ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.67
Committed: Thu Aug 8 15:13:34 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.66: +13 -0 lines
Log Message:
add javadoc for spliterator()

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10 dl 1.52 import java.util.Arrays;
11 jsr166 1.1 import java.util.Collection;
12 dl 1.52 import java.util.Collections;
13 jsr166 1.1 import java.util.Iterator;
14     import java.util.NoSuchElementException;
15 jsr166 1.5 import java.util.Queue;
16 dl 1.33 import java.util.concurrent.TimeUnit;
17 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 dl 1.52 import java.util.stream.Stream;
21     import java.util.function.Consumer;
22 dl 1.22
23 jsr166 1.1 /**
24 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
25 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
26     * to any given producer. The <em>head</em> of the queue is that
27     * element that has been on the queue the longest time for some
28     * producer. The <em>tail</em> of the queue is that element that has
29     * been on the queue the shortest time for some producer.
30     *
31 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
32     * is <em>NOT</em> a constant-time operation. Because of the
33 jsr166 1.1 * asynchronous nature of these queues, determining the current number
34 dl 1.40 * of elements requires a traversal of the elements, and so may report
35     * inaccurate results if this collection is modified during traversal.
36 dl 1.41 * Additionally, the bulk operations {@code addAll},
37     * {@code removeAll}, {@code retainAll}, {@code containsAll},
38     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
39 dl 1.40 * to be performed atomically. For example, an iterator operating
40 dl 1.41 * concurrently with an {@code addAll} operation might view only some
41 dl 1.40 * of the added elements.
42 jsr166 1.1 *
43     * <p>This class and its iterator implement all of the
44     * <em>optional</em> methods of the {@link Collection} and {@link
45     * Iterator} interfaces.
46     *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60     * @param <E> the type of elements held in this collection
61     */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
71     * (linked) queues in which nodes may represent either data or
72     * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
86     * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171     * fields may fail, the actual slack may exceed targeted
172     * slack. However, they may be retried at any time to maintain
173     * targets. Even when using very small slack values, this
174     * approach works well for dual queues because it allows all
175     * operations up to the point of matching or appending an item
176     * (hence potentially allowing progress by another thread) to be
177     * read-only, thus not introducing any further contention. As
178     * described below, we implement this by performing slack
179     * maintenance retries only after these points.
180     *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
193     * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198     * only to itself; thus limiting the length of connected dead lists.
199     * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273     * start at the new head.
274     *
275     * If no candidates are found and the call was untimed
276     * poll/offer, (argument "how" is NOW) return.
277     *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421     * them after use. Relies heavily on Unsafe mechanics to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431     // CAS methods for fields
432 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
433 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
434     }
435 jsr166 1.1
436 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
437 dl 1.33 // assert cmp == null || cmp.getClass() != Node.class;
438 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
439     }
440 jsr166 1.1
441 jsr166 1.8 /**
442 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
443     * only be seen after publication via casNext.
444 jsr166 1.8 */
445 jsr166 1.14 Node(Object item, boolean isData) {
446 jsr166 1.8 UNSAFE.putObject(this, itemOffset, item); // relaxed write
447     this.isData = isData;
448     }
449 jsr166 1.1
450 jsr166 1.8 /**
451     * Links node to itself to avoid garbage retention. Called
452     * only after CASing head field, so uses relaxed write.
453     */
454     final void forgetNext() {
455     UNSAFE.putObject(this, nextOffset, this);
456     }
457 jsr166 1.1
458 jsr166 1.8 /**
459 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
460     * retention after matching or cancelling. Uses relaxed writes
461 dl 1.22 * because order is already constrained in the only calling
462 dl 1.16 * contexts: item is forgotten only after volatile/atomic
463     * mechanics that extract items. Similarly, clearing waiter
464     * follows either CAS or return from park (if ever parked;
465     * else we don't care).
466 jsr166 1.8 */
467     final void forgetContents() {
468 dl 1.16 UNSAFE.putObject(this, itemOffset, this);
469     UNSAFE.putObject(this, waiterOffset, null);
470 jsr166 1.8 }
471 jsr166 1.1
472 jsr166 1.8 /**
473     * Returns true if this node has been matched, including the
474     * case of artificial matches due to cancellation.
