 private transient volatile Node tail;
540 jsr166 1.1
541 jsr166 1.152 /** The number of apparent failures to unsplice cancelled nodes */
542 dl 1.16 private transient volatile int sweepVotes;
543    
544 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
545 jsr166 1.140 // assert cmp != null;
546     // assert val != null;
547 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
548 jsr166 1.8 }
549 jsr166 1.1
550 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
551 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
552 jsr166 1.8 }
553 jsr166 1.1
554 jsr166 1.152 /** Atomic version of ++sweepVotes. */
555     private int incSweepVotes() {
556     return (int) SWEEPVOTES.getAndAdd(this, 1) + 1;
557 jsr166 1.8 }
558 jsr166 1.1
559 jsr166 1.122 /**
560     * Tries to CAS pred.next (or head, if pred is null) from c to p.
561 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
562 jsr166 1.122 */
563     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
564 jsr166 1.133 // assert p != null;
565 jsr166 1.136 // assert c.isData != (c.item != null);
566 jsr166 1.122 // assert c != p;
567     if (pred != null)
568     return pred.casNext(c, p);
569     if (casHead(c, p)) {
570 jsr166 1.142 c.selfLink();
571 jsr166 1.122 return true;
572     }
573     return false;
574     }
575    
576 jsr166 1.137 /**
577 jsr166 1.144 * Collapses dead (matched) nodes between pred and q.
578 jsr166 1.137 * @param pred the last known live node, or null if none
579     * @param c the first dead node
580     * @param p the last dead node
581     * @param q p.next: the next live node, or null if at end
582     * @return either old pred or p if pred dead or CAS failed
583     */
584     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
585     // assert pred != c;
586     // assert p != q;
587     // assert c.isMatched();
588     // assert p.isMatched();
589     if (q == null) {
590     // Never unlink trailing node.
591     if (c == p) return pred;
592     q = p;
593     }
594     return (tryCasSuccessor(pred, c, q)
595     && (pred == null || !pred.isMatched()))
596     ? pred : p;
597     }
598    
599 jsr166 1.144 /**
600     * Collapses dead (matched) nodes between h and p.
601     * h was once head, and all nodes between h and p are dead.
602     */
603     private void skipDeadNodesNearHead(Node h, Node p) {
604     // assert h != p;
605     // assert p.isMatched();
606     // find live or trailing node, starting at p
607     for (Node q; (q = p.next) != null; ) {
608     if (!q.isMatched()) {
609     p = q;
610     break;
611     }
612     if (p == (p = q))
613     return;
614     }
615     if (h == HEAD.getAcquire(this) && casHead(h, p))
616     h.selfLink();
617     }
618    
619 jsr166 1.137 /* Possible values for "how" argument in xfer method. */
620    
621 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
622     private static final int ASYNC = 1; // for offer, put, add
623     private static final int SYNC = 2; // for transfer, take
624     private static final int TIMED = 3; // for timed poll, tryTransfer
625 jsr166 1.1
626     /**
627 jsr166 1.8 * Implements all queuing methods. See above for explanation.
628 jsr166 1.1 *
629 jsr166 1.8 * @param e the item or null for take
630     * @param haveData true if this is a put, else a take
631 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
632     * @param nanos timeout in nanosecs, used only if mode is TIMED
633 jsr166 1.8 * @return an item if matched, else e
634     * @throws NullPointerException if haveData mode but e is null
635 jsr166 1.1 */
636 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
637     if (haveData && (e == null))
638     throw new NullPointerException();
639 jsr166 1.130 Node s = null; // the node to append, if needed
640 jsr166 1.1
641 jsr166 1.119 restartFromHead: for (;;) {
642 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
643 jsr166 1.141 final boolean isData;
644     final Object item;
645     if (((item = p.item) != null) == (isData = p.isData)) {
646     // unmatched
647 jsr166 1.8 if (isData == haveData) // can't match
648     break;
649 jsr166 1.142 if (p.tryMatch(item, e)) {
650 jsr166 1.143 // collapse at least 2
651 jsr166 1.144 if (h != p) skipDeadNodesNearHead(h, p);
652 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
653     return itemE;
654 jsr166 1.1 }
655     }
656 jsr166 1.135 if (p == (p = p.next))
657     continue restartFromHead;
658 jsr166 1.8 }
659    
660 jsr166 1.14 if (how != NOW) { // No matches available
661 jsr166 1.130 if (s == null)
662     s = new Node(e);
663 jsr166 1.14 Node pred = tryAppend(s, haveData);
664 jsr166 1.8 if (pred == null)
665 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
666 jsr166 1.14 if (how != ASYNC)
667     return awaitMatch(s, pred, e, (how == TIMED), nanos);
668 jsr166 1.1 }
669 jsr166 1.8 return e; // not waiting
670 jsr166 1.1 }
671     }
672    
673     /**
674 jsr166 1.8 * Tries to append node s as tail.
