ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.16
Committed: Sat Nov 14 20:27:25 2009 UTC (14 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.15: +147 -155 lines
Log Message:
Overhaul handling of interior removals

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11 jsr166 1.5 import java.util.ConcurrentModificationException;
12 jsr166 1.1 import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.5 import java.util.Queue;
15 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
16     /**
17 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
18 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
19     * to any given producer. The <em>head</em> of the queue is that
20     * element that has been on the queue the longest time for some
21     * producer. The <em>tail</em> of the queue is that element that has
22     * been on the queue the shortest time for some producer.
23     *
24     * <p>Beware that, unlike in most collections, the {@code size}
25     * method is <em>NOT</em> a constant-time operation. Because of the
26     * asynchronous nature of these queues, determining the current number
27     * of elements requires a traversal of the elements.
28     *
29     * <p>This class and its iterator implement all of the
30     * <em>optional</em> methods of the {@link Collection} and {@link
31     * Iterator} interfaces.
32     *
33     * <p>Memory consistency effects: As with other concurrent
34     * collections, actions in a thread prior to placing an object into a
35     * {@code LinkedTransferQueue}
36     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37     * actions subsequent to the access or removal of that element from
38     * the {@code LinkedTransferQueue} in another thread.
39     *
40     * <p>This class is a member of the
41     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @since 1.7
45     * @author Doug Lea
46     * @param <E> the type of elements held in this collection
47     */
48     public class LinkedTransferQueue<E> extends AbstractQueue<E>
49     implements TransferQueue<E>, java.io.Serializable {
50     private static final long serialVersionUID = -3223113410248163686L;
51    
52     /*
53 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
54 jsr166 1.1 *
55 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
56     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57     * (linked) queues in which nodes may represent either data or
58     * requests. When a thread tries to enqueue a data node, but
59     * encounters a request node, it instead "matches" and removes it;
60     * and vice versa for enqueuing requests. Blocking Dual Queues
61     * arrange that threads enqueuing unmatched requests block until
62     * other threads provide the match. Dual Synchronous Queues (see
63     * Scherer, Lea, & Scott
64     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65     * additionally arrange that threads enqueuing unmatched data also
66     * block. Dual Transfer Queues support all of these modes, as
67     * dictated by callers.
68     *
69     * A FIFO dual queue may be implemented using a variation of the
70     * Michael & Scott (M&S) lock-free queue algorithm
71     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72     * It maintains two pointer fields, "head", pointing to a
73     * (matched) node that in turn points to the first actual
74     * (unmatched) queue node (or null if empty); and "tail" that
75     * points to the last node on the queue (or again null if
76     * empty). For example, here is a possible queue with four data
77     * elements:
78     *
79     * head tail
80     * | |
81     * v v
82     * M -> U -> U -> U -> U
83     *
84     * The M&S queue algorithm is known to be prone to scalability and
85     * overhead limitations when maintaining (via CAS) these head and
86     * tail pointers. This has led to the development of
87     * contention-reducing variants such as elimination arrays (see
88     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89     * optimistic back pointers (see Ladan-Mozes & Shavit
90     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91     * However, the nature of dual queues enables a simpler tactic for
92     * improving M&S-style implementations when dual-ness is needed.
93     *
94     * In a dual queue, each node must atomically maintain its match
95     * status. While there are other possible variants, we implement
96     * this here as: for a data-mode node, matching entails CASing an
97     * "item" field from a non-null data value to null upon match, and
98     * vice-versa for request nodes, CASing from null to a data
99     * value. (Note that the linearization properties of this style of
100     * queue are easy to verify -- elements are made available by
101     * linking, and unavailable by matching.) Compared to plain M&S
102     * queues, this property of dual queues requires one additional
103     * successful atomic operation per enq/deq pair. But it also
104     * enables lower cost variants of queue maintenance mechanics. (A
105     * variation of this idea applies even for non-dual queues that
106     * support deletion of interior elements, such as
107     * j.u.c.ConcurrentLinkedQueue.)
108     *
109     * Once a node is matched, its match status can never again
110     * change. We may thus arrange that the linked list of them
111     * contain a prefix of zero or more matched nodes, followed by a
112     * suffix of zero or more unmatched nodes. (Note that we allow
113     * both the prefix and suffix to be zero length, which in turn
114     * means that we do not use a dummy header.) If we were not
115     * concerned with either time or space efficiency, we could
116     * correctly perform enqueue and dequeue operations by traversing
117     * from a pointer to the initial node; CASing the item of the
118     * first unmatched node on match and CASing the next field of the
119     * trailing node on appends. (Plus some special-casing when
120     * initially empty). While this would be a terrible idea in
121     * itself, it does have the benefit of not requiring ANY atomic
122     * updates on head/tail fields.
123     *
124     * We introduce here an approach that lies between the extremes of
125     * never versus always updating queue (head and tail) pointers.
126     * This offers a tradeoff between sometimes requiring extra
127     * traversal steps to locate the first and/or last unmatched
128     * nodes, versus the reduced overhead and contention of fewer
129     * updates to queue pointers. For example, a possible snapshot of
130     * a queue is:
131     *
132     * head tail
133     * | |
134     * v v
135     * M -> M -> U -> U -> U -> U
136     *
137     * The best value for this "slack" (the targeted maximum distance
138     * between the value of "head" and the first unmatched node, and
139     * similarly for "tail") is an empirical matter. We have found
140     * that using very small constants in the range of 1-3 work best
141     * over a range of platforms. Larger values introduce increasing
142     * costs of cache misses and risks of long traversal chains, while
143     * smaller values increase CAS contention and overhead.
