ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.35
Committed: Sun Nov 14 02:33:58 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.34: +1 -0 lines
Log Message:
add a newline

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11 jsr166 1.5 import java.util.ConcurrentModificationException;
12 jsr166 1.1 import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.5 import java.util.Queue;
15 dl 1.33 import java.util.concurrent.TimeUnit;
16 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
17 dl 1.22
18 jsr166 1.1 /**
19 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
20 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
21     * to any given producer. The <em>head</em> of the queue is that
22     * element that has been on the queue the longest time for some
23     * producer. The <em>tail</em> of the queue is that element that has
24     * been on the queue the shortest time for some producer.
25     *
26     * <p>Beware that, unlike in most collections, the {@code size}
27     * method is <em>NOT</em> a constant-time operation. Because of the
28     * asynchronous nature of these queues, determining the current number
29     * of elements requires a traversal of the elements.
30     *
31     * <p>This class and its iterator implement all of the
32     * <em>optional</em> methods of the {@link Collection} and {@link
33     * Iterator} interfaces.
34     *
35     * <p>Memory consistency effects: As with other concurrent
36     * collections, actions in a thread prior to placing an object into a
37     * {@code LinkedTransferQueue}
38     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39     * actions subsequent to the access or removal of that element from
40     * the {@code LinkedTransferQueue} in another thread.
41     *
42     * <p>This class is a member of the
43     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44     * Java Collections Framework</a>.
45     *
46     * @since 1.7
47     * @author Doug Lea
48     * @param <E> the type of elements held in this collection
49     */
50     public class LinkedTransferQueue<E> extends AbstractQueue<E>
51     implements TransferQueue<E>, java.io.Serializable {
52     private static final long serialVersionUID = -3223113410248163686L;
53    
54     /*
55 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
56 jsr166 1.1 *
57 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
58     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59     * (linked) queues in which nodes may represent either data or
60     * requests. When a thread tries to enqueue a data node, but
61     * encounters a request node, it instead "matches" and removes it;
62     * and vice versa for enqueuing requests. Blocking Dual Queues
63     * arrange that threads enqueuing unmatched requests block until
64     * other threads provide the match. Dual Synchronous Queues (see
65     * Scherer, Lea, & Scott
66     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67     * additionally arrange that threads enqueuing unmatched data also
68     * block. Dual Transfer Queues support all of these modes, as
69     * dictated by callers.
70     *
71     * A FIFO dual queue may be implemented using a variation of the
72     * Michael & Scott (M&S) lock-free queue algorithm
73     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74     * It maintains two pointer fields, "head", pointing to a
75     * (matched) node that in turn points to the first actual
76     * (unmatched) queue node (or null if empty); and "tail" that
77     * points to the last node on the queue (or again null if
78     * empty). For example, here is a possible queue with four data
79     * elements:
80     *
81     * head tail
82     * | |
83     * v v
84     * M -> U -> U -> U -> U
85     *
86     * The M&S queue algorithm is known to be prone to scalability and
87     * overhead limitations when maintaining (via CAS) these head and
88     * tail pointers. This has led to the development of
89     * contention-reducing variants such as elimination arrays (see
90     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91     * optimistic back pointers (see Ladan-Mozes & Shavit
92     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93     * However, the nature of dual queues enables a simpler tactic for
94     * improving M&S-style implementations when dual-ness is needed.
95     *
96     * In a dual queue, each node must atomically maintain its match
97     * status. While there are other possible variants, we implement
98     * this here as: for a data-mode node, matching entails CASing an
99     * "item" field from a non-null data value to null upon match, and
100     * vice-versa for request nodes, CASing from null to a data
101     * value. (Note that the linearization properties of this style of
102     * queue are easy to verify -- elements are made available by
103     * linking, and unavailable by matching.) Compared to plain M&S
104     * queues, this property of dual queues requires one additional
105     * successful atomic operation per enq/deq pair. But it also
106     * enables lower cost variants of queue maintenance mechanics. (A
107     * variation of this idea applies even for non-dual queues that
108     * support deletion of interior elements, such as
109     * j.u.c.ConcurrentLinkedQueue.)
110     *
111     * Once a node is matched, its match status can never again
112     * change. We may thus arrange that the linked list of them
113     * contain a prefix of zero or more matched nodes, followed by a
114     * suffix of zero or more unmatched nodes. (Note that we allow
115     * both the prefix and suffix to be zero length, which in turn
116     * means that we do not use a dummy header.) If we were not
117     * concerned with either time or space efficiency, we could
118     * correctly perform enqueue and dequeue operations by traversing
119     * from a pointer to the initial node; CASing the item of the
120     * first unmatched node on match and CASing the next field of the
121     * trailing node on appends. (Plus some special-casing when
122     * initially empty). While this would be a terrible idea in
123     * itself, it does have the benefit of not requiring ANY atomic
124     * updates on head/tail fields.
125     *
126     * We introduce here an approach that lies between the extremes of
127     * never versus always updating queue (head and tail) pointers.
128     * This offers a tradeoff between sometimes requiring extra
129     * traversal steps to locate the first and/or last unmatched
130     * nodes, versus the reduced overhead and contention of fewer
131     * updates to queue pointers. For example, a possible snapshot of
132     * a queue is:
133     *
134     * head tail
135     * | |
136     * v v
137     * M -> M -> U -> U -> U -> U
138     *
139     * The best value for this "slack" (the targeted maximum distance
140     * between the value of "head" and the first unmatched node, and
141     * similarly for "tail") is an empirical matter. We have found
142     * that using very small constants in the range of 1-3 work best
143     * over a range of platforms. Larger values introduce increasing
144     * costs of cache misses and risks of long traversal chains, while
145     * smaller values increase CAS contention and overhead.
146     *
147     * Dual queues with slack differ from plain M&S dual queues by
148     * virtue of only sometimes updating head or tail pointers when
149     * matching, appending, or even traversing nodes; in order to
150     * maintain a targeted slack. The idea of "sometimes" may be
151     * operationalized in several ways. The simplest is to use a
152     * per-operation counter incremented on each traversal step, and
153     * to try (via CAS) to update the associated queue pointer
154     * whenever the count exceeds a threshold. Another, that requires
155     * more overhead, is to use random number generators to update
156     * with a given probability per traversal step.
