ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.156
Committed: Wed Apr 19 23:45:51 2017 UTC (7 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.155: +2 -4 lines
Log Message:
Redo @link and @linkplain; one @link was pointing to the wrong poll method

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133 jsr166 1.140 * trailing node on appends. While this would be a terrible idea
134     * in itself, it does have the benefit of not requiring ANY atomic
135 jsr166 1.8 * updates on head/tail fields.
136     *
137     * We introduce here an approach that lies between the extremes of
138     * never versus always updating queue (head and tail) pointers.
139     * This offers a tradeoff between sometimes requiring extra
140     * traversal steps to locate the first and/or last unmatched
141     * nodes, versus the reduced overhead and contention of fewer
142     * updates to queue pointers. For example, a possible snapshot of
143     * a queue is:
144     *
145     * head tail
146     * | |
147     * v v
148     * M -> M -> U -> U -> U -> U
149     *
150     * The best value for this "slack" (the targeted maximum distance
151     * between the value of "head" and the first unmatched node, and
152     * similarly for "tail") is an empirical matter. We have found
153     * that using very small constants in the range of 1-3 work best
154     * over a range of platforms. Larger values introduce increasing
155     * costs of cache misses and risks of long traversal chains, while
156     * smaller values increase CAS contention and overhead.
157     *
158     * Dual queues with slack differ from plain M&S dual queues by
159     * virtue of only sometimes updating head or tail pointers when
160     * matching, appending, or even traversing nodes; in order to
161     * maintain a targeted slack. The idea of "sometimes" may be
162     * operationalized in several ways. The simplest is to use a
163     * per-operation counter incremented on each traversal step, and
164     * to try (via CAS) to update the associated queue pointer
165     * whenever the count exceeds a threshold. Another, that requires
166     * more overhead, is to use random number generators to update
167     * with a given probability per traversal step.
168     *
169     * In any strategy along these lines, because CASes updating
170 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
171     * However, they may be retried at any time to maintain targets.
172     * Even when using very small slack values, this approach works
173     * well for dual queues because it allows all operations up to the
174     * point of matching or appending an item (hence potentially
175     * allowing progress by another thread) to be read-only, thus not
176     * introducing any further contention. As described below, we
177     * implement this by performing slack maintenance retries only
178     * after these points.
179 jsr166 1.8 *
180     * As an accompaniment to such techniques, traversal overhead can
181     * be further reduced without increasing contention of head
182     * pointer updates: Threads may sometimes shortcut the "next" link
183     * path from the current "head" node to be closer to the currently
184     * known first unmatched node, and similarly for tail. Again, this
185     * may be triggered with using thresholds or randomization.
186     *
187     * These ideas must be further extended to avoid unbounded amounts
188     * of costly-to-reclaim garbage caused by the sequential "next"
189     * links of nodes starting at old forgotten head nodes: As first
190     * described in detail by Boehm
191 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 jsr166 1.8 * delays noticing that any arbitrarily old node has become
193     * garbage, all newer dead nodes will also be unreclaimed.
194     * (Similar issues arise in non-GC environments.) To cope with
195     * this in our implementation, upon CASing to advance the head
196     * pointer, we set the "next" link of the previous head to point
197 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
198 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
199     * retaining values held in other Node fields.) However, doing so
200     * adds some further complexity to traversal: If any "next"
201     * pointer links to itself, it indicates that the current thread
202     * has lagged behind a head-update, and so the traversal must
203     * continue from the "head". Traversals trying to find the
204     * current tail starting from "tail" may also encounter
205     * self-links, in which case they also continue at "head".
206     *
207     * It is tempting in slack-based scheme to not even use CAS for
208     * updates (similarly to Ladan-Mozes & Shavit). However, this
209     * cannot be done for head updates under the above link-forgetting
210     * mechanics because an update may leave head at a detached node.
211     * And while direct writes are possible for tail updates, they
212     * increase the risk of long retraversals, and hence long garbage
213     * chains, which can be much more costly than is worthwhile
214     * considering that the cost difference of performing a CAS vs
215     * write is smaller when they are not triggered on each operation
216     * (especially considering that writes and CASes equally require
217     * additional GC bookkeeping ("write barriers") that are sometimes
218     * more costly than the writes themselves because of contention).
219     *
220     * *** Overview of implementation ***
221     *
222     * We use a threshold-based approach to updates, with a slack
223     * threshold of two -- that is, we update head/tail when the
224     * current pointer appears to be two or more steps away from the
225     * first/last node. The slack value is hard-wired: a path greater
226     * than one is naturally implemented by checking equality of
227     * traversal pointers except when the list has only one element,
228     * in which case we keep slack threshold at one. Avoiding tracking
229     * explicit counts across method calls slightly simplifies an
230     * already-messy implementation. Using randomization would
231     * probably work better if there were a low-quality dirt-cheap
232     * per-thread one available, but even ThreadLocalRandom is too
233     * heavy for these purposes.
234     *
235 dl 1.16 * With such a small slack threshold value, it is not worthwhile
236     * to augment this with path short-circuiting (i.e., unsplicing
237     * interior nodes) except in the case of cancellation/removal (see
238     * below).
239 jsr166 1.8 *
240     * All enqueue/dequeue operations are handled by the single method
241     * "xfer" with parameters indicating whether to act as some form
242     * of offer, put, poll, take, or transfer (each possibly with
243     * timeout). The relative complexity of using one monolithic
244     * method outweighs the code bulk and maintenance problems of
245     * using separate methods for each case.
246     *
247 jsr166 1.153 * Operation consists of up to two phases. The first is implemented
248     * in method xfer, the second in method awaitMatch.
249 jsr166 1.8 *
250 jsr166 1.153 * 1. Traverse until matching or appending (method xfer)
251 jsr166 1.8 *
252 jsr166 1.153 * Conceptually, we simply traverse all nodes starting from head.
253     * If we encounter an unmatched node of opposite mode, we match
254     * it and return, also updating head (by at least 2 hops) to
255     * one past the matched node (or the node itself if it's the
256     * pinned trailing node). Traversals also check for the
257     * possibility of falling off-list, in which case they restart.
258     *
259     * If the trailing node of the list is reached, a match is not
260     * possible. If this call was untimed poll or tryTransfer
261     * (argument "how" is NOW), return empty-handed immediately.
262     * Else a new node is CAS-appended. On successful append, if
263     * this call was ASYNC (e.g. offer), an element was
264     * successfully added to the end of the queue and we return.
265     *
266     * Of course, this naive traversal is O(n) when no match is
267     * possible. We optimize the traversal by maintaining a tail
268     * pointer, which is expected to be "near" the end of the list.
269     * It is only safe to fast-forward to tail (in the presence of
270     * arbitrary concurrent changes) if it is pointing to a node of
271     * the same mode, even if it is dead (in this case no preceding
272     * node could still be matchable by this traversal). If we
273     * need to restart due to falling off-list, we can again
274     * fast-forward to tail, but only if it has changed since the
275     * last traversal (else we might loop forever). If tail cannot
276     * be used, traversal starts at head (but in this case we
277     * expect to be able to match near head). As with head, we
278     * CAS-advance the tail pointer by at least two hops.