144     *
145     * Dual queues with slack differ from plain M&S dual queues by
146     * virtue of only sometimes updating head or tail pointers when
147     * matching, appending, or even traversing nodes; in order to
148     * maintain a targeted slack. The idea of "sometimes" may be
149     * operationalized in several ways. The simplest is to use a
150     * per-operation counter incremented on each traversal step, and
151     * to try (via CAS) to update the associated queue pointer
152     * whenever the count exceeds a threshold. Another, that requires
153     * more overhead, is to use random number generators to update
154     * with a given probability per traversal step.
155     *
156     * In any strategy along these lines, because CASes updating
157     * fields may fail, the actual slack may exceed targeted
158     * slack. However, they may be retried at any time to maintain
159     * targets. Even when using very small slack values, this
160     * approach works well for dual queues because it allows all
161     * operations up to the point of matching or appending an item
162     * (hence potentially allowing progress by another thread) to be
163     * read-only, thus not introducing any further contention. As
164     * described below, we implement this by performing slack
165     * maintenance retries only after these points.
166     *
167     * As an accompaniment to such techniques, traversal overhead can
168     * be further reduced without increasing contention of head
169     * pointer updates: Threads may sometimes shortcut the "next" link
170     * path from the current "head" node to be closer to the currently
171     * known first unmatched node, and similarly for tail. Again, this
172     * may be triggered with using thresholds or randomization.
173     *
174     * These ideas must be further extended to avoid unbounded amounts
175     * of costly-to-reclaim garbage caused by the sequential "next"
176     * links of nodes starting at old forgotten head nodes: As first
177     * described in detail by Boehm
178     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179     * delays noticing that any arbitrarily old node has become
180     * garbage, all newer dead nodes will also be unreclaimed.
181     * (Similar issues arise in non-GC environments.) To cope with
182     * this in our implementation, upon CASing to advance the head
183     * pointer, we set the "next" link of the previous head to point
184     * only to itself; thus limiting the length of connected dead lists.
185     * (We also take similar care to wipe out possibly garbage
186     * retaining values held in other Node fields.) However, doing so
187     * adds some further complexity to traversal: If any "next"
188     * pointer links to itself, it indicates that the current thread
189     * has lagged behind a head-update, and so the traversal must
190     * continue from the "head". Traversals trying to find the
191     * current tail starting from "tail" may also encounter
192     * self-links, in which case they also continue at "head".
193     *
194     * It is tempting in slack-based scheme to not even use CAS for
195     * updates (similarly to Ladan-Mozes & Shavit). However, this
196     * cannot be done for head updates under the above link-forgetting
197     * mechanics because an update may leave head at a detached node.
198     * And while direct writes are possible for tail updates, they
199     * increase the risk of long retraversals, and hence long garbage
200     * chains, which can be much more costly than is worthwhile
201     * considering that the cost difference of performing a CAS vs
202     * write is smaller when they are not triggered on each operation
203     * (especially considering that writes and CASes equally require
204     * additional GC bookkeeping ("write barriers") that are sometimes
205     * more costly than the writes themselves because of contention).
206     *
207     * *** Overview of implementation ***
208     *
209     * We use a threshold-based approach to updates, with a slack
210     * threshold of two -- that is, we update head/tail when the
211     * current pointer appears to be two or more steps away from the
212     * first/last node. The slack value is hard-wired: a path greater
213     * than one is naturally implemented by checking equality of
214     * traversal pointers except when the list has only one element,
215     * in which case we keep slack threshold at one. Avoiding tracking
216     * explicit counts across method calls slightly simplifies an
217     * already-messy implementation. Using randomization would
218     * probably work better if there were a low-quality dirt-cheap
219     * per-thread one available, but even ThreadLocalRandom is too
220     * heavy for these purposes.
221     *
222 dl 1.16 * With such a small slack threshold value, it is not worthwhile
223     * to augment this with path short-circuiting (i.e., unsplicing
224     * interior nodes) except in the case of cancellation/removal (see
225     * below).
226 jsr166 1.8 *
227     * We allow both the head and tail fields to be null before any
228     * nodes are enqueued; initializing upon first append. This
229     * simplifies some other logic, as well as providing more
230     * efficient explicit control paths instead of letting JVMs insert
231     * implicit NullPointerExceptions when they are null. While not
232     * currently fully implemented, we also leave open the possibility
233     * of re-nulling these fields when empty (which is complicated to
234     * arrange, for little benefit.)
235     *
236     * All enqueue/dequeue operations are handled by the single method
237     * "xfer" with parameters indicating whether to act as some form
238     * of offer, put, poll, take, or transfer (each possibly with
239     * timeout). The relative complexity of using one monolithic
240     * method outweighs the code bulk and maintenance problems of
241     * using separate methods for each case.
242     *
243     * Operation consists of up to three phases. The first is
244     * implemented within method xfer, the second in tryAppend, and
245     * the third in method awaitMatch.
246     *
247     * 1. Try to match an existing node
248     *
249     * Starting at head, skip already-matched nodes until finding
250     * an unmatched node of opposite mode, if one exists, in which
251     * case matching it and returning, also if necessary updating
252     * head to one past the matched node (or the node itself if the
253     * list has no other unmatched nodes). If the CAS misses, then
254     * a loop retries advancing head by two steps until either
255     * success or the slack is at most two. By requiring that each
256     * attempt advances head by two (if applicable), we ensure that
257     * the slack does not grow without bound. Traversals also check
258     * if the initial head is now off-list, in which case they
259     * start at the new head.
260     *
261     * If no candidates are found and the call was untimed
262     * poll/offer, (argument "how" is NOW) return.
263     *
264     * 2. Try to append a new node (method tryAppend)
265     *
266     * Starting at current tail pointer, find the actual last node
267     * and try to append a new node (or if head was null, establish
268     * the first node). Nodes can be appended only if their
269     * predecessors are either already matched or are of the same
270     * mode. If we detect otherwise, then a new node with opposite
271     * mode must have been appended during traversal, so we must
272     * restart at phase 1. The traversal and update steps are
273     * otherwise similar to phase 1: Retrying upon CAS misses and
274     * checking for staleness. In particular, if a self-link is
275     * encountered, then we can safely jump to a node on the list
276     * by continuing the traversal at current head.