157     *
158     * In any strategy along these lines, because CASes updating
159     * fields may fail, the actual slack may exceed targeted
160     * slack. However, they may be retried at any time to maintain
161     * targets. Even when using very small slack values, this
162     * approach works well for dual queues because it allows all
163     * operations up to the point of matching or appending an item
164     * (hence potentially allowing progress by another thread) to be
165     * read-only, thus not introducing any further contention. As
166     * described below, we implement this by performing slack
167     * maintenance retries only after these points.
168     *
169     * As an accompaniment to such techniques, traversal overhead can
170     * be further reduced without increasing contention of head
171     * pointer updates: Threads may sometimes shortcut the "next" link
172     * path from the current "head" node to be closer to the currently
173     * known first unmatched node, and similarly for tail. Again, this
174     * may be triggered with using thresholds or randomization.
175     *
176     * These ideas must be further extended to avoid unbounded amounts
177     * of costly-to-reclaim garbage caused by the sequential "next"
178     * links of nodes starting at old forgotten head nodes: As first
179     * described in detail by Boehm
180     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181     * delays noticing that any arbitrarily old node has become
182     * garbage, all newer dead nodes will also be unreclaimed.
183     * (Similar issues arise in non-GC environments.) To cope with
184     * this in our implementation, upon CASing to advance the head
185     * pointer, we set the "next" link of the previous head to point
186     * only to itself; thus limiting the length of connected dead lists.
187     * (We also take similar care to wipe out possibly garbage
188     * retaining values held in other Node fields.) However, doing so
189     * adds some further complexity to traversal: If any "next"
190     * pointer links to itself, it indicates that the current thread
191     * has lagged behind a head-update, and so the traversal must
192     * continue from the "head". Traversals trying to find the
193     * current tail starting from "tail" may also encounter
194     * self-links, in which case they also continue at "head".
195     *
196     * It is tempting in slack-based scheme to not even use CAS for
197     * updates (similarly to Ladan-Mozes & Shavit). However, this
198     * cannot be done for head updates under the above link-forgetting
199     * mechanics because an update may leave head at a detached node.
200     * And while direct writes are possible for tail updates, they
201     * increase the risk of long retraversals, and hence long garbage
202     * chains, which can be much more costly than is worthwhile
203     * considering that the cost difference of performing a CAS vs
204     * write is smaller when they are not triggered on each operation
205     * (especially considering that writes and CASes equally require
206     * additional GC bookkeeping ("write barriers") that are sometimes
207     * more costly than the writes themselves because of contention).
208     *
209     * *** Overview of implementation ***
210     *
211     * We use a threshold-based approach to updates, with a slack
212     * threshold of two -- that is, we update head/tail when the
213     * current pointer appears to be two or more steps away from the
214     * first/last node. The slack value is hard-wired: a path greater
215     * than one is naturally implemented by checking equality of
216     * traversal pointers except when the list has only one element,
217     * in which case we keep slack threshold at one. Avoiding tracking
218     * explicit counts across method calls slightly simplifies an
219     * already-messy implementation. Using randomization would
220     * probably work better if there were a low-quality dirt-cheap
221     * per-thread one available, but even ThreadLocalRandom is too
222     * heavy for these purposes.
223     *
224 dl 1.16 * With such a small slack threshold value, it is not worthwhile
225     * to augment this with path short-circuiting (i.e., unsplicing
226     * interior nodes) except in the case of cancellation/removal (see
227     * below).
228 jsr166 1.8 *
229     * We allow both the head and tail fields to be null before any
230     * nodes are enqueued; initializing upon first append. This
231     * simplifies some other logic, as well as providing more
232     * efficient explicit control paths instead of letting JVMs insert
233     * implicit NullPointerExceptions when they are null. While not
234     * currently fully implemented, we also leave open the possibility
235     * of re-nulling these fields when empty (which is complicated to
236     * arrange, for little benefit.)
237     *
238     * All enqueue/dequeue operations are handled by the single method
239     * "xfer" with parameters indicating whether to act as some form
240     * of offer, put, poll, take, or transfer (each possibly with
241     * timeout). The relative complexity of using one monolithic
242     * method outweighs the code bulk and maintenance problems of
243     * using separate methods for each case.
244     *
245     * Operation consists of up to three phases. The first is
246     * implemented within method xfer, the second in tryAppend, and
247     * the third in method awaitMatch.
248     *
249     * 1. Try to match an existing node
250     *
251     * Starting at head, skip already-matched nodes until finding
252     * an unmatched node of opposite mode, if one exists, in which
253     * case matching it and returning, also if necessary updating
254     * head to one past the matched node (or the node itself if the
255     * list has no other unmatched nodes). If the CAS misses, then
256     * a loop retries advancing head by two steps until either
257     * success or the slack is at most two. By requiring that each
258     * attempt advances head by two (if applicable), we ensure that
259     * the slack does not grow without bound. Traversals also check
260     * if the initial head is now off-list, in which case they
261     * start at the new head.
262     *
263     * If no candidates are found and the call was untimed
264     * poll/offer, (argument "how" is NOW) return.
265     *
266     * 2. Try to append a new node (method tryAppend)
267     *
268     * Starting at current tail pointer, find the actual last node
269     * and try to append a new node (or if head was null, establish
270     * the first node). Nodes can be appended only if their
271     * predecessors are either already matched or are of the same
272     * mode. If we detect otherwise, then a new node with opposite
273     * mode must have been appended during traversal, so we must
274     * restart at phase 1. The traversal and update steps are
275     * otherwise similar to phase 1: Retrying upon CAS misses and
276     * checking for staleness. In particular, if a self-link is
277     * encountered, then we can safely jump to a node on the list
278     * by continuing the traversal at current head.
279     *
280     * On successful append, if the call was ASYNC, return.