279     *
280     * 2. Await match or cancellation (method awaitMatch)
281 jsr166 1.8 *
282     * Wait for another thread to match node; instead cancelling if
283     * the current thread was interrupted or the wait timed out. On
284     * multiprocessors, we use front-of-queue spinning: If a node
285     * appears to be the first unmatched node in the queue, it
286     * spins a bit before blocking. In either case, before blocking
287     * it tries to unsplice any nodes between the current "head"
288     * and the first unmatched node.
289     *
290     * Front-of-queue spinning vastly improves performance of
291     * heavily contended queues. And so long as it is relatively
292     * brief and "quiet", spinning does not much impact performance
293     * of less-contended queues. During spins threads check their
294     * interrupt status and generate a thread-local random number
295     * to decide to occasionally perform a Thread.yield. While
296 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
297 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
298 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
299     * not known to be front but whose predecessors have not
300     * blocked -- these "chained" spins avoid artifacts of
301     * front-of-queue rules which otherwise lead to alternating
302     * nodes spinning vs blocking. Further, front threads that
303     * represent phase changes (from data to request node or vice
304     * versa) compared to their predecessors receive additional
305     * chained spins, reflecting longer paths typically required to
306     * unblock threads during phase changes.
307 dl 1.16 *
308     *
309     * ** Unlinking removed interior nodes **
310     *
311     * In addition to minimizing garbage retention via self-linking
312     * described above, we also unlink removed interior nodes. These
313     * may arise due to timed out or interrupted waits, or calls to
314     * remove(x) or Iterator.remove. Normally, given a node that was
315     * at one time known to be the predecessor of some node s that is
316     * to be removed, we can unsplice s by CASing the next field of
317     * its predecessor if it still points to s (otherwise s must
318     * already have been removed or is now offlist). But there are two
319     * situations in which we cannot guarantee to make node s
320     * unreachable in this way: (1) If s is the trailing node of list
321     * (i.e., with null next), then it is pinned as the target node
322 jsr166 1.23 * for appends, so can only be removed later after other nodes are
323 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
324     * predecessor node that is matched (including the case of being
325 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
326     * case some previous reachable node may still point to s.
327     * (For further explanation see Herlihy & Shavit "The Art of
328 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
329     * cases, we can rule out the need for further action if either s
330     * or its predecessor are (or can be made to be) at, or fall off
331     * from, the head of list.
332     *
333     * Without taking these into account, it would be possible for an
334 jsr166 1.152 * unbounded number of supposedly removed nodes to remain reachable.
335 jsr166 1.155 * Situations leading to such buildup are uncommon but can occur
336     * in practice; for example when a series of short timed calls to
337     * poll repeatedly time out at the trailing node but otherwise
338     * never fall off the list because of an untimed call to take() at
339     * the front of the queue.
340 dl 1.16 *
341     * When these cases arise, rather than always retraversing the
342     * entire list to find an actual predecessor to unlink (which
343     * won't help for case (1) anyway), we record a conservative
344 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
345     * We trigger a full sweep when the estimate exceeds a threshold
346     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
347     * removal failures to tolerate before sweeping through, unlinking
348     * cancelled nodes that were not unlinked upon initial removal.
349     * We perform sweeps by the thread hitting threshold (rather than
350     * background threads or by spreading work to other threads)
351     * because in the main contexts in which removal occurs, the
352 jsr166 1.152 * caller is timed-out or cancelled, which are not time-critical
353     * enough to warrant the overhead that alternatives would impose
354     * on other threads.
355 dl 1.16 *
356     * Because the sweepVotes estimate is conservative, and because
357     * nodes become unlinked "naturally" as they fall off the head of
358     * the queue, and because we allow votes to accumulate even while
359 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
360 dl 1.16 * such nodes than estimated. Choice of a threshold value
361     * balances the likelihood of wasted effort and contention, versus
362     * providing a worst-case bound on retention of interior nodes in
363     * quiescent queues. The value defined below was chosen
364     * empirically to balance these under various timeout scenarios.
365     *
366 jsr166 1.152 * Because traversal operations on the linked list of nodes are a
367     * natural opportunity to sweep dead nodes, we generally do so,
368     * including all the operations that might remove elements as they
369     * traverse, such as removeIf and Iterator.remove. This largely
370     * eliminates long chains of dead interior nodes, except from
371     * cancelled or timed out blocking operations.
372     *
373 dl 1.16 * Note that we cannot self-link unlinked interior nodes during
374     * sweeps. However, the associated garbage chains terminate when
375     * some successor ultimately falls off the head of the list and is
376     * self-linked.
377 jsr166 1.8 */
378    
379     /** True if on multiprocessor */
380     private static final boolean MP =
381     Runtime.getRuntime().availableProcessors() > 1;
382    
383     /**
384     * The number of times to spin (with randomly interspersed calls
385     * to Thread.yield) on multiprocessor before blocking when a node
386     * is apparently the first waiter in the queue. See above for
387     * explanation. Must be a power of two. The value is empirically
388     * derived -- it works pretty well across a variety of processors,
389     * numbers of CPUs, and OSes.
390     */
391     private static final int FRONT_SPINS = 1 << 7;
392    
393     /**
394     * The number of times to spin before blocking when a node is
395     * preceded by another node that is apparently spinning. Also
396     * serves as an increment to FRONT_SPINS on phase changes, and as
397     * base average frequency for yielding during spins. Must be a
398     * power of two.
399     */
400     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
401    
402     /**
403 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
404     * to tolerate before sweeping through the queue unlinking
405     * cancelled nodes that were not unlinked upon initial
406     * removal. See above for explanation. The value must be at least
407     * two to avoid useless sweeps when removing trailing nodes.
408     */
409     static final int SWEEP_THRESHOLD = 32;
410    
411     /**
412 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
413 jsr166 1.142 * them after use. Writes that are intrinsically ordered wrt
414     * other accesses or CASes use simple relaxed forms.
415 jsr166 1.8 */
416 jsr166 1.14 static final class Node {
417 jsr166 1.8 final boolean isData; // false if this is a request node
418     volatile Object item; // initially non-null if isData; CASed to match
419 jsr166 1.14 volatile Node next;
420 jsr166 1.142 volatile Thread waiter; // null when not waiting for a match
421 jsr166 1.1
422 jsr166 1.8 /**
423 jsr166 1.140 * Constructs a data node holding item if item is non-null,
424     * else a request node. Uses relaxed write because item can
425     * only be seen after piggy-backing publication via CAS.
426 jsr166 1.8 */
427 jsr166 1.101 Node(Object item) {
428 jsr166 1.104 ITEM.set(this, item);
429 jsr166 1.101 isData = (item != null);
430 jsr166 1.8 }
431 jsr166 1.1
432 jsr166 1.142 /** Constructs a (matched data) dummy node. */
433 jsr166 1.140 Node() {
434     isData = true;
435     }
436    
437 jsr166 1.142 final boolean casNext(Node cmp, Node val) {
438     // assert val != null;
439     return NEXT.compareAndSet(this, cmp, val);
440     }
441    
442     final boolean casItem(Object cmp, Object val) {
443     // assert isData == (cmp != null);
444     // assert isData == (val == null);
445     // assert !(cmp instanceof Node);
446     return ITEM.compareAndSet(this, cmp, val);
447     }
448    
449 jsr166 1.8 /**
450     * Links node to itself to avoid garbage retention. Called
451     * only after CASing head field, so uses relaxed write.