277     *
278     * On successful append, if the call was ASYNC, return.
279     *
280     * 3. Await match or cancellation (method awaitMatch)
281     *
282     * Wait for another thread to match node; instead cancelling if
283     * the current thread was interrupted or the wait timed out. On
284     * multiprocessors, we use front-of-queue spinning: If a node
285     * appears to be the first unmatched node in the queue, it
286     * spins a bit before blocking. In either case, before blocking
287     * it tries to unsplice any nodes between the current "head"
288     * and the first unmatched node.
289     *
290     * Front-of-queue spinning vastly improves performance of
291     * heavily contended queues. And so long as it is relatively
292     * brief and "quiet", spinning does not much impact performance
293     * of less-contended queues. During spins threads check their
294     * interrupt status and generate a thread-local random number
295     * to decide to occasionally perform a Thread.yield. While
296     * yield has underdefined specs, we assume that might it help,
297     * and will not hurt in limiting impact of spinning on busy
298     * systems. We also use smaller (1/2) spins for nodes that are
299     * not known to be front but whose predecessors have not
300     * blocked -- these "chained" spins avoid artifacts of
301     * front-of-queue rules which otherwise lead to alternating
302     * nodes spinning vs blocking. Further, front threads that
303     * represent phase changes (from data to request node or vice
304     * versa) compared to their predecessors receive additional
305     * chained spins, reflecting longer paths typically required to
306     * unblock threads during phase changes.
307 dl 1.16 *
308     *
309     * ** Unlinking removed interior nodes **
310     *
311     * In addition to minimizing garbage retention via self-linking
312     * described above, we also unlink removed interior nodes. These
313     * may arise due to timed out or interrupted waits, or calls to
314     * remove(x) or Iterator.remove. Normally, given a node that was
315     * at one time known to be the predecessor of some node s that is
316     * to be removed, we can unsplice s by CASing the next field of
317     * its predecessor if it still points to s (otherwise s must
318     * already have been removed or is now offlist). But there are two
319     * situations in which we cannot guarantee to make node s
320     * unreachable in this way: (1) If s is the trailing node of list
321     * (i.e., with null next), then it is pinned as the target node
322     * for appends, so can only be removed later when other nodes are
323     * appended. (2) We cannot necessarily unlink s given a
324     * predecessor node that is matched (including the case of being
325     * cancelled): the predecessor may already be already unspliced,
326     * in which case some previous reachable node may still point to
327     * s. (For further explanation see Herlihy & Shavit "The Art of
328     * Multiprocessor Programming" chapter 9). Although, in both
329     * cases, we can rule out the need for further action if either s
330     * or its predecessor are (or can be made to be) at, or fall off
331     * from, the head of list.
332     *
333     * Without taking these into account, it would be possible for an
334     * unbounded number of supposedly removed nodes to remain
335     * reachable. Situations leading to such buildup are uncommon but
336     * can occur in practice; for example when a series of short timed
337     * calls to poll repeatedly time out but never otherwise fall off
338     * the list because of an untimed call to take at the front of the
339     * queue.
340     *
341     * When these cases arise, rather than always retraversing the
342     * entire list to find an actual predecessor to unlink (which
343     * won't help for case (1) anyway), we record a conservative
344     * estimate of possible unsplice failures (in "sweepVotes). We
345     * trigger a full sweep when the estimate exceeds a threshold
346     * indicating the maximum number of estimated removal failures to
347     * tolerate before sweeping through, unlinking cancelled nodes
348     * that were not unlinked upon initial removal. We perform sweeps
349     * by the thread hitting threshold (rather than background threads
350     * or by spreading work to other threads) because in the main
351     * contexts in which removal occurs, the caller is already
352     * timed-out, cancelled, or performing a potentially O(n)
353     * operation (i.e., remove(x)), none of which are time-critical
354     * enough to warrant the overhead that alternatives would impose
355     * on other threads.
356     *
357     * Because the sweepVotes estimate is conservative, and because
358     * nodes become unlinked "naturally" as they fall off the head of
359     * the queue, and because we allow votes to accumulate even while
360     * sweeps are in progress, there are typically signficantly fewer
361     * such nodes than estimated. Choice of a threshold value
362     * balances the likelihood of wasted effort and contention, versus
363     * providing a worst-case bound on retention of interior nodes in
364     * quiescent queues. The value defined below was chosen
365     * empirically to balance these under various timeout scenarios.
366     *
367     * Note that we cannot self-link unlinked interior nodes during
368     * sweeps. However, the associated garbage chains terminate when
369     * some successor ultimately falls off the head of the list and is
370     * self-linked.
371 jsr166 1.8 */
372    
373     /** True if on multiprocessor */
374     private static final boolean MP =
375     Runtime.getRuntime().availableProcessors() > 1;
376    
377     /**
378     * The number of times to spin (with randomly interspersed calls
379     * to Thread.yield) on multiprocessor before blocking when a node
380     * is apparently the first waiter in the queue. See above for
381     * explanation. Must be a power of two. The value is empirically
382     * derived -- it works pretty well across a variety of processors,
383     * numbers of CPUs, and OSes.
384     */
385     private static final int FRONT_SPINS = 1 << 7;
386    
387     /**
388     * The number of times to spin before blocking when a node is
389     * preceded by another node that is apparently spinning. Also
390     * serves as an increment to FRONT_SPINS on phase changes, and as
391     * base average frequency for yielding during spins. Must be a
392     * power of two.