281     *
282     * 3. Await match or cancellation (method awaitMatch)
283     *
284     * Wait for another thread to match node; instead cancelling if
285     * the current thread was interrupted or the wait timed out. On
286     * multiprocessors, we use front-of-queue spinning: If a node
287     * appears to be the first unmatched node in the queue, it
288     * spins a bit before blocking. In either case, before blocking
289     * it tries to unsplice any nodes between the current "head"
290     * and the first unmatched node.
291     *
292     * Front-of-queue spinning vastly improves performance of
293     * heavily contended queues. And so long as it is relatively
294     * brief and "quiet", spinning does not much impact performance
295     * of less-contended queues. During spins threads check their
296     * interrupt status and generate a thread-local random number
297     * to decide to occasionally perform a Thread.yield. While
298     * yield has underdefined specs, we assume that might it help,
299     * and will not hurt in limiting impact of spinning on busy
300     * systems. We also use smaller (1/2) spins for nodes that are
301     * not known to be front but whose predecessors have not
302     * blocked -- these "chained" spins avoid artifacts of
303     * front-of-queue rules which otherwise lead to alternating
304     * nodes spinning vs blocking. Further, front threads that
305     * represent phase changes (from data to request node or vice
306     * versa) compared to their predecessors receive additional
307     * chained spins, reflecting longer paths typically required to
308     * unblock threads during phase changes.
309 dl 1.16 *
310     *
311     * ** Unlinking removed interior nodes **
312     *
313     * In addition to minimizing garbage retention via self-linking
314     * described above, we also unlink removed interior nodes. These
315     * may arise due to timed out or interrupted waits, or calls to
316     * remove(x) or Iterator.remove. Normally, given a node that was
317     * at one time known to be the predecessor of some node s that is
318     * to be removed, we can unsplice s by CASing the next field of
319     * its predecessor if it still points to s (otherwise s must
320     * already have been removed or is now offlist). But there are two
321     * situations in which we cannot guarantee to make node s
322     * unreachable in this way: (1) If s is the trailing node of list
323     * (i.e., with null next), then it is pinned as the target node
324 jsr166 1.23 * for appends, so can only be removed later after other nodes are
325 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
326     * predecessor node that is matched (including the case of being
327 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
328     * case some previous reachable node may still point to s.
329     * (For further explanation see Herlihy & Shavit "The Art of
330 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
331     * cases, we can rule out the need for further action if either s
332     * or its predecessor are (or can be made to be) at, or fall off
333     * from, the head of list.
334     *
335     * Without taking these into account, it would be possible for an
336     * unbounded number of supposedly removed nodes to remain
337     * reachable. Situations leading to such buildup are uncommon but
338     * can occur in practice; for example when a series of short timed
339     * calls to poll repeatedly time out but never otherwise fall off
340     * the list because of an untimed call to take at the front of the
341     * queue.
342     *
343     * When these cases arise, rather than always retraversing the
344     * entire list to find an actual predecessor to unlink (which
345     * won't help for case (1) anyway), we record a conservative
346 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
347     * We trigger a full sweep when the estimate exceeds a threshold
348     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
349     * removal failures to tolerate before sweeping through, unlinking
350     * cancelled nodes that were not unlinked upon initial removal.
351     * We perform sweeps by the thread hitting threshold (rather than
352     * background threads or by spreading work to other threads)
353     * because in the main contexts in which removal occurs, the
354     * caller is already timed-out, cancelled, or performing a
355     * potentially O(n) operation (e.g. remove(x)), none of which are
356     * time-critical enough to warrant the overhead that alternatives
357     * would impose on other threads.
358 dl 1.16 *
359     * Because the sweepVotes estimate is conservative, and because
360     * nodes become unlinked "naturally" as they fall off the head of
361     * the queue, and because we allow votes to accumulate even while
362 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
363 dl 1.16 * such nodes than estimated. Choice of a threshold value
364     * balances the likelihood of wasted effort and contention, versus
365     * providing a worst-case bound on retention of interior nodes in
366     * quiescent queues. The value defined below was chosen
367     * empirically to balance these under various timeout scenarios.
368     *
369     * Note that we cannot self-link unlinked interior nodes during
370     * sweeps. However, the associated garbage chains terminate when
371     * some successor ultimately falls off the head of the list and is
372     * self-linked.
373 jsr166 1.8 */
374    
375     /** True if on multiprocessor */
376     private static final boolean MP =
377     Runtime.getRuntime().availableProcessors() > 1;
378    
379     /**
380     * The number of times to spin (with randomly interspersed calls
381     * to Thread.yield) on multiprocessor before blocking when a node
382     * is apparently the first waiter in the queue. See above for
383     * explanation. Must be a power of two. The value is empirically
384     * derived -- it works pretty well across a variety of processors,
385     * numbers of CPUs, and OSes.
386     */
387     private static final int FRONT_SPINS = 1 << 7;
388    
389     /**
390     * The number of times to spin before blocking when a node is
391     * preceded by another node that is apparently spinning. Also
392     * serves as an increment to FRONT_SPINS on phase changes, and as
393     * base average frequency for yielding during spins. Must be a
394     * power of two.
395     */
396     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
397    
398     /**
399 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
400     * to tolerate before sweeping through the queue unlinking
401     * cancelled nodes that were not unlinked upon initial
402     * removal. See above for explanation. The value must be at least
403     * two to avoid useless sweeps when removing trailing nodes.
404     */
405     static final int SWEEP_THRESHOLD = 32;
406    
407     /**
408 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
409     * them after use. Relies heavily on Unsafe mechanics to minimize
410 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
411     * ordered wrt other accesses or CASes use simple relaxed forms.
412 jsr166 1.8 */
413 jsr166 1.14 static final class Node {
414 jsr166 1.8 final boolean isData; // false if this is a request node
415     volatile Object item; // initially non-null if isData; CASed to match
416 jsr166 1.14 volatile Node next;
417 jsr166 1.8 volatile Thread waiter; // null until waiting
418    
419     // CAS methods for fields
420 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
421 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
422     }
423 jsr166 1.1
424 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
425 dl 1.33 // assert cmp == null || cmp.getClass() != Node.class;
426 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
427     }
428 jsr166 1.1
429 jsr166 1.8 /**
430 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
431     * only be seen after publication via casNext.