452     */
453 jsr166 1.142 final void selfLink() {
454     // assert isMatched();
455 jsr166 1.121 NEXT.setRelease(this, this);
456 jsr166 1.8 }
457 jsr166 1.1
458 jsr166 1.140 final void appendRelaxed(Node next) {
459     // assert next != null;
460     // assert this.next == null;
461     NEXT.set(this, next);
462     }
463    
464 jsr166 1.8 /**
465 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
466     * to avoid garbage retention after matching or cancelling.
467     * Uses relaxed writes because order is already constrained in
468     * the only calling contexts: item is forgotten only after
469 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
470     * of request nodes only ever check whether item is null.
471     * Similarly, clearing waiter follows either CAS or return
472     * from park (if ever parked; else we don't care).
473 jsr166 1.8 */
474     final void forgetContents() {
475 jsr166 1.105 // assert isMatched();
476     if (!isData)
477     ITEM.set(this, this);
478 dl 1.97 WAITER.set(this, null);
479 jsr166 1.8 }
480 jsr166 1.1
481 jsr166 1.8 /**
482     * Returns true if this node has been matched, including the
483     * case of artificial matches due to cancellation.
484     */
485     final boolean isMatched() {
486 jsr166 1.105 return isData == (item == null);
487 jsr166 1.11 }
488    
489 jsr166 1.142 /** Tries to CAS-match this node; if successful, wakes waiter. */
490     final boolean tryMatch(Object cmp, Object val) {
491     if (casItem(cmp, val)) {
492     LockSupport.unpark(waiter);
493     return true;
494     }
495     return false;
496     }
497    
498 jsr166 1.11 /**
499 jsr166 1.8 * Returns true if a node with the given mode cannot be
500     * appended to this node because this node is unmatched and
501     * has opposite data mode.
502     */
503     final boolean cannotPrecede(boolean haveData) {
504     boolean d = isData;
505 jsr166 1.105 return d != haveData && d != (item == null);
506 jsr166 1.8 }
507 jsr166 1.1
508 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
509 jsr166 1.1 }
510    
511 jsr166 1.140 /**
512     * A node from which the first live (non-matched) node (if any)
513     * can be reached in O(1) time.
514     * Invariants:
515     * - all live nodes are reachable from head via .next
516     * - head != null
517     * - (tmp = head).next != tmp || tmp != head
518     * Non-invariants:
519     * - head may or may not be live
520     * - it is permitted for tail to lag behind head, that is, for tail
521     * to not be reachable from head!
522     */
523 jsr166 1.14 transient volatile Node head;
524 jsr166 1.8
525 jsr166 1.140 /**
526     * A node from which the last node on list (that is, the unique
527     * node with node.next == null) can be reached in O(1) time.
528     * Invariants:
529     * - the last node is always reachable from tail via .next
530     * - tail != null
531     * Non-invariants:
532     * - tail may or may not be live
533     * - it is permitted for tail to lag behind head, that is, for tail
534     * to not be reachable from head!
535     * - tail.next may or may not be self-linked.
536     */
537 jsr166 1.14 private transient volatile Node tail;
538 jsr166 1.1
539 jsr166 1.152 /** The number of apparent failures to unsplice cancelled nodes */
540 dl 1.16 private transient volatile int sweepVotes;
541    
542 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
543 jsr166 1.140 // assert cmp != null;
544     // assert val != null;
545 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
546 jsr166 1.8 }
547 jsr166 1.1
548 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
549 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
550 jsr166 1.8 }
551 jsr166 1.1
552 jsr166 1.152 /** Atomic version of ++sweepVotes. */
553     private int incSweepVotes() {
554     return (int) SWEEPVOTES.getAndAdd(this, 1) + 1;
555 jsr166 1.8 }
556 jsr166 1.1
557 jsr166 1.122 /**
558     * Tries to CAS pred.next (or head, if pred is null) from c to p.
559 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
560 jsr166 1.122 */
561     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
562 jsr166 1.133 // assert p != null;
563 jsr166 1.136 // assert c.isData != (c.item != null);
564 jsr166 1.122 // assert c != p;
565     if (pred != null)
566     return pred.casNext(c, p);
567     if (casHead(c, p)) {
568 jsr166 1.142 c.selfLink();
569 jsr166 1.122 return true;
570     }
571     return false;
572     }
573    
574 jsr166 1.137 /**
575 jsr166 1.144 * Collapses dead (matched) nodes between pred and q.
576 jsr166 1.137 * @param pred the last known live node, or null if none
577     * @param c the first dead node
578     * @param p the last dead node
579     * @param q p.next: the next live node, or null if at end
580 jsr166 1.153 * @return pred if pred still alive and CAS succeeded; else p
581 jsr166 1.137 */
582     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
583     // assert pred != c;
584     // assert p != q;
585     // assert c.isMatched();
586     // assert p.isMatched();
587     if (q == null) {
588     // Never unlink trailing node.
589     if (c == p) return pred;
590     q = p;
591     }
592     return (tryCasSuccessor(pred, c, q)
593     && (pred == null || !pred.isMatched()))
594     ? pred : p;
595     }
596    
597 jsr166 1.144 /**
598 jsr166 1.153 * Collapses dead (matched) nodes from h (which was once head) to p.
599     * Caller ensures all nodes from h up to and including p are dead.
600 jsr166 1.144 */
601     private void skipDeadNodesNearHead(Node h, Node p) {
602 jsr166 1.153 // assert h != null;
603 jsr166 1.144 // assert h != p;
604     // assert p.isMatched();
605 jsr166 1.153 for (;;) {
606     final Node q;
607     if ((q = p.next) == null) break;
608     else if (!q.isMatched()) { p = q; break; }
609     else if (p == (p = q)) return;
610 jsr166 1.144 }
611 jsr166 1.153 if (casHead(h, p))
612 jsr166 1.144 h.selfLink();
613     }
614    
615 jsr166 1.137 /* Possible values for "how" argument in xfer method. */
616    
617 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
618     private static final int ASYNC = 1; // for offer, put, add
619     private static final int SYNC = 2; // for transfer, take
620     private static final int TIMED = 3; // for timed poll, tryTransfer
621 jsr166 1.1
622     /**
623 jsr166 1.8 * Implements all queuing methods. See above for explanation.