393     */
394     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
395    
396     /**
397 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
398     * to tolerate before sweeping through the queue unlinking
399     * cancelled nodes that were not unlinked upon initial
400     * removal. See above for explanation. The value must be at least
401     * two to avoid useless sweeps when removing trailing nodes.
402     */
403     static final int SWEEP_THRESHOLD = 32;
404    
405     /**
406 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
407     * them after use. Relies heavily on Unsafe mechanics to minimize
408 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
409     * ordered wrt other accesses or CASes use simple relaxed forms.
410 jsr166 1.8 */
411 jsr166 1.14 static final class Node {
412 jsr166 1.8 final boolean isData; // false if this is a request node
413     volatile Object item; // initially non-null if isData; CASed to match
414 jsr166 1.14 volatile Node next;
415 jsr166 1.8 volatile Thread waiter; // null until waiting
416    
417     // CAS methods for fields
418 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
419 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
420     }
421 jsr166 1.1
422 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
423 jsr166 1.9 assert cmp == null || cmp.getClass() != Node.class;
424 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
425     }
426 jsr166 1.1
427 jsr166 1.8 /**
428     * Creates a new node. Uses relaxed write because item can only
429     * be seen if followed by CAS.
430     */
431 jsr166 1.14 Node(Object item, boolean isData) {
432 jsr166 1.8 UNSAFE.putObject(this, itemOffset, item); // relaxed write
433     this.isData = isData;
434     }
435 jsr166 1.1
436 jsr166 1.8 /**
437     * Links node to itself to avoid garbage retention. Called
438     * only after CASing head field, so uses relaxed write.
439     */
440     final void forgetNext() {
441     UNSAFE.putObject(this, nextOffset, this);
442     }
443 jsr166 1.1
444 jsr166 1.8 /**
445 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
446     * retention after matching or cancelling. Uses relaxed writes
447     * bacause order is already constrained in the only calling
448     * contexts: item is forgotten only after volatile/atomic
449     * mechanics that extract items. Similarly, clearing waiter
450     * follows either CAS or return from park (if ever parked;
451     * else we don't care).
452 jsr166 1.8 */
453     final void forgetContents() {
454 dl 1.16 UNSAFE.putObject(this, itemOffset, this);
455     UNSAFE.putObject(this, waiterOffset, null);
456 jsr166 1.8 }
457 jsr166 1.1
458 jsr166 1.8 /**
459     * Returns true if this node has been matched, including the
460     * case of artificial matches due to cancellation.
461     */
462     final boolean isMatched() {
463     Object x = item;
464 jsr166 1.11 return (x == this) || ((x == null) == isData);
465     }
466    
467     /**
468     * Returns true if this is an unmatched request node.
469     */
470     final boolean isUnmatchedRequest() {
471     return !isData && item == null;
472 jsr166 1.8 }
473 jsr166 1.1
474 jsr166 1.8 /**
475     * Returns true if a node with the given mode cannot be
476     * appended to this node because this node is unmatched and
477     * has opposite data mode.
478     */
479     final boolean cannotPrecede(boolean haveData) {
480     boolean d = isData;
481     Object x;
482     return d != haveData && (x = item) != this && (x != null) == d;
483     }
484 jsr166 1.1
485 jsr166 1.8 /**
486     * Tries to artificially match a data node -- used by remove.
487     */
488     final boolean tryMatchData() {
489 jsr166 1.11 assert isData;
490 jsr166 1.8 Object x = item;
491     if (x != null && x != this && casItem(x, null)) {
492     LockSupport.unpark(waiter);
493     return true;
494     }
495     return false;
496 jsr166 1.1 }
497    
498 jsr166 1.4 // Unsafe mechanics
499     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
500     private static final long nextOffset =
501     objectFieldOffset(UNSAFE, "next", Node.class);
502 jsr166 1.8 private static final long itemOffset =
503     objectFieldOffset(UNSAFE, "item", Node.class);
504     private static final long waiterOffset =
505     objectFieldOffset(UNSAFE, "waiter", Node.class);
506 jsr166 1.1
507     private static final long serialVersionUID = -3375979862319811754L;
508     }
509    
510 jsr166 1.8 /** head of the queue; null until first enqueue */
511 jsr166 1.14 transient volatile Node head;
512 jsr166 1.8
513     /** tail of the queue; null until first append */
514 jsr166 1.14 private transient volatile Node tail;
515 jsr166 1.1
516 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
517     private transient volatile int sweepVotes;
518    
519 jsr166 1.8 // CAS methods for fields
520 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
521 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
522     }
523 jsr166 1.1
524 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
525 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
526     }
527 jsr166 1.1
528 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
529     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
530 jsr166 1.8 }
531 jsr166 1.1
532 jsr166 1.8 /*
533 jsr166 1.14 * Possible values for "how" argument in xfer method.
534 jsr166 1.1 */
535 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
536     private static final int ASYNC = 1; // for offer, put, add
537     private static final int SYNC = 2; // for transfer, take
538     private static final int TIMED = 3; // for timed poll, tryTransfer
539 jsr166 1.1
540 jsr166 1.10 @SuppressWarnings("unchecked")
541     static <E> E cast(Object item) {
542     assert item == null || item.getClass() != Node.class;
543     return (E) item;
544     }
545    
546 jsr166 1.1 /**
547 jsr166 1.8 * Implements all queuing methods. See above for explanation.