475     */
476     final boolean isMatched() {
477     Object x = item;
478 jsr166 1.11 return (x == this) || ((x == null) == isData);
479     }
480    
481     /**
482     * Returns true if this is an unmatched request node.
483     */
484     final boolean isUnmatchedRequest() {
485     return !isData && item == null;
486 jsr166 1.8 }
487 jsr166 1.1
488 jsr166 1.8 /**
489     * Returns true if a node with the given mode cannot be
490     * appended to this node because this node is unmatched and
491     * has opposite data mode.
492     */
493     final boolean cannotPrecede(boolean haveData) {
494     boolean d = isData;
495     Object x;
496     return d != haveData && (x = item) != this && (x != null) == d;
497     }
498 jsr166 1.1
499 jsr166 1.8 /**
500     * Tries to artificially match a data node -- used by remove.
501     */
502     final boolean tryMatchData() {
503 dl 1.33 // assert isData;
504 jsr166 1.8 Object x = item;
505     if (x != null && x != this && casItem(x, null)) {
506     LockSupport.unpark(waiter);
507     return true;
508     }
509     return false;
510 jsr166 1.1 }
511    
512 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
513    
514 jsr166 1.4 // Unsafe mechanics
515 dl 1.38 private static final sun.misc.Unsafe UNSAFE;
516     private static final long itemOffset;
517     private static final long nextOffset;
518     private static final long waiterOffset;
519     static {
520     try {
521     UNSAFE = sun.misc.Unsafe.getUnsafe();
522 jsr166 1.43 Class<?> k = Node.class;
523 dl 1.38 itemOffset = UNSAFE.objectFieldOffset
524     (k.getDeclaredField("item"));
525     nextOffset = UNSAFE.objectFieldOffset
526     (k.getDeclaredField("next"));
527     waiterOffset = UNSAFE.objectFieldOffset
528     (k.getDeclaredField("waiter"));
529     } catch (Exception e) {
530     throw new Error(e);
531     }
532     }
533 jsr166 1.1 }
534    
535 jsr166 1.8 /** head of the queue; null until first enqueue */
536 jsr166 1.14 transient volatile Node head;
537 jsr166 1.8
538     /** tail of the queue; null until first append */
539 jsr166 1.14 private transient volatile Node tail;
540 jsr166 1.1
541 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
542     private transient volatile int sweepVotes;
543    
544 jsr166 1.8 // CAS methods for fields
545 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
546 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
547     }
548 jsr166 1.1
549 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
550 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
551     }
552 jsr166 1.1
553 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
554     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
555 jsr166 1.8 }
556 jsr166 1.1
557 jsr166 1.8 /*
558 jsr166 1.14 * Possible values for "how" argument in xfer method.
559 jsr166 1.1 */
560 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
561     private static final int ASYNC = 1; // for offer, put, add
562     private static final int SYNC = 2; // for transfer, take
563     private static final int TIMED = 3; // for timed poll, tryTransfer
564 jsr166 1.1
565 jsr166 1.10 @SuppressWarnings("unchecked")
566     static <E> E cast(Object item) {
567 dl 1.33 // assert item == null || item.getClass() != Node.class;
568 jsr166 1.10 return (E) item;
569     }
570    
571 jsr166 1.1 /**
572 jsr166 1.8 * Implements all queuing methods. See above for explanation.