432 jsr166 1.8 */
433 jsr166 1.14 Node(Object item, boolean isData) {
434 jsr166 1.8 UNSAFE.putObject(this, itemOffset, item); // relaxed write
435     this.isData = isData;
436     }
437 jsr166 1.1
438 jsr166 1.8 /**
439     * Links node to itself to avoid garbage retention. Called
440     * only after CASing head field, so uses relaxed write.
441     */
442     final void forgetNext() {
443     UNSAFE.putObject(this, nextOffset, this);
444     }
445 jsr166 1.1
446 jsr166 1.8 /**
447 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
448     * retention after matching or cancelling. Uses relaxed writes
449 dl 1.22 * because order is already constrained in the only calling
450 dl 1.16 * contexts: item is forgotten only after volatile/atomic
451     * mechanics that extract items. Similarly, clearing waiter
452     * follows either CAS or return from park (if ever parked;
453     * else we don't care).
454 jsr166 1.8 */
455     final void forgetContents() {
456 dl 1.16 UNSAFE.putObject(this, itemOffset, this);
457     UNSAFE.putObject(this, waiterOffset, null);
458 jsr166 1.8 }
459 jsr166 1.1
460 jsr166 1.8 /**
461     * Returns true if this node has been matched, including the
462     * case of artificial matches due to cancellation.
463     */
464     final boolean isMatched() {
465     Object x = item;
466 jsr166 1.11 return (x == this) || ((x == null) == isData);
467     }
468    
469     /**
470     * Returns true if this is an unmatched request node.
471     */
472     final boolean isUnmatchedRequest() {
473     return !isData && item == null;
474 jsr166 1.8 }
475 jsr166 1.1
476 jsr166 1.8 /**
477     * Returns true if a node with the given mode cannot be
478     * appended to this node because this node is unmatched and
479     * has opposite data mode.
480     */
481     final boolean cannotPrecede(boolean haveData) {
482     boolean d = isData;
483     Object x;
484     return d != haveData && (x = item) != this && (x != null) == d;
485     }
486 jsr166 1.1
487 jsr166 1.8 /**
488     * Tries to artificially match a data node -- used by remove.
489     */
490     final boolean tryMatchData() {
491 dl 1.33 // assert isData;
492 jsr166 1.8 Object x = item;
493     if (x != null && x != this && casItem(x, null)) {
494     LockSupport.unpark(waiter);
495     return true;
496     }
497     return false;
498 jsr166 1.1 }
499    
500 jsr166 1.4 // Unsafe mechanics
501     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
502     private static final long nextOffset =
503     objectFieldOffset(UNSAFE, "next", Node.class);
504 jsr166 1.8 private static final long itemOffset =
505     objectFieldOffset(UNSAFE, "item", Node.class);
506     private static final long waiterOffset =
507     objectFieldOffset(UNSAFE, "waiter", Node.class);
508 jsr166 1.1
509     private static final long serialVersionUID = -3375979862319811754L;
510     }
511    
512 jsr166 1.8 /** head of the queue; null until first enqueue */
513 jsr166 1.14 transient volatile Node head;
514 jsr166 1.8
515     /** tail of the queue; null until first append */
516 jsr166 1.14 private transient volatile Node tail;
517 jsr166 1.1
518 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
519     private transient volatile int sweepVotes;
520    
521 jsr166 1.8 // CAS methods for fields
522 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
523 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
524     }
525 jsr166 1.1
526 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
527 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
528     }
529 jsr166 1.1
530 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
531     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
532 jsr166 1.8 }
533 jsr166 1.1
534 jsr166 1.8 /*
535 jsr166 1.14 * Possible values for "how" argument in xfer method.
536 jsr166 1.1 */
537 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
538     private static final int ASYNC = 1; // for offer, put, add
539     private static final int SYNC = 2; // for transfer, take
540     private static final int TIMED = 3; // for timed poll, tryTransfer
541 jsr166 1.1
542 jsr166 1.10 @SuppressWarnings("unchecked")
543     static <E> E cast(Object item) {
544 dl 1.33 // assert item == null || item.getClass() != Node.class;
545 jsr166 1.10 return (E) item;
546     }
547    
548 jsr166 1.1 /**
549 jsr166 1.8 * Implements all queuing methods. See above for explanation.
550 jsr166 1.1 *
551 jsr166 1.8 * @param e the item or null for take
552     * @param haveData true if this is a put, else a take
553 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
554     * @param nanos timeout in nanosecs, used only if mode is TIMED
555 jsr166 1.8 * @return an item if matched, else e
556     * @throws NullPointerException if haveData mode but e is null
557 jsr166 1.1 */
558 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
559     if (haveData && (e == null))
560     throw new NullPointerException();
561 jsr166 1.14 Node s = null; // the node to append, if needed
562 jsr166 1.1
563 jsr166 1.29 retry:
564     for (;;) { // restart on append race
565 jsr166 1.1
566 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
567 jsr166 1.8 boolean isData = p.isData;
568     Object item = p.item;
569     if (item != p && (item != null) == isData) { // unmatched
570     if (isData == haveData) // can't match
571     break;
572     if (p.casItem(item, e)) { // match
573 jsr166 1.14 for (Node q = p; q != h;) {
574 dl 1.16 Node n = q.next; // update by 2 unless singleton
575     if (head == h && casHead(h, n == null? q : n)) {
576 jsr166 1.8 h.forgetNext();
577     break;
578     } // advance and retry
579     if ((h = head) == null ||
580     (q = h.next) == null || !q.isMatched())
581     break; // unless slack < 2
582     }
583     LockSupport.unpark(p.waiter);
584     return this.<E>cast(item);
585 jsr166 1.1 }
586     }
587 jsr166 1.14 Node n = p.next;
588 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
589     }
590    
591 jsr166 1.14 if (how != NOW) { // No matches available
592 jsr166 1.8 if (s == null)
593 jsr166 1.14 s = new Node(e, haveData);
594     Node pred = tryAppend(s, haveData);
595 jsr166 1.8 if (pred == null)
596     continue retry; // lost race vs opposite mode
597 jsr166 1.14 if (how != ASYNC)
598     return awaitMatch(s, pred, e, (how == TIMED), nanos);
599 jsr166 1.1 }
600 jsr166 1.8 return e; // not waiting
601 jsr166 1.1 }
602     }
603    
604     /**
605 jsr166 1.8 * Tries to append node s as tail.