548 jsr166 1.1 *
549 jsr166 1.8 * @param e the item or null for take
550     * @param haveData true if this is a put, else a take
551 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
552     * @param nanos timeout in nanosecs, used only if mode is TIMED
553 jsr166 1.8 * @return an item if matched, else e
554     * @throws NullPointerException if haveData mode but e is null
555 jsr166 1.1 */
556 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
557     if (haveData && (e == null))
558     throw new NullPointerException();
559 jsr166 1.14 Node s = null; // the node to append, if needed
560 jsr166 1.1
561 jsr166 1.8 retry: for (;;) { // restart on append race
562 jsr166 1.1
563 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
564 jsr166 1.8 boolean isData = p.isData;
565     Object item = p.item;
566     if (item != p && (item != null) == isData) { // unmatched
567     if (isData == haveData) // can't match
568     break;
569     if (p.casItem(item, e)) { // match
570 jsr166 1.14 for (Node q = p; q != h;) {
571 dl 1.16 Node n = q.next; // update by 2 unless singleton
572     if (head == h && casHead(h, n == null? q : n)) {
573 jsr166 1.8 h.forgetNext();
574     break;
575     } // advance and retry
576     if ((h = head) == null ||
577     (q = h.next) == null || !q.isMatched())
578     break; // unless slack < 2
579     }
580     LockSupport.unpark(p.waiter);
581     return this.<E>cast(item);
582 jsr166 1.1 }
583     }
584 jsr166 1.14 Node n = p.next;
585 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
586     }
587    
588 jsr166 1.14 if (how != NOW) { // No matches available
589 jsr166 1.8 if (s == null)
590 jsr166 1.14 s = new Node(e, haveData);
591     Node pred = tryAppend(s, haveData);
592 jsr166 1.8 if (pred == null)
593     continue retry; // lost race vs opposite mode
594 jsr166 1.14 if (how != ASYNC)
595     return awaitMatch(s, pred, e, (how == TIMED), nanos);
596 jsr166 1.1 }
597 jsr166 1.8 return e; // not waiting
598 jsr166 1.1 }
599     }
600    
601     /**
602 jsr166 1.8 * Tries to append node s as tail.
603     *
604     * @param s the node to append
605     * @param haveData true if appending in data mode
606     * @return null on failure due to losing race with append in
607     * different mode, else s's predecessor, or s itself if no
608     * predecessor
609 jsr166 1.1 */
610 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
611     for (Node t = tail, p = t;;) { // move p to last node and append
612     Node n, u; // temps for reads of next & tail
613 jsr166 1.8 if (p == null && (p = head) == null) {
614     if (casHead(null, s))
615     return s; // initialize
616     }
617     else if (p.cannotPrecede(haveData))
618     return null; // lost race vs opposite mode
619     else if ((n = p.next) != null) // not last; keep traversing
620     p = p != t && t != (u = tail) ? (t = u) : // stale tail
621     (p != n) ? n : null; // restart if off list
622     else if (!p.casNext(null, s))
623     p = p.next; // re-read on CAS failure
624     else {
625     if (p != t) { // update if slack now >= 2
626     while ((tail != t || !casTail(t, s)) &&
627     (t = tail) != null &&
628     (s = t.next) != null && // advance and retry
629     (s = s.next) != null && s != t);
630 jsr166 1.1 }
631 jsr166 1.8 return p;
632 jsr166 1.1 }
633     }
634     }
635    
636     /**
637 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
638 jsr166 1.1 *
639     * @param s the waiting node
640 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
641     * predecessor, or null if unknown (the null case does not occur
642     * in any current calls but may in possible future extensions)
643 jsr166 1.1 * @param e the comparison value for checking match
644 jsr166 1.14 * @param timed if true, wait only until timeout elapses
645     * @param nanos timeout in nanosecs, used only if timed is true
646 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
647 jsr166 1.1 */
648 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
649     long lastTime = timed ? System.nanoTime() : 0L;
650 jsr166 1.8 Thread w = Thread.currentThread();
651     int spins = -1; // initialized after first item and cancel checks
652     ThreadLocalRandom randomYields = null; // bound if needed
653 jsr166 1.1
654     for (;;) {
655 jsr166 1.8 Object item = s.item;
656     if (item != e) { // matched
657     assert item != s;
658     s.forgetContents(); // avoid garbage
659     return this.<E>cast(item);
660     }
661 jsr166 1.14 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
662 dl 1.16 s.casItem(e, s)) { // cancel
663 jsr166 1.8 unsplice(pred, s);
664     return e;
665     }
666    
667     if (spins < 0) { // establish spins at/near front
668     if ((spins = spinsFor(pred, s.isData)) > 0)
669     randomYields = ThreadLocalRandom.current();
670     }
671     else if (spins > 0) { // spin
672 dl 1.16 --spins;
673     if (randomYields.nextInt(CHAINED_SPINS) == 0)
674 jsr166 1.8 Thread.yield(); // occasionally yield
675     }
676     else if (s.waiter == null) {
677     s.waiter = w; // request unpark then recheck
678 jsr166 1.1 }
679 jsr166 1.14 else if (timed) {
680 jsr166 1.1 long now = System.nanoTime();
681 jsr166 1.8 if ((nanos -= now - lastTime) > 0)
682     LockSupport.parkNanos(this, nanos);
683 jsr166 1.1 lastTime = now;
684     }
685 jsr166 1.8 else {
686 jsr166 1.1 LockSupport.park(this);
687     }
688 jsr166 1.8 }
689     }
690    
691     /**
692     * Returns spin/yield value for a node with given predecessor and
693     * data mode. See above for explanation.
694     */
695 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
696 jsr166 1.8 if (MP && pred != null) {
697     if (pred.isData != haveData) // phase change
698     return FRONT_SPINS + CHAINED_SPINS;
699     if (pred.isMatched()) // probably at front
700     return FRONT_SPINS;
701     if (pred.waiter == null) // pred apparently spinning
702     return CHAINED_SPINS;
703     }
704     return 0;
705     }
706    
707     /* -------------- Traversal methods -------------- */
708    
709     /**
710 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
711     * linked to self, which will only be true if traversing with a
712     * stale pointer that is now off the list.