675     *
676     * @param s the node to append
677     * @param haveData true if appending in data mode
678     * @return null on failure due to losing race with append in
679 jsr166 1.147 * different mode, else s's predecessor
680 jsr166 1.1 */
681 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
682 jsr166 1.140 // assert head != null;
683     // assert tail != null;
684 jsr166 1.144 // assert s.isData == haveData;
685 jsr166 1.14 for (Node t = tail, p = t;;) { // move p to last node and append
686 jsr166 1.146 Node n;
687 jsr166 1.145 if (p.cannotPrecede(haveData))
688 jsr166 1.8 return null; // lost race vs opposite mode
689     else if ((n = p.next) != null) // not last; keep traversing
690 jsr166 1.146 p = (p != t && t != (t = tail)) ? t : // stale tail
691 jsr166 1.145 (p != n) ? n : head; // restart if off list
692 jsr166 1.8 else if (!p.casNext(null, s))
693     p = p.next; // re-read on CAS failure
694     else {
695     if (p != t) { // update if slack now >= 2
696     while ((tail != t || !casTail(t, s)) &&
697     (t = tail) != null &&
698     (s = t.next) != null && // advance and retry
699     (s = s.next) != null && s != t);
700 jsr166 1.1 }
701 jsr166 1.8 return p;
702 jsr166 1.1 }
703     }
704     }
705    
706     /**
707 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
708 jsr166 1.1 *
709     * @param s the waiting node
710 jsr166 1.148 * @param pred the predecessor of s, or null if unknown (the null
711     * case does not occur in any current calls but may in possible
712     * future extensions)
713 jsr166 1.1 * @param e the comparison value for checking match
714 jsr166 1.14 * @param timed if true, wait only until timeout elapses
715     * @param nanos timeout in nanosecs, used only if timed is true
716 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
717 jsr166 1.1 */
718 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
719 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
720 jsr166 1.8 Thread w = Thread.currentThread();
721     int spins = -1; // initialized after first item and cancel checks
722     ThreadLocalRandom randomYields = null; // bound if needed
723 jsr166 1.1
724     for (;;) {
725 jsr166 1.141 final Object item;
726     if ((item = s.item) != e) { // matched
727 dl 1.33 // assert item != s;
728 jsr166 1.8 s.forgetContents(); // avoid garbage
729 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
730     return itemE;
731 jsr166 1.8 }
732 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
733 jsr166 1.102 // try to cancel and unlink
734 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
735 jsr166 1.102 unsplice(pred, s);
736 jsr166 1.77 return e;
737 jsr166 1.102 }
738     // return normally if lost CAS
739 jsr166 1.8 }
740 dl 1.84 else if (spins < 0) { // establish spins at/near front
741 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
742     randomYields = ThreadLocalRandom.current();
743     }
744     else if (spins > 0) { // spin
745 dl 1.16 --spins;
746     if (randomYields.nextInt(CHAINED_SPINS) == 0)
747 jsr166 1.8 Thread.yield(); // occasionally yield
748     }
749     else if (s.waiter == null) {
750     s.waiter = w; // request unpark then recheck
751 jsr166 1.1 }
752 jsr166 1.14 else if (timed) {
753 jsr166 1.51 nanos = deadline - System.nanoTime();
754     if (nanos > 0L)
755 jsr166 1.8 LockSupport.parkNanos(this, nanos);
756 jsr166 1.1 }
757 jsr166 1.8 else {
758 jsr166 1.1 LockSupport.park(this);
759     }
760 jsr166 1.8 }
761     }
762    
763     /**
764     * Returns spin/yield value for a node with given predecessor and
765     * data mode. See above for explanation.
766     */
767 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
768 jsr166 1.8 if (MP && pred != null) {
769     if (pred.isData != haveData) // phase change
770     return FRONT_SPINS + CHAINED_SPINS;
771     if (pred.isMatched()) // probably at front
772     return FRONT_SPINS;
773     if (pred.waiter == null) // pred apparently spinning
774     return CHAINED_SPINS;
775     }
776     return 0;
777     }
778    
779     /* -------------- Traversal methods -------------- */
780    
781     /**
782 jsr166 1.93 * Returns the first unmatched data node, or null if none.
783 jsr166 1.105 * Callers must recheck if the returned node is unmatched
784     * before using.
785 dl 1.52 */
786     final Node firstDataNode() {
787 jsr166 1.139 Node first = null;
788 jsr166 1.91 restartFromHead: for (;;) {
789 jsr166 1.139 Node h = head, p = h;
790     for (; p != null;) {
791     final Object item;
792     if ((item = p.item) != null) {
793     if (p.isData) {
794     first = p;
795     break;
796     }
797 jsr166 1.91 }
798 jsr166 1.139 else if (!p.isData)
799     break;
800     final Node q;
801     if ((q = p.next) == null)
802 jsr166 1.91 break;
803 jsr166 1.139 if (p == (p = q))
804 jsr166 1.91 continue restartFromHead;
805 dl 1.52 }
806 jsr166 1.139 if (p != h && casHead(h, p))
807 jsr166 1.142 h.selfLink();
808 jsr166 1.139 return first;
809 dl 1.52 }
810     }
811    
812     /**
813 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
814     * Used by methods size and getWaitingConsumerCount.