606     *
607     * @param s the node to append
608     * @param haveData true if appending in data mode
609     * @return null on failure due to losing race with append in
610     * different mode, else s's predecessor, or s itself if no
611     * predecessor
612 jsr166 1.1 */
613 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
614     for (Node t = tail, p = t;;) { // move p to last node and append
615     Node n, u; // temps for reads of next & tail
616 jsr166 1.8 if (p == null && (p = head) == null) {
617     if (casHead(null, s))
618     return s; // initialize
619     }
620     else if (p.cannotPrecede(haveData))
621     return null; // lost race vs opposite mode
622     else if ((n = p.next) != null) // not last; keep traversing
623     p = p != t && t != (u = tail) ? (t = u) : // stale tail
624     (p != n) ? n : null; // restart if off list
625     else if (!p.casNext(null, s))
626     p = p.next; // re-read on CAS failure
627     else {
628     if (p != t) { // update if slack now >= 2
629     while ((tail != t || !casTail(t, s)) &&
630     (t = tail) != null &&
631     (s = t.next) != null && // advance and retry
632     (s = s.next) != null && s != t);
633 jsr166 1.1 }
634 jsr166 1.8 return p;
635 jsr166 1.1 }
636     }
637     }
638    
639     /**
640 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
641 jsr166 1.1 *
642     * @param s the waiting node
643 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
644     * predecessor, or null if unknown (the null case does not occur
645     * in any current calls but may in possible future extensions)
646 jsr166 1.1 * @param e the comparison value for checking match
647 jsr166 1.14 * @param timed if true, wait only until timeout elapses
648     * @param nanos timeout in nanosecs, used only if timed is true
649 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
650 jsr166 1.1 */
651 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
652     long lastTime = timed ? System.nanoTime() : 0L;
653 jsr166 1.8 Thread w = Thread.currentThread();
654     int spins = -1; // initialized after first item and cancel checks
655     ThreadLocalRandom randomYields = null; // bound if needed
656 jsr166 1.1
657     for (;;) {
658 jsr166 1.8 Object item = s.item;
659     if (item != e) { // matched
660 dl 1.33 // assert item != s;
661 jsr166 1.8 s.forgetContents(); // avoid garbage
662     return this.<E>cast(item);
663     }
664 jsr166 1.14 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
665 dl 1.16 s.casItem(e, s)) { // cancel
666 jsr166 1.8 unsplice(pred, s);
667     return e;
668     }
669    
670     if (spins < 0) { // establish spins at/near front
671     if ((spins = spinsFor(pred, s.isData)) > 0)
672     randomYields = ThreadLocalRandom.current();
673     }
674     else if (spins > 0) { // spin
675 dl 1.16 --spins;
676     if (randomYields.nextInt(CHAINED_SPINS) == 0)
677 jsr166 1.8 Thread.yield(); // occasionally yield
678     }
679     else if (s.waiter == null) {
680     s.waiter = w; // request unpark then recheck
681 jsr166 1.1 }
682 jsr166 1.14 else if (timed) {
683 jsr166 1.1 long now = System.nanoTime();
684 jsr166 1.8 if ((nanos -= now - lastTime) > 0)
685     LockSupport.parkNanos(this, nanos);
686 jsr166 1.1 lastTime = now;
687     }
688 jsr166 1.8 else {
689 jsr166 1.1 LockSupport.park(this);
690     }
691 jsr166 1.8 }
692     }
693    
694     /**
695     * Returns spin/yield value for a node with given predecessor and
696     * data mode. See above for explanation.
697     */
698 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
699 jsr166 1.8 if (MP && pred != null) {
700     if (pred.isData != haveData) // phase change
701     return FRONT_SPINS + CHAINED_SPINS;
702     if (pred.isMatched()) // probably at front
703     return FRONT_SPINS;
704     if (pred.waiter == null) // pred apparently spinning
705     return CHAINED_SPINS;
706     }
707     return 0;
708     }
709    
710     /* -------------- Traversal methods -------------- */
711    
712     /**
713 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
714     * linked to self, which will only be true if traversing with a
715     * stale pointer that is now off the list.
716     */
717     final Node succ(Node p) {
718     Node next = p.next;
719     return (p == next) ? head : next;
720     }
721    
722     /**
723 jsr166 1.8 * Returns the first unmatched node of the given mode, or null if
724     * none. Used by methods isEmpty, hasWaitingConsumer.
725     */
726 jsr166 1.14 private Node firstOfMode(boolean isData) {
727     for (Node p = head; p != null; p = succ(p)) {
728 jsr166 1.8 if (!p.isMatched())
729 jsr166 1.14 return (p.isData == isData) ? p : null;
730 jsr166 1.8 }
731     return null;
732     }
733    
734     /**
735     * Returns the item in the first unmatched node with isData; or
736     * null if none. Used by peek.
737     */
738     private E firstDataItem() {
739 jsr166 1.14 for (Node p = head; p != null; p = succ(p)) {
740 jsr166 1.8 Object item = p.item;
741 jsr166 1.14 if (p.isData) {
742     if (item != null && item != p)
743     return this.<E>cast(item);
744     }
745     else if (item == null)
746     return null;
747 jsr166 1.8 }
748     return null;
749     }
750    
751 jsr166 1.1 /**
752 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
753     * Used by methods size and getWaitingConsumerCount.