573 jsr166 1.1 *
574 jsr166 1.8 * @param e the item or null for take
575     * @param haveData true if this is a put, else a take
576 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
577     * @param nanos timeout in nanosecs, used only if mode is TIMED
578 jsr166 1.8 * @return an item if matched, else e
579     * @throws NullPointerException if haveData mode but e is null
580 jsr166 1.1 */
581 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
582     if (haveData && (e == null))
583     throw new NullPointerException();
584 jsr166 1.14 Node s = null; // the node to append, if needed
585 jsr166 1.1
586 jsr166 1.29 retry:
587     for (;;) { // restart on append race
588 jsr166 1.1
589 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
590 jsr166 1.8 boolean isData = p.isData;
591     Object item = p.item;
592     if (item != p && (item != null) == isData) { // unmatched
593     if (isData == haveData) // can't match
594     break;
595     if (p.casItem(item, e)) { // match
596 jsr166 1.14 for (Node q = p; q != h;) {
597 dl 1.16 Node n = q.next; // update by 2 unless singleton
598 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
599 jsr166 1.8 h.forgetNext();
600     break;
601     } // advance and retry
602     if ((h = head) == null ||
603     (q = h.next) == null || !q.isMatched())
604     break; // unless slack < 2
605     }
606     LockSupport.unpark(p.waiter);
607 jsr166 1.46 return LinkedTransferQueue.<E>cast(item);
608 jsr166 1.1 }
609     }
610 jsr166 1.14 Node n = p.next;
611 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
612     }
613    
614 jsr166 1.14 if (how != NOW) { // No matches available
615 jsr166 1.8 if (s == null)
616 jsr166 1.14 s = new Node(e, haveData);
617     Node pred = tryAppend(s, haveData);
618 jsr166 1.8 if (pred == null)
619     continue retry; // lost race vs opposite mode
620 jsr166 1.14 if (how != ASYNC)
621     return awaitMatch(s, pred, e, (how == TIMED), nanos);
622 jsr166 1.1 }
623 jsr166 1.8 return e; // not waiting
624 jsr166 1.1 }
625     }
626    
627     /**
628 jsr166 1.8 * Tries to append node s as tail.
629     *
630     * @param s the node to append
631     * @param haveData true if appending in data mode
632     * @return null on failure due to losing race with append in
633     * different mode, else s's predecessor, or s itself if no
634     * predecessor
635 jsr166 1.1 */
636 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
637     for (Node t = tail, p = t;;) { // move p to last node and append
638     Node n, u; // temps for reads of next & tail
639 jsr166 1.8 if (p == null && (p = head) == null) {
640     if (casHead(null, s))
641     return s; // initialize
642     }
643     else if (p.cannotPrecede(haveData))
644     return null; // lost race vs opposite mode
645     else if ((n = p.next) != null) // not last; keep traversing
646     p = p != t && t != (u = tail) ? (t = u) : // stale tail
647     (p != n) ? n : null; // restart if off list
648     else if (!p.casNext(null, s))
649     p = p.next; // re-read on CAS failure
650     else {
651     if (p != t) { // update if slack now >= 2
652     while ((tail != t || !casTail(t, s)) &&
653     (t = tail) != null &&
654     (s = t.next) != null && // advance and retry
655     (s = s.next) != null && s != t);
656 jsr166 1.1 }
657 jsr166 1.8 return p;
658 jsr166 1.1 }
659     }
660     }
661    
662     /**
663 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
664 jsr166 1.1 *
665     * @param s the waiting node
666 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
667     * predecessor, or null if unknown (the null case does not occur
668     * in any current calls but may in possible future extensions)
669 jsr166 1.1 * @param e the comparison value for checking match
670 jsr166 1.14 * @param timed if true, wait only until timeout elapses
671     * @param nanos timeout in nanosecs, used only if timed is true
672 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
673 jsr166 1.1 */
674 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
675 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
676 jsr166 1.8 Thread w = Thread.currentThread();
677     int spins = -1; // initialized after first item and cancel checks
678     ThreadLocalRandom randomYields = null; // bound if needed
679 jsr166 1.1
680     for (;;) {
681 jsr166 1.8 Object item = s.item;
682     if (item != e) { // matched
683 dl 1.33 // assert item != s;
684 jsr166 1.8 s.forgetContents(); // avoid garbage
685 jsr166 1.46 return LinkedTransferQueue.<E>cast(item);
686 jsr166 1.8 }
687 jsr166 1.14 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
688 dl 1.16 s.casItem(e, s)) { // cancel
689 jsr166 1.8 unsplice(pred, s);
690     return e;
691     }
692    
693     if (spins < 0) { // establish spins at/near front
694     if ((spins = spinsFor(pred, s.isData)) > 0)
695     randomYields = ThreadLocalRandom.current();
696     }
697     else if (spins > 0) { // spin
698 dl 1.16 --spins;
699     if (randomYields.nextInt(CHAINED_SPINS) == 0)
700 jsr166 1.8 Thread.yield(); // occasionally yield
701     }
702     else if (s.waiter == null) {
703     s.waiter = w; // request unpark then recheck
704 jsr166 1.1 }
705 jsr166 1.14 else if (timed) {
706 jsr166 1.51 nanos = deadline - System.nanoTime();
707     if (nanos > 0L)
708 jsr166 1.8 LockSupport.parkNanos(this, nanos);
709 jsr166 1.1 }
710 jsr166 1.8 else {
711 jsr166 1.1 LockSupport.park(this);
712     }
713 jsr166 1.8 }
714     }
715    
716     /**
717     * Returns spin/yield value for a node with given predecessor and
718     * data mode. See above for explanation.