815 jsr166 1.1 */
816 jsr166 1.8 private int countOfMode(boolean data) {
817 jsr166 1.73 restartFromHead: for (;;) {
818     int count = 0;
819     for (Node p = head; p != null;) {
820     if (!p.isMatched()) {
821     if (p.isData != data)
822     return 0;
823     if (++count == Integer.MAX_VALUE)
824     break; // @see Collection.size()
825     }
826 jsr166 1.81 if (p == (p = p.next))
827 jsr166 1.73 continue restartFromHead;
828 jsr166 1.1 }
829 jsr166 1.73 return count;
830 jsr166 1.8 }
831     }
832    
833 jsr166 1.82 public String toString() {
834     String[] a = null;
835     restartFromHead: for (;;) {
836     int charLength = 0;
837     int size = 0;
838     for (Node p = head; p != null;) {
839     Object item = p.item;
840     if (p.isData) {
841 jsr166 1.105 if (item != null) {
842 jsr166 1.82 if (a == null)
843     a = new String[4];
844     else if (size == a.length)
845     a = Arrays.copyOf(a, 2 * size);
846     String s = item.toString();
847     a[size++] = s;
848     charLength += s.length();
849     }
850     } else if (item == null)
851     break;
852     if (p == (p = p.next))
853     continue restartFromHead;
854     }
855    
856     if (size == 0)
857     return "[]";
858    
859 jsr166 1.83 return Helpers.toString(a, size, charLength);
860 jsr166 1.82 }
861     }
862    
863     private Object[] toArrayInternal(Object[] a) {
864     Object[] x = a;
865     restartFromHead: for (;;) {
866     int size = 0;
867     for (Node p = head; p != null;) {
868     Object item = p.item;
869     if (p.isData) {
870 jsr166 1.105 if (item != null) {
871 jsr166 1.82 if (x == null)
872     x = new Object[4];
873     else if (size == x.length)
874     x = Arrays.copyOf(x, 2 * (size + 4));
875     x[size++] = item;
876     }
877     } else if (item == null)
878     break;
879     if (p == (p = p.next))
880     continue restartFromHead;
881     }
882     if (x == null)
883     return new Object[0];
884     else if (a != null && size <= a.length) {
885     if (a != x)
886     System.arraycopy(x, 0, a, 0, size);
887     if (size < a.length)
888     a[size] = null;
889     return a;
890     }
891     return (size == x.length) ? x : Arrays.copyOf(x, size);
892     }
893     }
894    
895     /**
896     * Returns an array containing all of the elements in this queue, in
897     * proper sequence.
898     *
899     * <p>The returned array will be "safe" in that no references to it are
900     * maintained by this queue. (In other words, this method must allocate
901     * a new array). The caller is thus free to modify the returned array.
902     *
903     * <p>This method acts as bridge between array-based and collection-based
904     * APIs.
905     *
906     * @return an array containing all of the elements in this queue
907     */
908     public Object[] toArray() {
909     return toArrayInternal(null);
910     }
911    
912     /**
913     * Returns an array containing all of the elements in this queue, in
914     * proper sequence; the runtime type of the returned array is that of
915     * the specified array. If the queue fits in the specified array, it
916     * is returned therein. Otherwise, a new array is allocated with the
917     * runtime type of the specified array and the size of this queue.
918     *
919     * <p>If this queue fits in the specified array with room to spare
920     * (i.e., the array has more elements than this queue), the element in
921     * the array immediately following the end of the queue is set to
922     * {@code null}.
923     *
924     * <p>Like the {@link #toArray()} method, this method acts as bridge between
925     * array-based and collection-based APIs. Further, this method allows
926     * precise control over the runtime type of the output array, and may,
927     * under certain circumstances, be used to save allocation costs.
928     *
929     * <p>Suppose {@code x} is a queue known to contain only strings.
930     * The following code can be used to dump the queue into a newly
931     * allocated array of {@code String}:
932     *
933     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
934     *
935     * Note that {@code toArray(new Object[0])} is identical in function to
936     * {@code toArray()}.
937     *
938     * @param a the array into which the elements of the queue are to
939     * be stored, if it is big enough; otherwise, a new array of the
940     * same runtime type is allocated for this purpose
941     * @return an array containing all of the elements in this queue
942     * @throws ArrayStoreException if the runtime type of the specified array
943     * is not a supertype of the runtime type of every element in
944     * this queue
945     * @throws NullPointerException if the specified array is null
946     */
947     @SuppressWarnings("unchecked")
948     public <T> T[] toArray(T[] a) {
949 jsr166 1.111 Objects.requireNonNull(a);
950 jsr166 1.82 return (T[]) toArrayInternal(a);
951     }
952    
953 jsr166 1.134 /**
954     * Weakly-consistent iterator.
955     *
956     * Lazily updated ancestor is expected to be amortized O(1) remove(),
957     * but O(n) in the worst case, when lastRet is concurrently deleted.