754 jsr166 1.1 */
755 jsr166 1.8 private int countOfMode(boolean data) {
756     int count = 0;
757 jsr166 1.14 for (Node p = head; p != null; ) {
758 jsr166 1.8 if (!p.isMatched()) {
759     if (p.isData != data)
760     return 0;
761     if (++count == Integer.MAX_VALUE) // saturated
762     break;
763     }
764 jsr166 1.14 Node n = p.next;
765 jsr166 1.8 if (n != p)
766     p = n;
767     else {
768     count = 0;
769     p = head;
770 jsr166 1.1 }
771 jsr166 1.8 }
772     return count;
773     }
774    
775     final class Itr implements Iterator<E> {
776 jsr166 1.14 private Node nextNode; // next node to return item for
777     private E nextItem; // the corresponding item
778     private Node lastRet; // last returned node, to support remove
779     private Node lastPred; // predecessor to unlink lastRet
780 jsr166 1.8
781     /**
782     * Moves to next node after prev, or first node if prev null.
783     */
784 jsr166 1.14 private void advance(Node prev) {
785 dl 1.33 /*
786     * To track and avoid buildup of deleted nodes in the face
787     * of calls to both Queue.remove and Itr.remove, we must
788     * include variants of unsplice and sweep upon each
789     * advance: Upon Itr.remove, we may need to catch up links
790     * from lastPred, and upon other removes, we might need to
791     * skip ahead from stale nodes and unsplice deleted ones
792     * found while advancing.
793     */
794    
795     Node r, b; // reset lastPred upon possible deletion of lastRet
796     if ((r = lastRet) != null && !r.isMatched())
797     lastPred = r; // next lastPred is old lastRet
798     else if ((b = lastPred) == null || b.isMatched())
799     lastPred = null; // at start of list
800 jsr166 1.34 else {
801 dl 1.33 Node s, n; // help with removal of lastPred.next
802     while ((s = b.next) != null &&
803     s != b && s.isMatched() &&
804     (n = s.next) != null && n != s)
805     b.casNext(s, n);
806     }
807    
808     this.lastRet = prev;
809 jsr166 1.35
810 dl 1.33 for (Node p = prev, s, n;;) {
811     s = (p == null) ? head : p.next;
812     if (s == null)
813     break;
814     else if (s == p) {
815     p = null;
816     continue;
817     }
818     Object item = s.item;
819     if (s.isData) {
820     if (item != null && item != s) {
821 jsr166 1.31 nextItem = LinkedTransferQueue.<E>cast(item);
822 dl 1.33 nextNode = s;
823 jsr166 1.8 return;
824     }
825 jsr166 1.34 }
826 jsr166 1.8 else if (item == null)
827     break;
828 dl 1.33 // assert s.isMatched();
829     if (p == null)
830     p = s;
831     else if ((n = s.next) == null)
832     break;
833     else if (s == n)
834     p = null;
835     else
836     p.casNext(s, n);
837 jsr166 1.1 }
838 jsr166 1.8 nextNode = null;
839 dl 1.33 nextItem = null;
840 jsr166 1.8 }
841    
842     Itr() {
843     advance(null);
844     }
845    
846     public final boolean hasNext() {
847     return nextNode != null;
848     }
849    
850     public final E next() {
851 jsr166 1.14 Node p = nextNode;
852 jsr166 1.8 if (p == null) throw new NoSuchElementException();
853     E e = nextItem;
854     advance(p);
855     return e;
856     }
857    
858     public final void remove() {
859 dl 1.33 final Node lastRet = this.lastRet;
860     if (lastRet == null)
861     throw new IllegalStateException();
862     this.lastRet = null;
863     if (lastRet.tryMatchData())
864     unsplice(lastPred, lastRet);
865 jsr166 1.1 }
866     }
867    
868 jsr166 1.8 /* -------------- Removal methods -------------- */
869    
870 jsr166 1.1 /**
871 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
872     * the given predecessor.
873 jsr166 1.1 *
874 dl 1.16 * @param pred a node that was at one time known to be the
875     * predecessor of s, or null or s itself if s is/was at head
876 jsr166 1.8 * @param s the node to be unspliced
877 jsr166 1.1 */
878 dl 1.16 final void unsplice(Node pred, Node s) {
879     s.forgetContents(); // forget unneeded fields
880 jsr166 1.1 /*
881 dl 1.16 * See above for rationale. Briefly: if pred still points to
882     * s, try to unlink s. If s cannot be unlinked, because it is
883     * trailing node or pred might be unlinked, and neither pred
884     * nor s are head or offlist, add to sweepVotes, and if enough
885     * votes have accumulated, sweep.
886 jsr166 1.1 */
887 dl 1.16 if (pred != null && pred != s && pred.next == s) {
888     Node n = s.next;
889     if (n == null ||
890     (n != s && pred.casNext(s, n) && pred.isMatched())) {
891     for (;;) { // check if at, or could be, head
892     Node h = head;
893     if (h == pred || h == s || h == null)
894     return; // at head or list empty
895     if (!h.isMatched())
896     break;
897     Node hn = h.next;
898     if (hn == null)
899     return; // now empty
900     if (hn != h && casHead(h, hn))
901     h.forgetNext(); // advance head
902 jsr166 1.8 }
903 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
904     for (;;) { // sweep now if enough votes
905     int v = sweepVotes;
906     if (v < SWEEP_THRESHOLD) {
907     if (casSweepVotes(v, v + 1))
908     break;
909     }
910     else if (casSweepVotes(v, 0)) {
911     sweep();
912     break;
913     }
914     }
915 jsr166 1.12 }
916 jsr166 1.1 }
917     }
918     }
919    
920     /**
921 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
922     * traversal from head.