624 jsr166 1.1 *
625 jsr166 1.8 * @param e the item or null for take
626     * @param haveData true if this is a put, else a take
627 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
628     * @param nanos timeout in nanosecs, used only if mode is TIMED
629 jsr166 1.8 * @return an item if matched, else e
630     * @throws NullPointerException if haveData mode but e is null
631 jsr166 1.1 */
632 jsr166 1.153 @SuppressWarnings("unchecked")
633 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
634     if (haveData && (e == null))
635     throw new NullPointerException();
636 jsr166 1.1
637 jsr166 1.153 restart: for (Node s = null, t = null, h = null;;) {
638     for (Node p = (t != (t = tail) && t.isData == haveData) ? t
639     : (h = head);; ) {
640     final Node q; final Object item;
641     if (p.isData != haveData
642     && haveData == ((item = p.item) == null)) {
643     if (h == null) h = head;
644 jsr166 1.142 if (p.tryMatch(item, e)) {
645 jsr166 1.144 if (h != p) skipDeadNodesNearHead(h, p);
646 jsr166 1.153 return (E) item;
647 jsr166 1.1 }
648     }
649 jsr166 1.153 if ((q = p.next) == null) {
650     if (how == NOW) return e;
651     if (s == null) s = new Node(e);
652     if (!p.casNext(null, s)) continue;
653     if (p != t) casTail(t, s);
654     if (how == ASYNC) return e;
655     return awaitMatch(s, p, e, (how == TIMED), nanos);
656 jsr166 1.1 }
657 jsr166 1.153 if (p == (p = q)) continue restart;
658 jsr166 1.1 }
659     }
660     }
661    
662     /**
663 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
664 jsr166 1.1 *
665     * @param s the waiting node
666 jsr166 1.148 * @param pred the predecessor of s, or null if unknown (the null
667     * case does not occur in any current calls but may in possible
668     * future extensions)
669 jsr166 1.1 * @param e the comparison value for checking match
670 jsr166 1.14 * @param timed if true, wait only until timeout elapses
671     * @param nanos timeout in nanosecs, used only if timed is true
672 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
673 jsr166 1.1 */
674 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
675 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
676 jsr166 1.8 Thread w = Thread.currentThread();
677     int spins = -1; // initialized after first item and cancel checks
678     ThreadLocalRandom randomYields = null; // bound if needed
679 jsr166 1.1
680     for (;;) {
681 jsr166 1.141 final Object item;
682     if ((item = s.item) != e) { // matched
683 dl 1.33 // assert item != s;
684 jsr166 1.8 s.forgetContents(); // avoid garbage
685 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
686     return itemE;
687 jsr166 1.8 }
688 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
689 jsr166 1.102 // try to cancel and unlink
690 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
691 jsr166 1.102 unsplice(pred, s);
692 jsr166 1.77 return e;
693 jsr166 1.102 }
694     // return normally if lost CAS
695 jsr166 1.8 }
696 dl 1.84 else if (spins < 0) { // establish spins at/near front
697 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
698     randomYields = ThreadLocalRandom.current();
699     }
700     else if (spins > 0) { // spin
701 dl 1.16 --spins;
702     if (randomYields.nextInt(CHAINED_SPINS) == 0)
703 jsr166 1.8 Thread.yield(); // occasionally yield
704     }
705     else if (s.waiter == null) {
706     s.waiter = w; // request unpark then recheck
707 jsr166 1.1 }
708 jsr166 1.14 else if (timed) {
709 jsr166 1.51 nanos = deadline - System.nanoTime();
710     if (nanos > 0L)
711 jsr166 1.8 LockSupport.parkNanos(this, nanos);
712 jsr166 1.1 }
713 jsr166 1.8 else {
714 jsr166 1.1 LockSupport.park(this);
715     }
716 jsr166 1.8 }
717     }
718    
719     /**
720     * Returns spin/yield value for a node with given predecessor and
721     * data mode. See above for explanation.
722     */
723 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
724 jsr166 1.8 if (MP && pred != null) {
725     if (pred.isData != haveData) // phase change
726     return FRONT_SPINS + CHAINED_SPINS;
727     if (pred.isMatched()) // probably at front
728     return FRONT_SPINS;
729     if (pred.waiter == null) // pred apparently spinning
730     return CHAINED_SPINS;
731     }
732     return 0;
733     }
734    
735     /* -------------- Traversal methods -------------- */
736    
737     /**
738 jsr166 1.93 * Returns the first unmatched data node, or null if none.
739 jsr166 1.105 * Callers must recheck if the returned node is unmatched
740     * before using.
741 dl 1.52 */
742     final Node firstDataNode() {
743 jsr166 1.139 Node first = null;
744 jsr166 1.91 restartFromHead: for (;;) {
745 jsr166 1.139 Node h = head, p = h;
746     for (; p != null;) {
747     final Object item;
748     if ((item = p.item) != null) {
749     if (p.isData) {
750     first = p;
751     break;
752     }
753 jsr166 1.91 }
754 jsr166 1.139 else if (!p.isData)
755     break;
756     final Node q;
757     if ((q = p.next) == null)
758 jsr166 1.91 break;
759 jsr166 1.139 if (p == (p = q))
760 jsr166 1.91 continue restartFromHead;
761 dl 1.52 }
762 jsr166 1.139 if (p != h && casHead(h, p))
763 jsr166 1.142 h.selfLink();
764 jsr166 1.139 return first;
765 dl 1.52 }
766     }
767    
768     /**
769 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
770     * Used by methods size and getWaitingConsumerCount.
771 jsr166 1.1 */
772 jsr166 1.8 private int countOfMode(boolean data) {
773 jsr166 1.73 restartFromHead: for (;;) {
774     int count = 0;
775     for (Node p = head; p != null;) {
776     if (!p.isMatched()) {
777     if (p.isData != data)
778     return 0;
779     if (++count == Integer.MAX_VALUE)
780     break; // @see Collection.size()
781     }
782 jsr166 1.81 if (p == (p = p.next))
783 jsr166 1.73 continue restartFromHead;
784 jsr166 1.1 }
785 jsr166 1.73 return count;
786 jsr166 1.8 }
787     }
788    
789 jsr166 1.82 public String toString() {
790     String[] a = null;
791     restartFromHead: for (;;) {
792     int charLength = 0;
793     int size = 0;
794     for (Node p = head; p != null;) {
795     Object item = p.item;
796     if (p.isData) {
797 jsr166 1.105 if (item != null) {
798 jsr166 1.82 if (a == null)
799     a = new String[4];
800     else if (size == a.length)
801     a = Arrays.copyOf(a, 2 * size);
802     String s = item.toString();
803     a[size++] = s;
804     charLength += s.length();
805     }
806     } else if (item == null)
807     break;
808     if (p == (p = p.next))
809     continue restartFromHead;
810     }
811    
812     if (size == 0)
813     return "[]";
814    
815 jsr166 1.83 return Helpers.toString(a, size, charLength);
816 jsr166 1.82 }
817     }
818    
819     private Object[] toArrayInternal(Object[] a) {
820     Object[] x = a;
821     restartFromHead: for (;;) {
822     int size = 0;
823     for (Node p = head; p != null;) {
824     Object item = p.item;
825     if (p.isData) {
826 jsr166 1.105 if (item != null) {
827 jsr166 1.82 if (x == null)
828     x = new Object[4];
829     else if (size == x.length)
830     x = Arrays.copyOf(x, 2 * (size + 4));
831     x[size++] = item;
832     }
833     } else if (item == null)
834     break;
835     if (p == (p = p.next))
836     continue restartFromHead;
837     }
838     if (x == null)
839     return new Object[0];
840     else if (a != null && size <= a.length) {
841     if (a != x)
842     System.arraycopy(x, 0, a, 0, size);
843     if (size < a.length)
844     a[size] = null;
845     return a;
846     }
847     return (size == x.length) ? x : Arrays.copyOf(x, size);
848     }
849     }
850    
851     /**
852     * Returns an array containing all of the elements in this queue, in
853     * proper sequence.
854     *
855     * <p>The returned array will be "safe" in that no references to it are
856     * maintained by this queue. (In other words, this method must allocate
857     * a new array). The caller is thus free to modify the returned array.
858     *
859     * <p>This method acts as bridge between array-based and collection-based
860     * APIs.
861     *
862     * @return an array containing all of the elements in this queue
863     */
864     public Object[] toArray() {
865     return toArrayInternal(null);
866     }
867    
868     /**
869     * Returns an array containing all of the elements in this queue, in
870     * proper sequence; the runtime type of the returned array is that of
871     * the specified array. If the queue fits in the specified array, it
872     * is returned therein. Otherwise, a new array is allocated with the
873     * runtime type of the specified array and the size of this queue.