958     */
959 jsr166 1.8 final class Itr implements Iterator<E> {
960 jsr166 1.14 private Node nextNode; // next node to return item for
961     private E nextItem; // the corresponding item
962     private Node lastRet; // last returned node, to support remove
963 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
964 jsr166 1.8
965     /**
966 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
967 jsr166 1.8 */
968 jsr166 1.134 @SuppressWarnings("unchecked")
969     private void advance(Node pred) {
970     for (Node p = (pred == null) ? head : pred.next, c = p;
971     p != null; ) {
972     final Object item;
973     if ((item = p.item) != null && p.isData) {
974     nextNode = p;
975     nextItem = (E) item;
976     if (c != p)
977     tryCasSuccessor(pred, c, p);
978     return;
979     }
980     else if (!p.isData && item == null)
981 dl 1.33 break;
982 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
983     pred = p;
984     c = p = p.next;
985 dl 1.33 }
986 jsr166 1.134 else if (p == (p = p.next)) {
987     pred = null;
988     c = p = head;
989 jsr166 1.34 }
990 jsr166 1.1 }
991 jsr166 1.134 nextItem = null;
992 jsr166 1.8 nextNode = null;
993     }
994    
995     Itr() {
996     advance(null);
997     }
998    
999     public final boolean hasNext() {
1000     return nextNode != null;
1001     }
1002    
1003     public final E next() {
1004 jsr166 1.125 final Node p;
1005     if ((p = nextNode) == null) throw new NoSuchElementException();
1006 jsr166 1.8 E e = nextItem;
1007 jsr166 1.134 advance(lastRet = p);
1008 jsr166 1.8 return e;
1009     }
1010    
1011 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
1012     Objects.requireNonNull(action);
1013     Node q = null;
1014     for (Node p; (p = nextNode) != null; advance(q = p))
1015     action.accept(nextItem);
1016     if (q != null)
1017     lastRet = q;
1018     }
1019 jsr166 1.116
1020 jsr166 1.8 public final void remove() {
1021 dl 1.33 final Node lastRet = this.lastRet;
1022     if (lastRet == null)
1023     throw new IllegalStateException();
1024     this.lastRet = null;
1025 jsr166 1.134 if (lastRet.item == null) // already deleted?
1026     return;
1027     // Advance ancestor, collapsing intervening dead nodes
1028     Node pred = ancestor;
1029     for (Node p = (pred == null) ? head : pred.next, c = p, q;
1030     p != null; ) {
1031     if (p == lastRet) {
1032 jsr166 1.142 final Object item;
1033     if ((item = p.item) != null)
1034     p.tryMatch(item, null);
1035 jsr166 1.134 if ((q = p.next) == null) q = p;
1036     if (c != q) tryCasSuccessor(pred, c, q);
1037     ancestor = pred;
1038     return;
1039     }
1040     final Object item; final boolean pAlive;
1041     if (pAlive = ((item = p.item) != null && p.isData)) {
1042     // exceptionally, nothing to do
1043     }
1044     else if (!p.isData && item == null)
1045     break;
1046     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1047     pred = p;
1048     c = p = p.next;
1049     }
1050     else if (p == (p = p.next)) {
1051     pred = null;
1052     c = p = head;
1053     }
1054     }
1055     // traversal failed to find lastRet; must have been deleted;
1056     // leave ancestor at original location to avoid overshoot;
1057     // better luck next time!
1058    
1059     // assert lastRet.isMatched();
1060 jsr166 1.1 }
1061     }
1062 jsr166 1.53
1063 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1064 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1065 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1066 jsr166 1.87 Node current; // current node; null until initialized
1067 dl 1.52 int batch; // batch size for splits
1068     boolean exhausted; // true when no more nodes
1069 jsr166 1.94 LTQSpliterator() {}
1070 dl 1.52
1071     public Spliterator<E> trySplit() {
1072 jsr166 1.115 Node p, q;
1073     if ((p = current()) == null || (q = p.next) == null)
1074     return null;
1075     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1076     Object[] a = null;
1077     do {
1078     final Object item = p.item;
1079     if (p.isData) {
1080     if (item != null)
1081     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1082     } else if (item == null) {
1083     p = null;
1084     break;
1085 dl 1.60 }
1086 jsr166 1.117 if (p == (p = q))
1087     p = firstDataNode();
1088 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1089     setCurrent(p);
1090     return (i == 0) ? null :
1091     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1092     Spliterator.NONNULL |
1093     Spliterator.CONCURRENT));
1094 dl 1.52 }
1095    
1096 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1097 jsr166 1.111 Objects.requireNonNull(action);
1098 jsr166 1.116 final Node p;
1099 jsr166 1.115 if ((p = current()) != null) {
1100 jsr166 1.107 current = null;
1101 dl 1.52 exhausted = true;
1102 jsr166 1.116 forEachFrom(action, p);
1103 dl 1.52 }
1104     }
1105    
1106     @SuppressWarnings("unchecked")
1107     public boolean tryAdvance(Consumer<? super E> action) {
1108 jsr166 1.111 Objects.requireNonNull(action);
1109 dl 1.52 Node p;
1110 jsr166 1.115 if ((p = current()) != null) {
1111     E e = null;
1112 dl 1.52 do {
1113 jsr166 1.115 final Object item = p.item;
1114     final boolean isData = p.isData;
1115     if (p == (p = p.next))
1116     p = head;
1117     if (isData) {
1118     if (item != null) {
1119     e = (E) item;
1120 jsr166 1.107 break;
1121     }
1122     }
1123 jsr166 1.115 else if (item == null)
1124     p = null;
1125     } while (p != null);
1126     setCurrent(p);
1127     if (e != null) {
1128     action.accept(e);
1129 dl 1.52 return true;
1130     }
1131     }
1132     return false;
1133     }
1134    
1135 jsr166 1.115 private void setCurrent(Node p) {
1136     if ((current = p) == null)
1137     exhausted = true;
1138     }
1139    
1140     private Node current() {
1141     Node p;
1142     if ((p = current) == null && !exhausted)
1143     setCurrent(p = firstDataNode());
1144     return p;
1145     }
1146    
1147 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1148    
1149 dl 1.52 public int characteristics() {
1150 jsr166 1.100 return (Spliterator.ORDERED |
1151     Spliterator.NONNULL |
1152     Spliterator.CONCURRENT);
1153 dl 1.52 }
1154     }
1155    
1156 jsr166 1.67 /**
1157     * Returns a {@link Spliterator} over the elements in this queue.