923 jsr166 1.1 */
924 dl 1.16 private void sweep() {
925 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
926 jsr166 1.28 if (!s.isMatched())
927     // Unmatched nodes are never self-linked
928 jsr166 1.20 p = s;
929 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
930 jsr166 1.20 break;
931 jsr166 1.28 else if (s == n) // stale
932     // No need to also check for p == s, since that implies s == n
933     p = head;
934 jsr166 1.20 else
935 dl 1.16 p.casNext(s, n);
936 jsr166 1.8 }
937     }
938    
939     /**
940     * Main implementation of remove(Object)
941     */
942     private boolean findAndRemove(Object e) {
943     if (e != null) {
944 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
945 jsr166 1.8 Object item = p.item;
946     if (p.isData) {
947     if (item != null && item != p && e.equals(item) &&
948     p.tryMatchData()) {
949     unsplice(pred, p);
950     return true;
951     }
952     }
953     else if (item == null)
954     break;
955     pred = p;
956 jsr166 1.11 if ((p = p.next) == pred) { // stale
957 jsr166 1.8 pred = null;
958     p = head;
959     }
960     }
961     }
962     return false;
963     }
964    
965    
966     /**
967 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
968     */
969     public LinkedTransferQueue() {
970     }
971    
972     /**
973     * Creates a {@code LinkedTransferQueue}
974     * initially containing the elements of the given collection,
975     * added in traversal order of the collection's iterator.
976     *
977     * @param c the collection of elements to initially contain
978     * @throws NullPointerException if the specified collection or any
979     * of its elements are null
980     */
981     public LinkedTransferQueue(Collection<? extends E> c) {
982     this();
983     addAll(c);
984     }
985    
986 jsr166 1.4 /**
987 jsr166 1.5 * Inserts the specified element at the tail of this queue.
988     * As the queue is unbounded, this method will never block.
989     *
990     * @throws NullPointerException if the specified element is null
991 jsr166 1.4 */
992 jsr166 1.5 public void put(E e) {
993 jsr166 1.8 xfer(e, true, ASYNC, 0);
994 jsr166 1.1 }
995    
996 jsr166 1.4 /**
997 jsr166 1.5 * Inserts the specified element at the tail of this queue.
998     * As the queue is unbounded, this method will never block or
999     * return {@code false}.
1000     *
1001     * @return {@code true} (as specified by
1002     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1003     * @throws NullPointerException if the specified element is null
1004 jsr166 1.4 */
1005 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1006 jsr166 1.8 xfer(e, true, ASYNC, 0);
1007     return true;
1008 jsr166 1.1 }
1009    
1010 jsr166 1.4 /**
1011 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1012     * As the queue is unbounded, this method will never return {@code false}.
1013     *
1014 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1015 jsr166 1.5 * @throws NullPointerException if the specified element is null
1016 jsr166 1.4 */
1017 jsr166 1.1 public boolean offer(E e) {
1018 jsr166 1.8 xfer(e, true, ASYNC, 0);
1019 jsr166 1.1 return true;
1020     }
1021    
1022 jsr166 1.4 /**
1023 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1024     * As the queue is unbounded, this method will never throw
1025     * {@link IllegalStateException} or return {@code false}.
1026     *
1027     * @return {@code true} (as specified by {@link Collection#add})
1028     * @throws NullPointerException if the specified element is null
1029 jsr166 1.4 */
1030 jsr166 1.1 public boolean add(E e) {
1031 jsr166 1.8 xfer(e, true, ASYNC, 0);
1032     return true;
1033 jsr166 1.5 }
1034    
1035     /**
1036 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1037     *
1038     * <p>More precisely, transfers the specified element immediately
1039     * if there exists a consumer already waiting to receive it (in
1040     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1041     * otherwise returning {@code false} without enqueuing the element.
1042 jsr166 1.5 *
1043     * @throws NullPointerException if the specified element is null
1044     */
1045     public boolean tryTransfer(E e) {
1046 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1047 jsr166 1.1 }
1048    
1049 jsr166 1.4 /**
1050 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1051     *
1052     * <p>More precisely, transfers the specified element immediately
1053     * if there exists a consumer already waiting to receive it (in
1054     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1055     * else inserts the specified element at the tail of this queue
1056     * and waits until the element is received by a consumer.
1057 jsr166 1.5 *
1058     * @throws NullPointerException if the specified element is null
1059 jsr166 1.4 */
1060 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1061 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1062     Thread.interrupted(); // failure possible only due to interrupt
1063 jsr166 1.1 throw new InterruptedException();
1064     }
1065     }
1066    
1067 jsr166 1.4 /**
1068 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1069     * before the timeout elapses.
1070     *
1071     * <p>More precisely, transfers the specified element immediately
1072     * if there exists a consumer already waiting to receive it (in
1073     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1074     * else inserts the specified element at the tail of this queue
1075     * and waits until the element is received by a consumer,
1076     * returning {@code false} if the specified wait time elapses
1077     * before the element can be transferred.
1078 jsr166 1.5 *
1079     * @throws NullPointerException if the specified element is null
1080 jsr166 1.4 */
1081 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1082     throws InterruptedException {
1083 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1084 jsr166 1.1 return true;
1085     if (!Thread.interrupted())
1086     return false;
1087     throw new InterruptedException();
1088     }
1089    
1090     public E take() throws InterruptedException {
1091 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1092 jsr166 1.1 if (e != null)
1093 jsr166 1.5 return e;
1094 jsr166 1.1 Thread.interrupted();
1095     throw new InterruptedException();
1096     }
1097    
1098     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1099 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1100 jsr166 1.1 if (e != null || !Thread.interrupted())
1101 jsr166 1.5 return e;
1102 jsr166 1.1 throw new InterruptedException();
1103     }
1104    
1105     public E poll() {
1106 jsr166 1.8 return xfer(null, false, NOW, 0);
1107 jsr166 1.1 }
1108    
1109 jsr166 1.4 /**
1110     * @throws NullPointerException {@inheritDoc}
1111     * @throws IllegalArgumentException {@inheritDoc}
1112     */
1113 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1114     if (c == null)
1115     throw new NullPointerException();
1116     if (c == this)
1117     throw new IllegalArgumentException();
1118     int n = 0;
1119     E e;
1120     while ( (e = poll()) != null) {
1121     c.add(e);
1122     ++n;
1123     }
1124     return n;
1125     }
1126    
1127 jsr166 1.4 /**
1128     * @throws NullPointerException {@inheritDoc}
1129     * @throws IllegalArgumentException {@inheritDoc}
1130     */
1131 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1132     if (c == null)
1133     throw new NullPointerException();
1134     if (c == this)
1135     throw new IllegalArgumentException();
1136     int n = 0;
1137     E e;
1138     while (n < maxElements && (e = poll()) != null) {
1139     c.add(e);
1140     ++n;
1141     }
1142     return n;
1143     }
1144    
1145 jsr166 1.5 /**
1146     * Returns an iterator over the elements in this queue in proper
1147     * sequence, from head to tail.