719     */
720 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
721 jsr166 1.8 if (MP && pred != null) {
722     if (pred.isData != haveData) // phase change
723     return FRONT_SPINS + CHAINED_SPINS;
724     if (pred.isMatched()) // probably at front
725     return FRONT_SPINS;
726     if (pred.waiter == null) // pred apparently spinning
727     return CHAINED_SPINS;
728     }
729     return 0;
730     }
731    
732     /* -------------- Traversal methods -------------- */
733    
734     /**
735 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
736     * linked to self, which will only be true if traversing with a
737     * stale pointer that is now off the list.
738     */
739     final Node succ(Node p) {
740     Node next = p.next;
741     return (p == next) ? head : next;
742     }
743    
744     /**
745 jsr166 1.8 * Returns the first unmatched node of the given mode, or null if
746     * none. Used by methods isEmpty, hasWaitingConsumer.
747     */
748 jsr166 1.14 private Node firstOfMode(boolean isData) {
749     for (Node p = head; p != null; p = succ(p)) {
750 jsr166 1.8 if (!p.isMatched())
751 jsr166 1.14 return (p.isData == isData) ? p : null;
752 jsr166 1.8 }
753     return null;
754     }
755    
756     /**
757 dl 1.52 * Version of firstOfMode used by Spliterator
758     */
759     final Node firstDataNode() {
760     for (Node p = head; p != null;) {
761     Object item = p.item;
762     if (p.isData) {
763     if (item != null && item != p)
764     return p;
765     }
766     else if (item == null)
767     break;
768     if (p == (p = p.next))
769     p = head;
770     }
771     return null;
772     }
773    
774     /**
775 jsr166 1.8 * Returns the item in the first unmatched node with isData; or
776     * null if none. Used by peek.
777     */
778     private E firstDataItem() {
779 jsr166 1.14 for (Node p = head; p != null; p = succ(p)) {
780 jsr166 1.8 Object item = p.item;
781 jsr166 1.14 if (p.isData) {
782     if (item != null && item != p)
783 jsr166 1.46 return LinkedTransferQueue.<E>cast(item);
784 jsr166 1.14 }
785     else if (item == null)
786     return null;
787 jsr166 1.8 }
788     return null;
789     }
790    
791 jsr166 1.1 /**
792 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
793     * Used by methods size and getWaitingConsumerCount.
794 jsr166 1.1 */
795 jsr166 1.8 private int countOfMode(boolean data) {
796     int count = 0;
797 jsr166 1.14 for (Node p = head; p != null; ) {
798 jsr166 1.8 if (!p.isMatched()) {
799     if (p.isData != data)
800     return 0;
801     if (++count == Integer.MAX_VALUE) // saturated
802     break;
803     }
804 jsr166 1.14 Node n = p.next;
805 jsr166 1.8 if (n != p)
806     p = n;
807     else {
808     count = 0;
809     p = head;
810 jsr166 1.1 }
811 jsr166 1.8 }
812     return count;
813     }
814    
815     final class Itr implements Iterator<E> {
816 jsr166 1.14 private Node nextNode; // next node to return item for
817     private E nextItem; // the corresponding item
818     private Node lastRet; // last returned node, to support remove
819     private Node lastPred; // predecessor to unlink lastRet
820 jsr166 1.8
821     /**
822     * Moves to next node after prev, or first node if prev null.
823     */
824 jsr166 1.14 private void advance(Node prev) {
825 dl 1.33 /*
826     * To track and avoid buildup of deleted nodes in the face
827     * of calls to both Queue.remove and Itr.remove, we must
828     * include variants of unsplice and sweep upon each
829     * advance: Upon Itr.remove, we may need to catch up links
830     * from lastPred, and upon other removes, we might need to
831     * skip ahead from stale nodes and unsplice deleted ones
832     * found while advancing.