713     */
714     final Node succ(Node p) {
715     Node next = p.next;
716     return (p == next) ? head : next;
717     }
718    
719     /**
720 jsr166 1.8 * Returns the first unmatched node of the given mode, or null if
721     * none. Used by methods isEmpty, hasWaitingConsumer.
722     */
723 jsr166 1.14 private Node firstOfMode(boolean isData) {
724     for (Node p = head; p != null; p = succ(p)) {
725 jsr166 1.8 if (!p.isMatched())
726 jsr166 1.14 return (p.isData == isData) ? p : null;
727 jsr166 1.8 }
728     return null;
729     }
730    
731     /**
732     * Returns the item in the first unmatched node with isData; or
733     * null if none. Used by peek.
734     */
735     private E firstDataItem() {
736 jsr166 1.14 for (Node p = head; p != null; p = succ(p)) {
737 jsr166 1.8 Object item = p.item;
738 jsr166 1.14 if (p.isData) {
739     if (item != null && item != p)
740     return this.<E>cast(item);
741     }
742     else if (item == null)
743     return null;
744 jsr166 1.8 }
745     return null;
746     }
747    
748 jsr166 1.1 /**
749 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
750     * Used by methods size and getWaitingConsumerCount.
751 jsr166 1.1 */
752 jsr166 1.8 private int countOfMode(boolean data) {
753     int count = 0;
754 jsr166 1.14 for (Node p = head; p != null; ) {
755 jsr166 1.8 if (!p.isMatched()) {
756     if (p.isData != data)
757     return 0;
758     if (++count == Integer.MAX_VALUE) // saturated
759     break;
760     }
761 jsr166 1.14 Node n = p.next;
762 jsr166 1.8 if (n != p)
763     p = n;
764     else {
765     count = 0;
766     p = head;
767 jsr166 1.1 }
768 jsr166 1.8 }
769     return count;
770     }
771    
772     final class Itr implements Iterator<E> {
773 jsr166 1.14 private Node nextNode; // next node to return item for
774     private E nextItem; // the corresponding item
775     private Node lastRet; // last returned node, to support remove
776     private Node lastPred; // predecessor to unlink lastRet
777 jsr166 1.8
778     /**
779     * Moves to next node after prev, or first node if prev null.
780     */
781 jsr166 1.14 private void advance(Node prev) {
782 jsr166 1.13 lastPred = lastRet;
783 jsr166 1.8 lastRet = prev;
784 jsr166 1.14 for (Node p = (prev == null) ? head : succ(prev);
785     p != null; p = succ(p)) {
786 jsr166 1.8 Object item = p.item;
787     if (p.isData) {
788     if (item != null && item != p) {
789     nextItem = LinkedTransferQueue.this.<E>cast(item);
790     nextNode = p;
791     return;
792     }
793     }
794     else if (item == null)
795     break;
796 jsr166 1.1 }
797 jsr166 1.8 nextNode = null;
798     }
799    
800     Itr() {
801     advance(null);
802     }
803    
804     public final boolean hasNext() {
805     return nextNode != null;
806     }
807    
808     public final E next() {
809 jsr166 1.14 Node p = nextNode;
810 jsr166 1.8 if (p == null) throw new NoSuchElementException();
811     E e = nextItem;
812     advance(p);
813     return e;
814     }
815    
816     public final void remove() {
817 jsr166 1.14 Node p = lastRet;
818 jsr166 1.8 if (p == null) throw new IllegalStateException();
819 dl 1.16 if (p.tryMatchData())
820     unsplice(lastPred, p);
821 jsr166 1.1 }
822     }
823    
824 jsr166 1.8 /* -------------- Removal methods -------------- */
825    
826 jsr166 1.1 /**
827 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
828     * the given predecessor.
829 jsr166 1.1 *
830 dl 1.16 * @param pred a node that was at one time known to be the
831     * predecessor of s, or null or s itself if s is/was at head
832 jsr166 1.8 * @param s the node to be unspliced
833 jsr166 1.1 */
834 dl 1.16 final void unsplice(Node pred, Node s) {
835     s.forgetContents(); // forget unneeded fields
836 jsr166 1.1 /*
837 dl 1.16 * See above for rationale. Briefly: if pred still points to
838     * s, try to unlink s. If s cannot be unlinked, because it is
839     * trailing node or pred might be unlinked, and neither pred
840     * nor s are head or offlist, add to sweepVotes, and if enough
841     * votes have accumulated, sweep.
842 jsr166 1.1 */
843 dl 1.16 if (pred != null && pred != s && pred.next == s) {
844     Node n = s.next;
845     if (n == null ||
846     (n != s && pred.casNext(s, n) && pred.isMatched())) {
847     for (;;) { // check if at, or could be, head
848     Node h = head;
849     if (h == pred || h == s || h == null)
850     return; // at head or list empty
851     if (!h.isMatched())
852     break;
853     Node hn = h.next;
854     if (hn == null)
855     return; // now empty
856     if (hn != h && casHead(h, hn))
857     h.forgetNext(); // advance head
858 jsr166 1.8 }
859 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
860     for (;;) { // sweep now if enough votes
861     int v = sweepVotes;
862     if (v < SWEEP_THRESHOLD) {
863     if (casSweepVotes(v, v + 1))
864     break;
865     }
866     else if (casSweepVotes(v, 0)) {
867     sweep();
868     break;
869     }
870     }
871 jsr166 1.12 }
872 jsr166 1.1 }
873     }
874     }
875    
876     /**
877 dl 1.16 * Unlink matched nodes encountered in a traversal from head
878 jsr166 1.1 */
879 dl 1.16 private void sweep() {
880     Node p = head, s, n;
881     while (p != null && (s = p.next) != null && (n = s.next) != null) {
882     if (p == s || s == n)
883     p = head; // stale
884     else if (s.isMatched())
885     p.casNext(s, n);
886 jsr166 1.8 else
887 dl 1.16 p = s;
888 jsr166 1.8 }
889     }
890    
891     /**
892     * Main implementation of remove(Object)
893     */
894     private boolean findAndRemove(Object e) {
895     if (e != null) {
896 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
897 jsr166 1.8 Object item = p.item;
898     if (p.isData) {
899     if (item != null && item != p && e.equals(item) &&
900     p.tryMatchData()) {
901     unsplice(pred, p);
902     return true;
903     }
904     }
905     else if (item == null)
906     break;
907     pred = p;
908 jsr166 1.11 if ((p = p.next) == pred) { // stale
909 jsr166 1.8 pred = null;
910     p = head;
911     }
912     }
913     }
914     return false;
915     }
916    
917    
918     /**
919 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
920     */
921     public LinkedTransferQueue() {
922     }
923    
924     /**
925     * Creates a {@code LinkedTransferQueue}
926     * initially containing the elements of the given collection,
927     * added in traversal order of the collection's iterator.