1148     *
1149     * <p>The returned iterator is a "weakly consistent" iterator that
1150     * will never throw
1151     * {@link ConcurrentModificationException ConcurrentModificationException},
1152     * and guarantees to traverse elements as they existed upon
1153     * construction of the iterator, and may (but is not guaranteed
1154     * to) reflect any modifications subsequent to construction.
1155     *
1156     * @return an iterator over the elements in this queue in proper sequence
1157     */
1158 jsr166 1.1 public Iterator<E> iterator() {
1159     return new Itr();
1160     }
1161    
1162     public E peek() {
1163 jsr166 1.8 return firstDataItem();
1164 jsr166 1.1 }
1165    
1166 jsr166 1.6 /**
1167     * Returns {@code true} if this queue contains no elements.
1168     *
1169     * @return {@code true} if this queue contains no elements
1170     */
1171 jsr166 1.1 public boolean isEmpty() {
1172 dl 1.21 for (Node p = head; p != null; p = succ(p)) {
1173     if (!p.isMatched())
1174     return !p.isData;
1175     }
1176     return true;
1177 jsr166 1.1 }
1178    
1179     public boolean hasWaitingConsumer() {
1180 jsr166 1.8 return firstOfMode(false) != null;
1181 jsr166 1.1 }
1182    
1183     /**
1184     * Returns the number of elements in this queue. If this queue
1185     * contains more than {@code Integer.MAX_VALUE} elements, returns
1186     * {@code Integer.MAX_VALUE}.
1187     *
1188     * <p>Beware that, unlike in most collections, this method is
1189     * <em>NOT</em> a constant-time operation. Because of the
1190     * asynchronous nature of these queues, determining the current
1191     * number of elements requires an O(n) traversal.
1192     *
1193     * @return the number of elements in this queue
1194     */
1195     public int size() {
1196 jsr166 1.8 return countOfMode(true);
1197 jsr166 1.1 }
1198    
1199     public int getWaitingConsumerCount() {
1200 jsr166 1.8 return countOfMode(false);
1201 jsr166 1.1 }
1202    
1203 jsr166 1.6 /**
1204     * Removes a single instance of the specified element from this queue,
1205     * if it is present. More formally, removes an element {@code e} such
1206     * that {@code o.equals(e)}, if this queue contains one or more such
1207     * elements.
1208     * Returns {@code true} if this queue contained the specified element
1209     * (or equivalently, if this queue changed as a result of the call).
1210     *
1211     * @param o element to be removed from this queue, if present
1212     * @return {@code true} if this queue changed as a result of the call
1213     */
1214 jsr166 1.1 public boolean remove(Object o) {
1215 jsr166 1.8 return findAndRemove(o);
1216 jsr166 1.1 }
1217    
1218     /**
1219 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1220     * More formally, returns {@code true} if and only if this queue contains
1221     * at least one element {@code e} such that {@code o.equals(e)}.
1222     *
1223     * @param o object to be checked for containment in this queue
1224     * @return {@code true} if this queue contains the specified element
1225     */
1226     public boolean contains(Object o) {
1227     if (o == null) return false;
1228     for (Node p = head; p != null; p = succ(p)) {
1229     Object item = p.item;
1230     if (p.isData) {
1231     if (item != null && item != p && o.equals(item))
1232     return true;
1233     }
1234     else if (item == null)
1235     break;
1236     }
1237     return false;
1238     }
1239    
1240     /**
1241 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1242     * {@code LinkedTransferQueue} is not capacity constrained.
1243     *
1244     * @return {@code Integer.MAX_VALUE} (as specified by
1245     * {@link BlockingQueue#remainingCapacity()})
1246     */
1247     public int remainingCapacity() {
1248     return Integer.MAX_VALUE;
1249     }
1250    
1251     /**
1252 jsr166 1.8 * Saves the state to a stream (that is, serializes it).
1253 jsr166 1.1 *
1254     * @serialData All of the elements (each an {@code E}) in
1255     * the proper order, followed by a null
1256     * @param s the stream
1257     */
1258     private void writeObject(java.io.ObjectOutputStream s)
1259     throws java.io.IOException {
1260     s.defaultWriteObject();
1261     for (E e : this)
1262     s.writeObject(e);
1263     // Use trailing null as sentinel
1264     s.writeObject(null);
1265     }
1266    
1267     /**
1268 jsr166 1.8 * Reconstitutes the Queue instance from a stream (that is,
1269     * deserializes it).
1270 jsr166 1.1 *
1271     * @param s the stream
1272     */
1273     private void readObject(java.io.ObjectInputStream s)
1274     throws java.io.IOException, ClassNotFoundException {
1275     s.defaultReadObject();
1276     for (;;) {
1277     @SuppressWarnings("unchecked") E item = (E) s.readObject();
1278     if (item == null)
1279     break;
1280     else
1281     offer(item);
1282     }
1283     }
1284    
1285 jsr166 1.3 // Unsafe mechanics
1286 jsr166 1.1
1287 jsr166 1.3 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1288     private static final long headOffset =
1289 jsr166 1.4 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1290 jsr166 1.3 private static final long tailOffset =
1291 jsr166 1.4 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1292 dl 1.16 private static final long sweepVotesOffset =
1293     objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1294 jsr166 1.4
1295     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1296     String field, Class<?> klazz) {
1297 jsr166 1.1 try {
1298 jsr166 1.3 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1299 jsr166 1.1 } catch (NoSuchFieldException e) {
1300 jsr166 1.3 // Convert Exception to corresponding Error
1301     NoSuchFieldError error = new NoSuchFieldError(field);
1302 jsr166 1.1 error.initCause(e);
1303     throw error;
1304     }
1305     }
1306     }