1158     *
1159 jsr166 1.68 * <p>The returned spliterator is
1160     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1161     *
1162 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1163     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1164     *
1165     * @implNote
1166     * The {@code Spliterator} implements {@code trySplit} to permit limited
1167     * parallelism.
1168     *
1169     * @return a {@code Spliterator} over the elements in this queue
1170     * @since 1.8
1171     */
1172 dl 1.56 public Spliterator<E> spliterator() {
1173 jsr166 1.109 return new LTQSpliterator();
1174 dl 1.52 }
1175    
1176 jsr166 1.8 /* -------------- Removal methods -------------- */
1177    
1178 jsr166 1.1 /**
1179 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1180     * the given predecessor.
1181 jsr166 1.1 *
1182 dl 1.16 * @param pred a node that was at one time known to be the
1183 jsr166 1.149 * predecessor of s
1184 jsr166 1.8 * @param s the node to be unspliced
1185 jsr166 1.1 */
1186 dl 1.16 final void unsplice(Node pred, Node s) {
1187 jsr166 1.149 // assert pred != null;
1188 jsr166 1.150 // assert pred != s;
1189 jsr166 1.149 // assert s != null;
1190     // assert s.isMatched();
1191 jsr166 1.152 // assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
1192 dl 1.71 s.waiter = null; // disable signals
1193 jsr166 1.1 /*
1194 dl 1.16 * See above for rationale. Briefly: if pred still points to
1195     * s, try to unlink s. If s cannot be unlinked, because it is
1196     * trailing node or pred might be unlinked, and neither pred
1197     * nor s are head or offlist, add to sweepVotes, and if enough
1198     * votes have accumulated, sweep.
1199 jsr166 1.1 */
1200 jsr166 1.150 if (pred != null && pred.next == s) {
1201 dl 1.16 Node n = s.next;
1202     if (n == null ||
1203     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1204     for (;;) { // check if at, or could be, head
1205     Node h = head;
1206 jsr166 1.151 if (h == pred || h == s)
1207 dl 1.16 return; // at head or list empty
1208     if (!h.isMatched())
1209     break;
1210     Node hn = h.next;
1211     if (hn == null)
1212     return; // now empty
1213     if (hn != h && casHead(h, hn))
1214 jsr166 1.142 h.selfLink(); // advance head
1215 jsr166 1.8 }
1216 jsr166 1.152 // sweep every SWEEP_THRESHOLD votes
1217     if (pred.next != pred && s.next != s // recheck if offlist
1218     && (incSweepVotes() & (SWEEP_THRESHOLD - 1)) == 0)
1219     sweep();
1220 jsr166 1.1 }
1221     }
1222     }
1223    
1224     /**
1225 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1226     * traversal from head.
1227 jsr166 1.1 */
1228 dl 1.16 private void sweep() {
1229 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1230 jsr166 1.28 if (!s.isMatched())
1231     // Unmatched nodes are never self-linked
1232 jsr166 1.20 p = s;
1233 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1234 jsr166 1.20 break;
1235 jsr166 1.28 else if (s == n) // stale
1236     // No need to also check for p == s, since that implies s == n
1237     p = head;
1238 jsr166 1.20 else
1239 dl 1.16 p.casNext(s, n);
1240 jsr166 1.8 }
1241     }
1242    
1243     /**
1244 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1245     */
1246     public LinkedTransferQueue() {
1247 jsr166 1.140 head = tail = new Node();
1248 jsr166 1.1 }
1249    
1250     /**
1251     * Creates a {@code LinkedTransferQueue}
1252     * initially containing the elements of the given collection,
1253     * added in traversal order of the collection's iterator.
1254     *
1255     * @param c the collection of elements to initially contain
1256     * @throws NullPointerException if the specified collection or any
1257     * of its elements are null
1258     */
1259     public LinkedTransferQueue(Collection<? extends E> c) {
1260 jsr166 1.140 Node h = null, t = null;
1261     for (E e : c) {
1262     Node newNode = new Node(Objects.requireNonNull(e));
1263     if (h == null)
1264     h = t = newNode;
1265     else
1266     t.appendRelaxed(t = newNode);
1267     }
1268     if (h == null)
1269     h = t = new Node();
1270     head = h;
1271     tail = t;
1272 jsr166 1.1 }
1273    
1274 jsr166 1.4 /**
1275 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1276     * As the queue is unbounded, this method will never block.
1277     *
1278     * @throws NullPointerException if the specified element is null
1279 jsr166 1.4 */
1280 jsr166 1.5 public void put(E e) {
1281 jsr166 1.8 xfer(e, true, ASYNC, 0);
1282 jsr166 1.1 }
1283    
1284 jsr166 1.4 /**
1285 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1286     * As the queue is unbounded, this method will never block or
1287     * return {@code false}.
1288     *
1289     * @return {@code true} (as specified by
1290 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1291     * BlockingQueue.offer})
1292 jsr166 1.5 * @throws NullPointerException if the specified element is null
1293 jsr166 1.4 */
1294 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1295 jsr166 1.8 xfer(e, true, ASYNC, 0);
1296     return true;
1297 jsr166 1.1 }
1298    
1299 jsr166 1.4 /**
1300 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1301     * As the queue is unbounded, this method will never return {@code false}.