874     *
875     * <p>If this queue fits in the specified array with room to spare
876     * (i.e., the array has more elements than this queue), the element in
877     * the array immediately following the end of the queue is set to
878     * {@code null}.
879     *
880     * <p>Like the {@link #toArray()} method, this method acts as bridge between
881     * array-based and collection-based APIs. Further, this method allows
882     * precise control over the runtime type of the output array, and may,
883     * under certain circumstances, be used to save allocation costs.
884     *
885     * <p>Suppose {@code x} is a queue known to contain only strings.
886     * The following code can be used to dump the queue into a newly
887     * allocated array of {@code String}:
888     *
889     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
890     *
891     * Note that {@code toArray(new Object[0])} is identical in function to
892     * {@code toArray()}.
893     *
894     * @param a the array into which the elements of the queue are to
895     * be stored, if it is big enough; otherwise, a new array of the
896     * same runtime type is allocated for this purpose
897     * @return an array containing all of the elements in this queue
898     * @throws ArrayStoreException if the runtime type of the specified array
899     * is not a supertype of the runtime type of every element in
900     * this queue
901     * @throws NullPointerException if the specified array is null
902     */
903     @SuppressWarnings("unchecked")
904     public <T> T[] toArray(T[] a) {
905 jsr166 1.111 Objects.requireNonNull(a);
906 jsr166 1.82 return (T[]) toArrayInternal(a);
907     }
908    
909 jsr166 1.134 /**
910     * Weakly-consistent iterator.
911     *
912     * Lazily updated ancestor is expected to be amortized O(1) remove(),
913     * but O(n) in the worst case, when lastRet is concurrently deleted.
914     */
915 jsr166 1.8 final class Itr implements Iterator<E> {
916 jsr166 1.14 private Node nextNode; // next node to return item for
917     private E nextItem; // the corresponding item
918     private Node lastRet; // last returned node, to support remove
919 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
920 jsr166 1.8
921     /**
922 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
923 jsr166 1.8 */
924 jsr166 1.134 @SuppressWarnings("unchecked")
925     private void advance(Node pred) {
926     for (Node p = (pred == null) ? head : pred.next, c = p;
927     p != null; ) {
928     final Object item;
929     if ((item = p.item) != null && p.isData) {
930     nextNode = p;
931     nextItem = (E) item;
932     if (c != p)
933     tryCasSuccessor(pred, c, p);
934     return;
935     }
936     else if (!p.isData && item == null)
937 dl 1.33 break;
938 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
939     pred = p;
940     c = p = p.next;
941 dl 1.33 }
942 jsr166 1.134 else if (p == (p = p.next)) {
943     pred = null;
944     c = p = head;
945 jsr166 1.34 }
946 jsr166 1.1 }
947 jsr166 1.134 nextItem = null;
948 jsr166 1.8 nextNode = null;
949     }
950    
951     Itr() {
952     advance(null);
953     }
954    
955     public final boolean hasNext() {
956     return nextNode != null;
957     }
958    
959     public final E next() {
960 jsr166 1.125 final Node p;
961     if ((p = nextNode) == null) throw new NoSuchElementException();
962 jsr166 1.8 E e = nextItem;
963 jsr166 1.134 advance(lastRet = p);
964 jsr166 1.8 return e;
965     }
966    
967 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
968     Objects.requireNonNull(action);
969     Node q = null;
970     for (Node p; (p = nextNode) != null; advance(q = p))
971     action.accept(nextItem);
972     if (q != null)
973     lastRet = q;
974     }
975 jsr166 1.116
976 jsr166 1.8 public final void remove() {
977 dl 1.33 final Node lastRet = this.lastRet;
978     if (lastRet == null)
979     throw new IllegalStateException();
980     this.lastRet = null;
981 jsr166 1.134 if (lastRet.item == null) // already deleted?
982     return;
983     // Advance ancestor, collapsing intervening dead nodes
984     Node pred = ancestor;
985     for (Node p = (pred == null) ? head : pred.next, c = p, q;
986     p != null; ) {
987     if (p == lastRet) {
988 jsr166 1.142 final Object item;
989     if ((item = p.item) != null)
990     p.tryMatch(item, null);
991 jsr166 1.134 if ((q = p.next) == null) q = p;
992     if (c != q) tryCasSuccessor(pred, c, q);
993     ancestor = pred;
994     return;
995     }
996     final Object item; final boolean pAlive;
997     if (pAlive = ((item = p.item) != null && p.isData)) {
998     // exceptionally, nothing to do
999     }
1000     else if (!p.isData && item == null)
1001     break;
1002     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1003     pred = p;
1004     c = p = p.next;
1005     }
1006     else if (p == (p = p.next)) {
1007     pred = null;
1008     c = p = head;
1009     }
1010     }
1011     // traversal failed to find lastRet; must have been deleted;
1012     // leave ancestor at original location to avoid overshoot;
1013     // better luck next time!
1014    
1015     // assert lastRet.isMatched();
1016 jsr166 1.1 }
1017     }
1018 jsr166 1.53
1019 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1020 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1021 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1022 jsr166 1.87 Node current; // current node; null until initialized
1023 dl 1.52 int batch; // batch size for splits
1024     boolean exhausted; // true when no more nodes
1025 jsr166 1.94 LTQSpliterator() {}
1026 dl 1.52
1027     public Spliterator<E> trySplit() {
1028 jsr166 1.115 Node p, q;
1029     if ((p = current()) == null || (q = p.next) == null)
1030     return null;
1031     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1032     Object[] a = null;
1033     do {
1034     final Object item = p.item;
1035     if (p.isData) {
1036 jsr166 1.154 if (item != null) {
1037     if (a == null)
1038     a = new Object[n];
1039     a[i++] = item;
1040     }
1041 jsr166 1.115 } else if (item == null) {
1042     p = null;
1043     break;
1044 dl 1.60 }
1045 jsr166 1.117 if (p == (p = q))
1046     p = firstDataNode();
1047 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1048     setCurrent(p);
1049     return (i == 0) ? null :
1050     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1051     Spliterator.NONNULL |
1052     Spliterator.CONCURRENT));
1053 dl 1.52 }
1054    
1055 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1056 jsr166 1.111 Objects.requireNonNull(action);
1057 jsr166 1.116 final Node p;
1058 jsr166 1.115 if ((p = current()) != null) {
1059 jsr166 1.107 current = null;
1060 dl 1.52 exhausted = true;
1061 jsr166 1.116 forEachFrom(action, p);
1062 dl 1.52 }
1063     }
1064    
1065     @SuppressWarnings("unchecked")
1066     public boolean tryAdvance(Consumer<? super E> action) {
1067 jsr166 1.111 Objects.requireNonNull(action);
1068 dl 1.52 Node p;
1069 jsr166 1.115 if ((p = current()) != null) {
1070     E e = null;
1071 dl 1.52 do {
1072 jsr166 1.115 final Object item = p.item;
1073     final boolean isData = p.isData;
1074     if (p == (p = p.next))
1075     p = head;
1076     if (isData) {
1077     if (item != null) {
1078     e = (E) item;
1079 jsr166 1.107 break;
1080     }
1081     }
1082 jsr166 1.115 else if (item == null)
1083     p = null;
1084     } while (p != null);
1085     setCurrent(p);
1086     if (e != null) {
1087     action.accept(e);
1088 dl 1.52 return true;
1089     }
1090     }
1091     return false;
1092     }
1093    
1094 jsr166 1.115 private void setCurrent(Node p) {
1095     if ((current = p) == null)
1096     exhausted = true;
1097     }
1098    
1099     private Node current() {
1100     Node p;
1101     if ((p = current) == null && !exhausted)
1102     setCurrent(p = firstDataNode());
1103     return p;
1104     }
1105    
1106 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1107    
1108 dl 1.52 public int characteristics() {
1109 jsr166 1.100 return (Spliterator.ORDERED |
1110     Spliterator.NONNULL |
1111     Spliterator.CONCURRENT);
1112 dl 1.52 }
1113     }
1114    
1115 jsr166 1.67 /**
1116     * Returns a {@link Spliterator} over the elements in this queue.