833     */
834    
835     Node r, b; // reset lastPred upon possible deletion of lastRet
836     if ((r = lastRet) != null && !r.isMatched())
837     lastPred = r; // next lastPred is old lastRet
838     else if ((b = lastPred) == null || b.isMatched())
839     lastPred = null; // at start of list
840 jsr166 1.34 else {
841 dl 1.33 Node s, n; // help with removal of lastPred.next
842     while ((s = b.next) != null &&
843     s != b && s.isMatched() &&
844     (n = s.next) != null && n != s)
845     b.casNext(s, n);
846     }
847    
848     this.lastRet = prev;
849 jsr166 1.35
850 dl 1.33 for (Node p = prev, s, n;;) {
851     s = (p == null) ? head : p.next;
852     if (s == null)
853     break;
854     else if (s == p) {
855     p = null;
856     continue;
857     }
858     Object item = s.item;
859     if (s.isData) {
860     if (item != null && item != s) {
861 jsr166 1.31 nextItem = LinkedTransferQueue.<E>cast(item);
862 dl 1.33 nextNode = s;
863 jsr166 1.8 return;
864     }
865 jsr166 1.34 }
866 jsr166 1.8 else if (item == null)
867     break;
868 dl 1.33 // assert s.isMatched();
869     if (p == null)
870     p = s;
871     else if ((n = s.next) == null)
872     break;
873     else if (s == n)
874     p = null;
875     else
876     p.casNext(s, n);
877 jsr166 1.1 }
878 jsr166 1.8 nextNode = null;
879 dl 1.33 nextItem = null;
880 jsr166 1.8 }
881    
882     Itr() {
883     advance(null);
884     }
885    
886     public final boolean hasNext() {
887     return nextNode != null;
888     }
889    
890     public final E next() {
891 jsr166 1.14 Node p = nextNode;
892 jsr166 1.8 if (p == null) throw new NoSuchElementException();
893     E e = nextItem;
894     advance(p);
895     return e;
896     }
897    
898     public final void remove() {
899 dl 1.33 final Node lastRet = this.lastRet;
900     if (lastRet == null)
901     throw new IllegalStateException();
902     this.lastRet = null;
903     if (lastRet.tryMatchData())
904     unsplice(lastPred, lastRet);
905 jsr166 1.1 }
906     }
907 jsr166 1.53
908 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
909 dl 1.52 static final class LTQSpliterator<E> implements Spliterator<E> {
910 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
911 dl 1.52 final LinkedTransferQueue<E> queue;
912     Node current; // current node; null until initialized
913     int batch; // batch size for splits
914     boolean exhausted; // true when no more nodes
915 jsr166 1.53 LTQSpliterator(LinkedTransferQueue<E> queue) {
916 dl 1.52 this.queue = queue;
917     }
918    
919     public Spliterator<E> trySplit() {
920 dl 1.60 Node p;
921 dl 1.52 final LinkedTransferQueue<E> q = this.queue;
922 dl 1.60 int b = batch;
923     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
924 jsr166 1.58 if (!exhausted &&
925 dl 1.54 ((p = current) != null || (p = q.firstDataNode()) != null) &&
926     p.next != null) {
927 dl 1.63 Object[] a = new Object[n];
928 dl 1.52 int i = 0;
929     do {
930     if ((a[i] = p.item) != null)
931     ++i;
932 jsr166 1.53 if (p == (p = p.next))
933 dl 1.52 p = q.firstDataNode();
934     } while (p != null && i < n);
935     if ((current = p) == null)
936     exhausted = true;
937 dl 1.60 if (i > 0) {
938     batch = i;
939     return Spliterators.spliterator
940     (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
941     Spliterator.CONCURRENT);
942     }
943 dl 1.52 }
944     return null;
945     }
946    
947     @SuppressWarnings("unchecked")
948 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
949 dl 1.52 Node p;
950     if (action == null) throw new NullPointerException();
951     final LinkedTransferQueue<E> q = this.queue;
952     if (!exhausted &&
953     ((p = current) != null || (p = q.firstDataNode()) != null)) {
954     exhausted = true;
955     do {
956     Object e = p.item;
957 jsr166 1.53 if (p == (p = p.next))
958 dl 1.52 p = q.firstDataNode();
959     if (e != null)
960     action.accept((E)e);
961     } while (p != null);
962     }
963     }
964    
965     @SuppressWarnings("unchecked")
966     public boolean tryAdvance(Consumer<? super E> action) {
967     Node p;
968     if (action == null) throw new NullPointerException();
969     final LinkedTransferQueue<E> q = this.queue;
970     if (!exhausted &&
971     ((p = current) != null || (p = q.firstDataNode()) != null)) {
972     Object e;
973     do {
974     e = p.item;
975 jsr166 1.53 if (p == (p = p.next))
976 dl 1.52 p = q.firstDataNode();
977     } while (e == null && p != null);
978     if ((current = p) == null)
979     exhausted = true;
980     if (e != null) {
981     action.accept((E)e);
982     return true;
983     }
984     }
985     return false;
986     }
987    
988 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
989    
990 dl 1.52 public int characteristics() {
991     return Spliterator.ORDERED | Spliterator.NONNULL |
992     Spliterator.CONCURRENT;
993     }
994     }
995    
996 jsr166 1.67 /**
997     * Returns a {@link Spliterator} over the elements in this queue.