1302     *
1303 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1304 jsr166 1.5 * @throws NullPointerException if the specified element is null
1305 jsr166 1.4 */
1306 jsr166 1.1 public boolean offer(E e) {
1307 jsr166 1.8 xfer(e, true, ASYNC, 0);
1308 jsr166 1.1 return true;
1309     }
1310    
1311 jsr166 1.4 /**
1312 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1313     * As the queue is unbounded, this method will never throw
1314     * {@link IllegalStateException} or return {@code false}.
1315     *
1316     * @return {@code true} (as specified by {@link Collection#add})
1317     * @throws NullPointerException if the specified element is null
1318 jsr166 1.4 */
1319 jsr166 1.1 public boolean add(E e) {
1320 jsr166 1.8 xfer(e, true, ASYNC, 0);
1321     return true;
1322 jsr166 1.5 }
1323    
1324     /**
1325 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1326     *
1327     * <p>More precisely, transfers the specified element immediately
1328     * if there exists a consumer already waiting to receive it (in
1329     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1330     * otherwise returning {@code false} without enqueuing the element.
1331 jsr166 1.5 *
1332     * @throws NullPointerException if the specified element is null
1333     */
1334     public boolean tryTransfer(E e) {
1335 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1336 jsr166 1.1 }
1337    
1338 jsr166 1.4 /**
1339 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1340     *
1341     * <p>More precisely, transfers the specified element immediately
1342     * if there exists a consumer already waiting to receive it (in
1343     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1344     * else inserts the specified element at the tail of this queue
1345     * and waits until the element is received by a consumer.
1346 jsr166 1.5 *
1347     * @throws NullPointerException if the specified element is null
1348 jsr166 1.4 */
1349 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1350 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1351     Thread.interrupted(); // failure possible only due to interrupt
1352 jsr166 1.1 throw new InterruptedException();
1353     }
1354     }
1355    
1356 jsr166 1.4 /**
1357 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1358     * before the timeout elapses.
1359     *
1360     * <p>More precisely, transfers the specified element immediately
1361     * if there exists a consumer already waiting to receive it (in
1362     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1363     * else inserts the specified element at the tail of this queue
1364     * and waits until the element is received by a consumer,
1365     * returning {@code false} if the specified wait time elapses
1366     * before the element can be transferred.
1367 jsr166 1.5 *
1368     * @throws NullPointerException if the specified element is null
1369 jsr166 1.4 */
1370 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1371     throws InterruptedException {
1372 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1373 jsr166 1.1 return true;
1374     if (!Thread.interrupted())
1375     return false;
1376     throw new InterruptedException();
1377     }
1378    
1379     public E take() throws InterruptedException {
1380 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1381 jsr166 1.1 if (e != null)
1382 jsr166 1.5 return e;
1383 jsr166 1.1 Thread.interrupted();
1384     throw new InterruptedException();
1385     }
1386    
1387     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1388 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1389 jsr166 1.1 if (e != null || !Thread.interrupted())
1390 jsr166 1.5 return e;
1391 jsr166 1.1 throw new InterruptedException();
1392     }
1393    
1394     public E poll() {
1395 jsr166 1.8 return xfer(null, false, NOW, 0);
1396 jsr166 1.1 }
1397    
1398 jsr166 1.4 /**
1399     * @throws NullPointerException {@inheritDoc}
1400     * @throws IllegalArgumentException {@inheritDoc}
1401     */
1402 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1403 jsr166 1.111 Objects.requireNonNull(c);
1404 jsr166 1.1 if (c == this)
1405     throw new IllegalArgumentException();
1406     int n = 0;
1407 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1408 jsr166 1.1 c.add(e);
1409     return n;
1410     }
1411    
1412 jsr166 1.4 /**
1413     * @throws NullPointerException {@inheritDoc}
1414     * @throws IllegalArgumentException {@inheritDoc}
1415     */
1416 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1417 jsr166 1.111 Objects.requireNonNull(c);
1418 jsr166 1.1 if (c == this)
1419     throw new IllegalArgumentException();
1420     int n = 0;
1421 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1422 jsr166 1.1 c.add(e);
1423     return n;
1424     }
1425    
1426 jsr166 1.5 /**
1427 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1428     * The elements will be returned in order from first (head) to last (tail).
1429 jsr166 1.5 *
1430 jsr166 1.68 * <p>The returned iterator is
1431     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1432 jsr166 1.5 *
1433     * @return an iterator over the elements in this queue in proper sequence
1434     */
1435 jsr166 1.1 public Iterator<E> iterator() {
1436     return new Itr();
1437     }
1438    
1439     public E peek() {
1440 jsr166 1.92 restartFromHead: for (;;) {
1441     for (Node p = head; p != null;) {
1442     Object item = p.item;
1443     if (p.isData) {
1444 jsr166 1.105 if (item != null) {
1445 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1446     return e;
1447     }
1448     }
1449     else if (item == null)
1450     break;
1451     if (p == (p = p.next))
1452     continue restartFromHead;
1453     }
1454     return null;
1455     }
1456 jsr166 1.1 }
1457    
1458 jsr166 1.6 /**
1459     * Returns {@code true} if this queue contains no elements.