1117     *
1118 jsr166 1.68 * <p>The returned spliterator is
1119     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1120     *
1121 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1122     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1123     *
1124     * @implNote
1125     * The {@code Spliterator} implements {@code trySplit} to permit limited
1126     * parallelism.
1127     *
1128     * @return a {@code Spliterator} over the elements in this queue
1129     * @since 1.8
1130     */
1131 dl 1.56 public Spliterator<E> spliterator() {
1132 jsr166 1.109 return new LTQSpliterator();
1133 dl 1.52 }
1134    
1135 jsr166 1.8 /* -------------- Removal methods -------------- */
1136    
1137 jsr166 1.1 /**
1138 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1139     * the given predecessor.
1140 jsr166 1.1 *
1141 dl 1.16 * @param pred a node that was at one time known to be the
1142 jsr166 1.149 * predecessor of s
1143 jsr166 1.8 * @param s the node to be unspliced
1144 jsr166 1.1 */
1145 dl 1.16 final void unsplice(Node pred, Node s) {
1146 jsr166 1.149 // assert pred != null;
1147 jsr166 1.150 // assert pred != s;
1148 jsr166 1.149 // assert s != null;
1149     // assert s.isMatched();
1150 jsr166 1.152 // assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
1151 dl 1.71 s.waiter = null; // disable signals
1152 jsr166 1.1 /*
1153 dl 1.16 * See above for rationale. Briefly: if pred still points to
1154     * s, try to unlink s. If s cannot be unlinked, because it is
1155     * trailing node or pred might be unlinked, and neither pred
1156     * nor s are head or offlist, add to sweepVotes, and if enough
1157     * votes have accumulated, sweep.
1158 jsr166 1.1 */
1159 jsr166 1.150 if (pred != null && pred.next == s) {
1160 dl 1.16 Node n = s.next;
1161     if (n == null ||
1162     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1163     for (;;) { // check if at, or could be, head
1164     Node h = head;
1165 jsr166 1.151 if (h == pred || h == s)
1166 dl 1.16 return; // at head or list empty
1167     if (!h.isMatched())
1168     break;
1169     Node hn = h.next;
1170     if (hn == null)
1171     return; // now empty
1172     if (hn != h && casHead(h, hn))
1173 jsr166 1.142 h.selfLink(); // advance head
1174 jsr166 1.8 }
1175 jsr166 1.152 // sweep every SWEEP_THRESHOLD votes
1176     if (pred.next != pred && s.next != s // recheck if offlist
1177     && (incSweepVotes() & (SWEEP_THRESHOLD - 1)) == 0)
1178     sweep();
1179 jsr166 1.1 }
1180     }
1181     }
1182    
1183     /**
1184 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1185     * traversal from head.
1186 jsr166 1.1 */
1187 dl 1.16 private void sweep() {
1188 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1189 jsr166 1.28 if (!s.isMatched())
1190     // Unmatched nodes are never self-linked
1191 jsr166 1.20 p = s;
1192 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1193 jsr166 1.20 break;
1194 jsr166 1.28 else if (s == n) // stale
1195     // No need to also check for p == s, since that implies s == n
1196     p = head;
1197 jsr166 1.20 else
1198 dl 1.16 p.casNext(s, n);
1199 jsr166 1.8 }
1200     }
1201    
1202     /**
1203 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1204     */
1205     public LinkedTransferQueue() {
1206 jsr166 1.140 head = tail = new Node();
1207 jsr166 1.1 }
1208    
1209     /**
1210     * Creates a {@code LinkedTransferQueue}
1211     * initially containing the elements of the given collection,
1212     * added in traversal order of the collection's iterator.
1213     *
1214     * @param c the collection of elements to initially contain
1215     * @throws NullPointerException if the specified collection or any
1216     * of its elements are null
1217     */
1218     public LinkedTransferQueue(Collection<? extends E> c) {
1219 jsr166 1.140 Node h = null, t = null;
1220     for (E e : c) {
1221     Node newNode = new Node(Objects.requireNonNull(e));
1222     if (h == null)
1223     h = t = newNode;
1224     else
1225     t.appendRelaxed(t = newNode);
1226     }
1227     if (h == null)
1228     h = t = new Node();
1229     head = h;
1230     tail = t;
1231 jsr166 1.1 }
1232    
1233 jsr166 1.4 /**
1234 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1235     * As the queue is unbounded, this method will never block.
1236     *
1237     * @throws NullPointerException if the specified element is null
1238 jsr166 1.4 */
1239 jsr166 1.5 public void put(E e) {
1240 jsr166 1.8 xfer(e, true, ASYNC, 0);
1241 jsr166 1.1 }
1242    
1243 jsr166 1.4 /**
1244 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1245     * As the queue is unbounded, this method will never block or
1246     * return {@code false}.
1247     *
1248     * @return {@code true} (as specified by
1249 jsr166 1.156 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1250 jsr166 1.5 * @throws NullPointerException if the specified element is null
1251 jsr166 1.4 */
1252 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1253 jsr166 1.8 xfer(e, true, ASYNC, 0);
1254     return true;
1255 jsr166 1.1 }
1256    
1257 jsr166 1.4 /**
1258 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1259     * As the queue is unbounded, this method will never return {@code false}.
1260     *
1261 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1262 jsr166 1.5 * @throws NullPointerException if the specified element is null
1263 jsr166 1.4 */
1264 jsr166 1.1 public boolean offer(E e) {
1265 jsr166 1.8 xfer(e, true, ASYNC, 0);
1266 jsr166 1.1 return true;
1267     }
1268    
1269 jsr166 1.4 /**
1270 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1271     * As the queue is unbounded, this method will never throw
1272     * {@link IllegalStateException} or return {@code false}.
1273     *
1274     * @return {@code true} (as specified by {@link Collection#add})
1275     * @throws NullPointerException if the specified element is null
1276 jsr166 1.4 */
1277 jsr166 1.1 public boolean add(E e) {
1278 jsr166 1.8 xfer(e, true, ASYNC, 0);
1279     return true;
1280 jsr166 1.5 }
1281    
1282     /**
1283 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1284     *
1285     * <p>More precisely, transfers the specified element immediately
1286     * if there exists a consumer already waiting to receive it (in
1287     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1288     * otherwise returning {@code false} without enqueuing the element.