928     *
929     * @param c the collection of elements to initially contain
930     * @throws NullPointerException if the specified collection or any
931     * of its elements are null
932     */
933     public LinkedTransferQueue(Collection<? extends E> c) {
934     this();
935     addAll(c);
936     }
937    
938 jsr166 1.4 /**
939 jsr166 1.5 * Inserts the specified element at the tail of this queue.
940     * As the queue is unbounded, this method will never block.
941     *
942     * @throws NullPointerException if the specified element is null
943 jsr166 1.4 */
944 jsr166 1.5 public void put(E e) {
945 jsr166 1.8 xfer(e, true, ASYNC, 0);
946 jsr166 1.1 }
947    
948 jsr166 1.4 /**
949 jsr166 1.5 * Inserts the specified element at the tail of this queue.
950     * As the queue is unbounded, this method will never block or
951     * return {@code false}.
952     *
953     * @return {@code true} (as specified by
954     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
955     * @throws NullPointerException if the specified element is null
956 jsr166 1.4 */
957 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
958 jsr166 1.8 xfer(e, true, ASYNC, 0);
959     return true;
960 jsr166 1.1 }
961    
962 jsr166 1.4 /**
963 jsr166 1.5 * Inserts the specified element at the tail of this queue.
964     * As the queue is unbounded, this method will never return {@code false}.
965     *
966     * @return {@code true} (as specified by
967     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
968     * @throws NullPointerException if the specified element is null
969 jsr166 1.4 */
970 jsr166 1.1 public boolean offer(E e) {
971 jsr166 1.8 xfer(e, true, ASYNC, 0);
972 jsr166 1.1 return true;
973     }
974    
975 jsr166 1.4 /**
976 jsr166 1.5 * Inserts the specified element at the tail of this queue.
977     * As the queue is unbounded, this method will never throw
978     * {@link IllegalStateException} or return {@code false}.
979     *
980     * @return {@code true} (as specified by {@link Collection#add})
981     * @throws NullPointerException if the specified element is null
982 jsr166 1.4 */
983 jsr166 1.1 public boolean add(E e) {
984 jsr166 1.8 xfer(e, true, ASYNC, 0);
985     return true;
986 jsr166 1.5 }
987    
988     /**
989 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
990     *
991     * <p>More precisely, transfers the specified element immediately
992     * if there exists a consumer already waiting to receive it (in
993     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
994     * otherwise returning {@code false} without enqueuing the element.
995 jsr166 1.5 *
996     * @throws NullPointerException if the specified element is null
997     */
998     public boolean tryTransfer(E e) {
999 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1000 jsr166 1.1 }
1001    
1002 jsr166 1.4 /**
1003 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1004     *
1005     * <p>More precisely, transfers the specified element immediately
1006     * if there exists a consumer already waiting to receive it (in
1007     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1008     * else inserts the specified element at the tail of this queue
1009     * and waits until the element is received by a consumer.
1010 jsr166 1.5 *
1011     * @throws NullPointerException if the specified element is null
1012 jsr166 1.4 */
1013 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1014 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1015     Thread.interrupted(); // failure possible only due to interrupt
1016 jsr166 1.1 throw new InterruptedException();
1017     }
1018     }
1019    
1020 jsr166 1.4 /**
1021 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1022     * before the timeout elapses.
1023     *
1024     * <p>More precisely, transfers the specified element immediately
1025     * if there exists a consumer already waiting to receive it (in
1026     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1027     * else inserts the specified element at the tail of this queue
1028     * and waits until the element is received by a consumer,
1029     * returning {@code false} if the specified wait time elapses
1030     * before the element can be transferred.
1031 jsr166 1.5 *
1032     * @throws NullPointerException if the specified element is null
1033 jsr166 1.4 */
1034 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1035     throws InterruptedException {
1036 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1037 jsr166 1.1 return true;
1038     if (!Thread.interrupted())
1039     return false;
1040     throw new InterruptedException();
1041     }
1042    
1043     public E take() throws InterruptedException {
1044 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1045 jsr166 1.1 if (e != null)
1046 jsr166 1.5 return e;
1047 jsr166 1.1 Thread.interrupted();
1048     throw new InterruptedException();
1049     }
1050    
1051     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1052 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1053 jsr166 1.1 if (e != null || !Thread.interrupted())
1054 jsr166 1.5 return e;
1055 jsr166 1.1 throw new InterruptedException();
1056     }
1057    
1058     public E poll() {
1059 jsr166 1.8 return xfer(null, false, NOW, 0);
1060 jsr166 1.1 }
1061    
1062 jsr166 1.4 /**
1063     * @throws NullPointerException {@inheritDoc}
1064     * @throws IllegalArgumentException {@inheritDoc}
1065     */
1066 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1067     if (c == null)
1068     throw new NullPointerException();
1069     if (c == this)
1070     throw new IllegalArgumentException();
1071     int n = 0;
1072     E e;
1073     while ( (e = poll()) != null) {
1074     c.add(e);
1075     ++n;
1076     }
1077     return n;
1078     }
1079    
1080 jsr166 1.4 /**
1081     * @throws NullPointerException {@inheritDoc}
1082     * @throws IllegalArgumentException {@inheritDoc}
1083     */
1084 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1085     if (c == null)
1086     throw new NullPointerException();
1087     if (c == this)
1088     throw new IllegalArgumentException();
1089     int n = 0;
1090     E e;
1091     while (n < maxElements && (e = poll()) != null) {
1092     c.add(e);
1093     ++n;
1094     }
1095     return n;
1096     }
1097    
1098 jsr166 1.5 /**
1099     * Returns an iterator over the elements in this queue in proper
1100     * sequence, from head to tail.