1460     *
1461     * @return {@code true} if this queue contains no elements
1462     */
1463 jsr166 1.1 public boolean isEmpty() {
1464 jsr166 1.90 return firstDataNode() == null;
1465 jsr166 1.1 }
1466    
1467     public boolean hasWaitingConsumer() {
1468 jsr166 1.93 restartFromHead: for (;;) {
1469     for (Node p = head; p != null;) {
1470     Object item = p.item;
1471     if (p.isData) {
1472 jsr166 1.105 if (item != null)
1473 jsr166 1.93 break;
1474     }
1475     else if (item == null)
1476     return true;
1477     if (p == (p = p.next))
1478     continue restartFromHead;
1479     }
1480     return false;
1481     }
1482 jsr166 1.1 }
1483    
1484     /**
1485     * Returns the number of elements in this queue. If this queue
1486     * contains more than {@code Integer.MAX_VALUE} elements, returns
1487     * {@code Integer.MAX_VALUE}.
1488     *
1489     * <p>Beware that, unlike in most collections, this method is
1490     * <em>NOT</em> a constant-time operation. Because of the
1491     * asynchronous nature of these queues, determining the current
1492     * number of elements requires an O(n) traversal.
1493     *
1494     * @return the number of elements in this queue
1495     */
1496     public int size() {
1497 jsr166 1.8 return countOfMode(true);
1498 jsr166 1.1 }
1499    
1500     public int getWaitingConsumerCount() {
1501 jsr166 1.8 return countOfMode(false);
1502 jsr166 1.1 }
1503    
1504 jsr166 1.6 /**
1505     * Removes a single instance of the specified element from this queue,
1506     * if it is present. More formally, removes an element {@code e} such
1507     * that {@code o.equals(e)}, if this queue contains one or more such
1508     * elements.
1509     * Returns {@code true} if this queue contained the specified element
1510     * (or equivalently, if this queue changed as a result of the call).
1511     *
1512     * @param o element to be removed from this queue, if present
1513     * @return {@code true} if this queue changed as a result of the call
1514     */
1515 jsr166 1.1 public boolean remove(Object o) {
1516 jsr166 1.137 if (o == null) return false;
1517 jsr166 1.108 restartFromHead: for (;;) {
1518 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1519     Node q = p.next;
1520     final Object item;
1521     if ((item = p.item) != null) {
1522     if (p.isData) {
1523 jsr166 1.142 if (o.equals(item) && p.tryMatch(item, null)) {
1524 jsr166 1.137 skipDeadNodes(pred, p, p, q);
1525     return true;
1526     }
1527     pred = p; p = q; continue;
1528 jsr166 1.108 }
1529     }
1530 jsr166 1.137 else if (!p.isData)
1531 jsr166 1.108 break;
1532 jsr166 1.138 for (Node c = p;; q = p.next) {
1533     if (q == null || !q.isMatched()) {
1534 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1535     }
1536     if (p == (p = q)) continue restartFromHead;
1537 jsr166 1.122 }
1538 jsr166 1.108 }
1539     return false;
1540     }
1541 jsr166 1.1 }
1542    
1543     /**
1544 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1545     * More formally, returns {@code true} if and only if this queue contains
1546     * at least one element {@code e} such that {@code o.equals(e)}.
1547     *
1548     * @param o object to be checked for containment in this queue
1549     * @return {@code true} if this queue contains the specified element
1550     */
1551     public boolean contains(Object o) {
1552 jsr166 1.137 if (o == null) return false;
1553 jsr166 1.122 restartFromHead: for (;;) {
1554 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1555     Node q = p.next;
1556     final Object item;
1557     if ((item = p.item) != null) {
1558     if (p.isData) {
1559     if (o.equals(item))
1560     return true;
1561     pred = p; p = q; continue;
1562     }
1563 jsr166 1.74 }
1564 jsr166 1.137 else if (!p.isData)
1565 jsr166 1.74 break;
1566 jsr166 1.138 for (Node c = p;; q = p.next) {
1567     if (q == null || !q.isMatched()) {
1568 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1569     }
1570     if (p == (p = q)) continue restartFromHead;
1571 jsr166 1.122 }
1572 jsr166 1.30 }
1573 jsr166 1.122 return false;
1574 jsr166 1.30 }
1575     }
1576    
1577     /**
1578 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1579     * {@code LinkedTransferQueue} is not capacity constrained.