1289 jsr166 1.5 *
1290     * @throws NullPointerException if the specified element is null
1291     */
1292     public boolean tryTransfer(E e) {
1293 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1294 jsr166 1.1 }
1295    
1296 jsr166 1.4 /**
1297 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1298     *
1299     * <p>More precisely, transfers the specified element immediately
1300     * if there exists a consumer already waiting to receive it (in
1301     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1302     * else inserts the specified element at the tail of this queue
1303     * and waits until the element is received by a consumer.
1304 jsr166 1.5 *
1305     * @throws NullPointerException if the specified element is null
1306 jsr166 1.4 */
1307 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1308 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1309     Thread.interrupted(); // failure possible only due to interrupt
1310 jsr166 1.1 throw new InterruptedException();
1311     }
1312     }
1313    
1314 jsr166 1.4 /**
1315 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1316     * before the timeout elapses.
1317     *
1318     * <p>More precisely, transfers the specified element immediately
1319     * if there exists a consumer already waiting to receive it (in
1320     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1321     * else inserts the specified element at the tail of this queue
1322     * and waits until the element is received by a consumer,
1323     * returning {@code false} if the specified wait time elapses
1324     * before the element can be transferred.
1325 jsr166 1.5 *
1326     * @throws NullPointerException if the specified element is null
1327 jsr166 1.4 */
1328 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1329     throws InterruptedException {
1330 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1331 jsr166 1.1 return true;
1332     if (!Thread.interrupted())
1333     return false;
1334     throw new InterruptedException();
1335     }
1336    
1337     public E take() throws InterruptedException {
1338 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1339 jsr166 1.1 if (e != null)
1340 jsr166 1.5 return e;
1341 jsr166 1.1 Thread.interrupted();
1342     throw new InterruptedException();
1343     }
1344    
1345     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1346 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1347 jsr166 1.1 if (e != null || !Thread.interrupted())
1348 jsr166 1.5 return e;
1349 jsr166 1.1 throw new InterruptedException();
1350     }
1351    
1352     public E poll() {
1353 jsr166 1.8 return xfer(null, false, NOW, 0);
1354 jsr166 1.1 }
1355    
1356 jsr166 1.4 /**
1357     * @throws NullPointerException {@inheritDoc}
1358     * @throws IllegalArgumentException {@inheritDoc}
1359     */
1360 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1361 jsr166 1.111 Objects.requireNonNull(c);
1362 jsr166 1.1 if (c == this)
1363     throw new IllegalArgumentException();
1364     int n = 0;
1365 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1366 jsr166 1.1 c.add(e);
1367     return n;
1368     }
1369    
1370 jsr166 1.4 /**
1371     * @throws NullPointerException {@inheritDoc}
1372     * @throws IllegalArgumentException {@inheritDoc}
1373     */
1374 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1375 jsr166 1.111 Objects.requireNonNull(c);
1376 jsr166 1.1 if (c == this)
1377     throw new IllegalArgumentException();
1378     int n = 0;
1379 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1380 jsr166 1.1 c.add(e);
1381     return n;
1382     }
1383    
1384 jsr166 1.5 /**
1385 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1386     * The elements will be returned in order from first (head) to last (tail).
1387 jsr166 1.5 *
1388 jsr166 1.68 * <p>The returned iterator is
1389     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1390 jsr166 1.5 *
1391     * @return an iterator over the elements in this queue in proper sequence
1392     */
1393 jsr166 1.1 public Iterator<E> iterator() {
1394     return new Itr();
1395     }
1396    
1397     public E peek() {
1398 jsr166 1.92 restartFromHead: for (;;) {
1399     for (Node p = head; p != null;) {
1400     Object item = p.item;
1401     if (p.isData) {
1402 jsr166 1.105 if (item != null) {
1403 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1404     return e;
1405     }
1406     }
1407     else if (item == null)
1408     break;
1409     if (p == (p = p.next))
1410     continue restartFromHead;
1411     }
1412     return null;
1413     }
1414 jsr166 1.1 }
1415    
1416 jsr166 1.6 /**
1417     * Returns {@code true} if this queue contains no elements.
1418     *
1419     * @return {@code true} if this queue contains no elements
1420     */
1421 jsr166 1.1 public boolean isEmpty() {
1422 jsr166 1.90 return firstDataNode() == null;
1423 jsr166 1.1 }
1424    
1425     public boolean hasWaitingConsumer() {
1426 jsr166 1.93 restartFromHead: for (;;) {
1427     for (Node p = head; p != null;) {
1428     Object item = p.item;
1429     if (p.isData) {
1430 jsr166 1.105 if (item != null)
1431 jsr166 1.93 break;
1432     }
1433     else if (item == null)
1434     return true;
1435     if (p == (p = p.next))
1436     continue restartFromHead;
1437     }
1438     return false;
1439     }
1440 jsr166 1.1 }
1441    
1442     /**
1443     * Returns the number of elements in this queue. If this queue
1444     * contains more than {@code Integer.MAX_VALUE} elements, returns
1445     * {@code Integer.MAX_VALUE}.
1446     *
1447     * <p>Beware that, unlike in most collections, this method is
1448     * <em>NOT</em> a constant-time operation. Because of the
1449     * asynchronous nature of these queues, determining the current
1450     * number of elements requires an O(n) traversal.
1451     *
1452     * @return the number of elements in this queue
1453     */
1454     public int size() {
1455 jsr166 1.8 return countOfMode(true);
1456 jsr166 1.1 }
1457    
1458     public int getWaitingConsumerCount() {
1459 jsr166 1.8 return countOfMode(false);
1460 jsr166 1.1 }
1461    
1462 jsr166 1.6 /**
1463     * Removes a single instance of the specified element from this queue,
1464     * if it is present. More formally, removes an element {@code e} such
1465     * that {@code o.equals(e)}, if this queue contains one or more such
1466     * elements.
1467     * Returns {@code true} if this queue contained the specified element
1468     * (or equivalently, if this queue changed as a result of the call).
1469     *
1470     * @param o element to be removed from this queue, if present
1471     * @return {@code true} if this queue changed as a result of the call
1472     */
1473 jsr166 1.1 public boolean remove(Object o) {
1474 jsr166 1.137 if (o == null) return false;
1475 jsr166 1.108 restartFromHead: for (;;) {
1476 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1477     Node q = p.next;
1478     final Object item;
1479     if ((item = p.item) != null) {
1480     if (p.isData) {
1481 jsr166 1.142 if (o.equals(item) && p.tryMatch(item, null)) {
1482 jsr166 1.137 skipDeadNodes(pred, p, p, q);
1483     return true;
1484     }
1485     pred = p; p = q; continue;
1486 jsr166 1.108 }
1487     }
1488 jsr166 1.137 else if (!p.isData)
1489 jsr166 1.108 break;
1490 jsr166 1.138 for (Node c = p;; q = p.next) {
1491     if (q == null || !q.isMatched()) {
1492 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1493     }
1494     if (p == (p = q)) continue restartFromHead;
1495 jsr166 1.122 }
1496 jsr166 1.108 }
1497     return false;
1498     }
1499 jsr166 1.1 }
1500    
1501     /**
1502 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1503     * More formally, returns {@code true} if and only if this queue contains
1504     * at least one element {@code e} such that {@code o.equals(e)}.