1101     *
1102     * <p>The returned iterator is a "weakly consistent" iterator that
1103     * will never throw
1104     * {@link ConcurrentModificationException ConcurrentModificationException},
1105     * and guarantees to traverse elements as they existed upon
1106     * construction of the iterator, and may (but is not guaranteed
1107     * to) reflect any modifications subsequent to construction.
1108     *
1109     * @return an iterator over the elements in this queue in proper sequence
1110     */
1111 jsr166 1.1 public Iterator<E> iterator() {
1112     return new Itr();
1113     }
1114    
1115     public E peek() {
1116 jsr166 1.8 return firstDataItem();
1117 jsr166 1.1 }
1118    
1119 jsr166 1.6 /**
1120     * Returns {@code true} if this queue contains no elements.
1121     *
1122     * @return {@code true} if this queue contains no elements
1123     */
1124 jsr166 1.1 public boolean isEmpty() {
1125 jsr166 1.8 return firstOfMode(true) == null;
1126 jsr166 1.1 }
1127    
1128     public boolean hasWaitingConsumer() {
1129 jsr166 1.8 return firstOfMode(false) != null;
1130 jsr166 1.1 }
1131    
1132     /**
1133     * Returns the number of elements in this queue. If this queue
1134     * contains more than {@code Integer.MAX_VALUE} elements, returns
1135     * {@code Integer.MAX_VALUE}.
1136     *
1137     * <p>Beware that, unlike in most collections, this method is
1138     * <em>NOT</em> a constant-time operation. Because of the
1139     * asynchronous nature of these queues, determining the current
1140     * number of elements requires an O(n) traversal.
1141     *
1142     * @return the number of elements in this queue
1143     */
1144     public int size() {
1145 jsr166 1.8 return countOfMode(true);
1146 jsr166 1.1 }
1147    
1148     public int getWaitingConsumerCount() {
1149 jsr166 1.8 return countOfMode(false);
1150 jsr166 1.1 }
1151    
1152 jsr166 1.6 /**
1153     * Removes a single instance of the specified element from this queue,
1154     * if it is present. More formally, removes an element {@code e} such
1155     * that {@code o.equals(e)}, if this queue contains one or more such
1156     * elements.
1157     * Returns {@code true} if this queue contained the specified element
1158     * (or equivalently, if this queue changed as a result of the call).
1159     *
1160     * @param o element to be removed from this queue, if present
1161     * @return {@code true} if this queue changed as a result of the call
1162     */
1163 jsr166 1.1 public boolean remove(Object o) {
1164 jsr166 1.8 return findAndRemove(o);
1165 jsr166 1.1 }
1166    
1167     /**
1168 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1169     * {@code LinkedTransferQueue} is not capacity constrained.
1170     *
1171     * @return {@code Integer.MAX_VALUE} (as specified by
1172     * {@link BlockingQueue#remainingCapacity()})
1173     */
1174     public int remainingCapacity() {
1175     return Integer.MAX_VALUE;
1176     }
1177    
1178     /**
1179 jsr166 1.8 * Saves the state to a stream (that is, serializes it).
1180 jsr166 1.1 *
1181     * @serialData All of the elements (each an {@code E}) in
1182     * the proper order, followed by a null
1183     * @param s the stream
1184     */
1185     private void writeObject(java.io.ObjectOutputStream s)
1186     throws java.io.IOException {
1187     s.defaultWriteObject();
1188     for (E e : this)
1189     s.writeObject(e);
1190     // Use trailing null as sentinel
1191     s.writeObject(null);
1192     }
1193    
1194     /**
1195 jsr166 1.8 * Reconstitutes the Queue instance from a stream (that is,
1196     * deserializes it).
1197 jsr166 1.1 *
1198     * @param s the stream
1199     */
1200     private void readObject(java.io.ObjectInputStream s)
1201     throws java.io.IOException, ClassNotFoundException {
1202     s.defaultReadObject();
1203     for (;;) {
1204     @SuppressWarnings("unchecked") E item = (E) s.readObject();
1205     if (item == null)
1206     break;
1207     else
1208     offer(item);
1209     }
1210     }
1211    
1212 jsr166 1.3 // Unsafe mechanics
1213 jsr166 1.1
1214 jsr166 1.3 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1215     private static final long headOffset =
1216 jsr166 1.4 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1217 jsr166 1.3 private static final long tailOffset =
1218 jsr166 1.4 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1219 dl 1.16 private static final long sweepVotesOffset =
1220     objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1221 jsr166 1.4
1222     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1223     String field, Class<?> klazz) {
1224 jsr166 1.1 try {
1225 jsr166 1.3 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1226 jsr166 1.1 } catch (NoSuchFieldException e) {
1227 jsr166 1.3 // Convert Exception to corresponding Error
1228     NoSuchFieldError error = new NoSuchFieldError(field);
1229 jsr166 1.1 error.initCause(e);
1230     throw error;
1231     }
1232     }
1233     }