1580     *
1581     * @return {@code Integer.MAX_VALUE} (as specified by
1582 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1583     * BlockingQueue.remainingCapacity})
1584 jsr166 1.5 */
1585     public int remainingCapacity() {
1586     return Integer.MAX_VALUE;
1587     }
1588    
1589     /**
1590 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1591 jsr166 1.1 *
1592 jsr166 1.65 * @param s the stream
1593 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1594 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1595     * the proper order, followed by a null
1596     */
1597     private void writeObject(java.io.ObjectOutputStream s)
1598     throws java.io.IOException {
1599     s.defaultWriteObject();
1600     for (E e : this)
1601     s.writeObject(e);
1602     // Use trailing null as sentinel
1603     s.writeObject(null);
1604     }
1605    
1606     /**
1607 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1608 jsr166 1.65 * @param s the stream
1609 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1610     * could not be found
1611     * @throws java.io.IOException if an I/O error occurs
1612 jsr166 1.1 */
1613     private void readObject(java.io.ObjectInputStream s)
1614     throws java.io.IOException, ClassNotFoundException {
1615 jsr166 1.140
1616     // Read in elements until trailing null sentinel found
1617     Node h = null, t = null;
1618     for (Object item; (item = s.readObject()) != null; ) {
1619 jsr166 1.49 @SuppressWarnings("unchecked")
1620 jsr166 1.140 Node newNode = new Node((E) item);
1621     if (h == null)
1622     h = t = newNode;
1623 jsr166 1.1 else
1624 jsr166 1.140 t.appendRelaxed(t = newNode);
1625 jsr166 1.1 }
1626 jsr166 1.140 if (h == null)
1627     h = t = new Node();
1628     head = h;
1629     tail = t;
1630 jsr166 1.1 }
1631    
1632 jsr166 1.116 /**
1633     * @throws NullPointerException {@inheritDoc}
1634     */
1635     public boolean removeIf(Predicate<? super E> filter) {
1636     Objects.requireNonNull(filter);
1637     return bulkRemove(filter);
1638     }
1639    
1640     /**
1641     * @throws NullPointerException {@inheritDoc}
1642     */
1643     public boolean removeAll(Collection<?> c) {
1644     Objects.requireNonNull(c);
1645     return bulkRemove(e -> c.contains(e));
1646     }
1647    
1648     /**
1649     * @throws NullPointerException {@inheritDoc}
1650     */
1651     public boolean retainAll(Collection<?> c) {
1652     Objects.requireNonNull(c);
1653     return bulkRemove(e -> !c.contains(e));
1654     }
1655    
1656 jsr166 1.124 public void clear() {
1657     bulkRemove(e -> true);
1658     }
1659    
1660     /**
1661     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1662     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1663     */
1664     private static final int MAX_HOPS = 8;
1665    
1666 jsr166 1.116 /** Implementation of bulk remove methods. */
1667     @SuppressWarnings("unchecked")
1668     private boolean bulkRemove(Predicate<? super E> filter) {
1669     boolean removed = false;
1670     restartFromHead: for (;;) {
1671 jsr166 1.124 int hops = MAX_HOPS;
1672     // c will be CASed to collapse intervening dead nodes between
1673     // pred (or head if null) and p.
1674     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1675 jsr166 1.138 q = p.next;
1676 jsr166 1.124 final Object item; boolean pAlive;
1677 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1678 jsr166 1.124 if (filter.test((E) item)) {
1679 jsr166 1.142 if (p.tryMatch(item, null))
1680 jsr166 1.124 removed = true;
1681     pAlive = false;
1682 jsr166 1.116 }
1683     }
1684 jsr166 1.124 else if (!p.isData && item == null)
1685 jsr166 1.116 break;
1686 jsr166 1.138 if (pAlive || q == null || --hops == 0) {
1687 jsr166 1.124 // p might already be self-linked here, but if so:
1688     // - CASing head will surely fail
1689     // - CASing pred's next will be useless but harmless.
1690 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1691     || pAlive) {
1692     // if CAS failed or alive, abandon old pred
1693 jsr166 1.124 hops = MAX_HOPS;
1694     pred = p;
1695     c = q;
1696     }
1697     } else if (p == q)
1698 jsr166 1.116 continue restartFromHead;
1699     }
1700     return removed;
1701     }
1702     }
1703    
1704     /**
1705     * Runs action on each element found during a traversal starting at p.
1706 jsr166 1.118 * If p is null, the action is not run.
1707 jsr166 1.116 */
1708     @SuppressWarnings("unchecked")
1709     void forEachFrom(Consumer<? super E> action, Node p) {
1710 jsr166 1.137 for (Node pred = null; p != null; ) {
1711     Node q = p.next;
1712     final Object item;
1713     if ((item = p.item) != null) {
1714     if (p.isData) {
1715     action.accept((E) item);
1716     pred = p; p = q; continue;
1717     }
1718     }
1719     else if (!p.isData)
1720 jsr166 1.122 break;
1721 jsr166 1.138 for (Node c = p;; q = p.next) {
1722     if (q == null || !q.isMatched()) {
1723 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1724     }
1725     if (p == (p = q)) { pred = null; p = head; break; }
1726 jsr166 1.116 }
1727     }
1728     }
1729    
1730     /**
1731     * @throws NullPointerException {@inheritDoc}
1732     */
1733     public void forEach(Consumer<? super E> action) {
1734     Objects.requireNonNull(action);
1735     forEachFrom(action, head);
1736     }
1737    
1738 dl 1.97 // VarHandle mechanics
1739     private static final VarHandle HEAD;
1740     private static final VarHandle TAIL;
1741     private static final VarHandle SWEEPVOTES;
1742 jsr166 1.140 static final VarHandle ITEM;
1743     static final VarHandle NEXT;
1744     static final VarHandle WAITER;
1745 dl 1.38 static {
1746 jsr166 1.1 try {
1747 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1748     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1749     Node.class);
1750     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1751     Node.class);
1752     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1753     int.class);
1754 jsr166 1.140 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1755     NEXT = l.findVarHandle(Node.class, "next", Node.class);
1756     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1757 jsr166 1.79 } catch (ReflectiveOperationException e) {
1758 dl 1.38 throw new Error(e);
1759 jsr166 1.1 }
1760 jsr166 1.85
1761     // Reduce the risk of rare disastrous classloading in first call to
1762     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1763     Class<?> ensureLoaded = LockSupport.class;
1764 jsr166 1.1 }
1765     }