1505     *
1506     * @param o object to be checked for containment in this queue
1507     * @return {@code true} if this queue contains the specified element
1508     */
1509     public boolean contains(Object o) {
1510 jsr166 1.137 if (o == null) return false;
1511 jsr166 1.122 restartFromHead: for (;;) {
1512 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1513     Node q = p.next;
1514     final Object item;
1515     if ((item = p.item) != null) {
1516     if (p.isData) {
1517     if (o.equals(item))
1518     return true;
1519     pred = p; p = q; continue;
1520     }
1521 jsr166 1.74 }
1522 jsr166 1.137 else if (!p.isData)
1523 jsr166 1.74 break;
1524 jsr166 1.138 for (Node c = p;; q = p.next) {
1525     if (q == null || !q.isMatched()) {
1526 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1527     }
1528     if (p == (p = q)) continue restartFromHead;
1529 jsr166 1.122 }
1530 jsr166 1.30 }
1531 jsr166 1.122 return false;
1532 jsr166 1.30 }
1533     }
1534    
1535     /**
1536 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1537     * {@code LinkedTransferQueue} is not capacity constrained.
1538     *
1539     * @return {@code Integer.MAX_VALUE} (as specified by
1540 jsr166 1.156 * {@link BlockingQueue#remainingCapacity()})
1541 jsr166 1.5 */
1542     public int remainingCapacity() {
1543     return Integer.MAX_VALUE;
1544     }
1545    
1546     /**
1547 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1548 jsr166 1.1 *
1549 jsr166 1.65 * @param s the stream
1550 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1551 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1552     * the proper order, followed by a null
1553     */
1554     private void writeObject(java.io.ObjectOutputStream s)
1555     throws java.io.IOException {
1556     s.defaultWriteObject();
1557     for (E e : this)
1558     s.writeObject(e);
1559     // Use trailing null as sentinel
1560     s.writeObject(null);
1561     }
1562    
1563     /**
1564 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1565 jsr166 1.65 * @param s the stream
1566 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1567     * could not be found
1568     * @throws java.io.IOException if an I/O error occurs
1569 jsr166 1.1 */
1570     private void readObject(java.io.ObjectInputStream s)
1571     throws java.io.IOException, ClassNotFoundException {
1572 jsr166 1.140
1573     // Read in elements until trailing null sentinel found
1574     Node h = null, t = null;
1575     for (Object item; (item = s.readObject()) != null; ) {
1576 jsr166 1.49 @SuppressWarnings("unchecked")
1577 jsr166 1.140 Node newNode = new Node((E) item);
1578     if (h == null)
1579     h = t = newNode;
1580 jsr166 1.1 else
1581 jsr166 1.140 t.appendRelaxed(t = newNode);
1582 jsr166 1.1 }
1583 jsr166 1.140 if (h == null)
1584     h = t = new Node();
1585     head = h;
1586     tail = t;
1587 jsr166 1.1 }
1588    
1589 jsr166 1.116 /**
1590     * @throws NullPointerException {@inheritDoc}
1591     */
1592     public boolean removeIf(Predicate<? super E> filter) {
1593     Objects.requireNonNull(filter);
1594     return bulkRemove(filter);
1595     }
1596    
1597     /**
1598     * @throws NullPointerException {@inheritDoc}
1599     */
1600     public boolean removeAll(Collection<?> c) {
1601     Objects.requireNonNull(c);
1602     return bulkRemove(e -> c.contains(e));
1603     }
1604    
1605     /**
1606     * @throws NullPointerException {@inheritDoc}
1607     */
1608     public boolean retainAll(Collection<?> c) {
1609     Objects.requireNonNull(c);
1610     return bulkRemove(e -> !c.contains(e));
1611     }
1612    
1613 jsr166 1.124 public void clear() {
1614     bulkRemove(e -> true);
1615     }
1616    
1617     /**
1618     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1619     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1620     */
1621     private static final int MAX_HOPS = 8;
1622    
1623 jsr166 1.116 /** Implementation of bulk remove methods. */
1624     @SuppressWarnings("unchecked")
1625     private boolean bulkRemove(Predicate<? super E> filter) {
1626     boolean removed = false;
1627     restartFromHead: for (;;) {
1628 jsr166 1.124 int hops = MAX_HOPS;
1629     // c will be CASed to collapse intervening dead nodes between
1630     // pred (or head if null) and p.
1631     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1632 jsr166 1.138 q = p.next;
1633 jsr166 1.124 final Object item; boolean pAlive;
1634 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1635 jsr166 1.124 if (filter.test((E) item)) {
1636 jsr166 1.142 if (p.tryMatch(item, null))
1637 jsr166 1.124 removed = true;
1638     pAlive = false;
1639 jsr166 1.116 }
1640     }
1641 jsr166 1.124 else if (!p.isData && item == null)
1642 jsr166 1.116 break;
1643 jsr166 1.138 if (pAlive || q == null || --hops == 0) {
1644 jsr166 1.124 // p might already be self-linked here, but if so:
1645     // - CASing head will surely fail
1646     // - CASing pred's next will be useless but harmless.
1647 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1648     || pAlive) {
1649     // if CAS failed or alive, abandon old pred
1650 jsr166 1.124 hops = MAX_HOPS;
1651     pred = p;
1652     c = q;
1653     }
1654     } else if (p == q)
1655 jsr166 1.116 continue restartFromHead;
1656     }
1657     return removed;
1658     }
1659     }
1660    
1661     /**
1662     * Runs action on each element found during a traversal starting at p.
1663 jsr166 1.118 * If p is null, the action is not run.
1664 jsr166 1.116 */
1665     @SuppressWarnings("unchecked")
1666     void forEachFrom(Consumer<? super E> action, Node p) {
1667 jsr166 1.137 for (Node pred = null; p != null; ) {
1668     Node q = p.next;
1669     final Object item;
1670     if ((item = p.item) != null) {
1671     if (p.isData) {
1672     action.accept((E) item);
1673     pred = p; p = q; continue;
1674     }
1675     }
1676     else if (!p.isData)
1677 jsr166 1.122 break;
1678 jsr166 1.138 for (Node c = p;; q = p.next) {
1679     if (q == null || !q.isMatched()) {
1680 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1681     }
1682     if (p == (p = q)) { pred = null; p = head; break; }
1683 jsr166 1.116 }
1684     }
1685     }
1686    
1687     /**
1688     * @throws NullPointerException {@inheritDoc}
1689     */
1690     public void forEach(Consumer<? super E> action) {
1691     Objects.requireNonNull(action);
1692     forEachFrom(action, head);
1693     }
1694    
1695 dl 1.97 // VarHandle mechanics
1696     private static final VarHandle HEAD;
1697     private static final VarHandle TAIL;
1698     private static final VarHandle SWEEPVOTES;
1699 jsr166 1.140 static final VarHandle ITEM;
1700     static final VarHandle NEXT;
1701     static final VarHandle WAITER;
1702 dl 1.38 static {
1703 jsr166 1.1 try {
1704 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1705     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1706     Node.class);
1707     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1708     Node.class);
1709     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1710     int.class);
1711 jsr166 1.140 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1712     NEXT = l.findVarHandle(Node.class, "next", Node.class);
1713     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1714 jsr166 1.79 } catch (ReflectiveOperationException e) {
1715 dl 1.38 throw new Error(e);
1716 jsr166 1.1 }
1717 jsr166 1.85
1718     // Reduce the risk of rare disastrous classloading in first call to
1719     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1720     Class<?> ensureLoaded = LockSupport.class;
1721 jsr166 1.1 }
1722     }