998     *
999     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1000     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1001     *
1002     * @implNote
1003     * The {@code Spliterator} implements {@code trySplit} to permit limited
1004     * parallelism.
1005     *
1006     * @return a {@code Spliterator} over the elements in this queue
1007     * @since 1.8
1008     */
1009 dl 1.56 public Spliterator<E> spliterator() {
1010 dl 1.52 return new LTQSpliterator<E>(this);
1011     }
1012    
1013 jsr166 1.8 /* -------------- Removal methods -------------- */
1014    
1015 jsr166 1.1 /**
1016 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1017     * the given predecessor.
1018 jsr166 1.1 *
1019 dl 1.16 * @param pred a node that was at one time known to be the
1020     * predecessor of s, or null or s itself if s is/was at head
1021 jsr166 1.8 * @param s the node to be unspliced
1022 jsr166 1.1 */
1023 dl 1.16 final void unsplice(Node pred, Node s) {
1024     s.forgetContents(); // forget unneeded fields
1025 jsr166 1.1 /*
1026 dl 1.16 * See above for rationale. Briefly: if pred still points to
1027     * s, try to unlink s. If s cannot be unlinked, because it is
1028     * trailing node or pred might be unlinked, and neither pred
1029     * nor s are head or offlist, add to sweepVotes, and if enough
1030     * votes have accumulated, sweep.
1031 jsr166 1.1 */
1032 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1033     Node n = s.next;
1034     if (n == null ||
1035     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1036     for (;;) { // check if at, or could be, head
1037     Node h = head;
1038     if (h == pred || h == s || h == null)
1039     return; // at head or list empty
1040     if (!h.isMatched())
1041     break;
1042     Node hn = h.next;
1043     if (hn == null)
1044     return; // now empty
1045     if (hn != h && casHead(h, hn))
1046     h.forgetNext(); // advance head
1047 jsr166 1.8 }
1048 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1049     for (;;) { // sweep now if enough votes
1050     int v = sweepVotes;
1051     if (v < SWEEP_THRESHOLD) {
1052     if (casSweepVotes(v, v + 1))
1053     break;
1054     }
1055     else if (casSweepVotes(v, 0)) {
1056     sweep();
1057     break;
1058     }
1059     }
1060 jsr166 1.12 }
1061 jsr166 1.1 }
1062     }
1063     }
1064    
1065     /**
1066 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1067     * traversal from head.
1068 jsr166 1.1 */
1069 dl 1.16 private void sweep() {
1070 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1071 jsr166 1.28 if (!s.isMatched())
1072     // Unmatched nodes are never self-linked
1073 jsr166 1.20 p = s;
1074 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1075 jsr166 1.20 break;
1076 jsr166 1.28 else if (s == n) // stale
1077     // No need to also check for p == s, since that implies s == n
1078     p = head;
1079 jsr166 1.20 else
1080 dl 1.16 p.casNext(s, n);
1081 jsr166 1.8 }
1082     }
1083    
1084     /**
1085     * Main implementation of remove(Object)
1086     */
1087     private boolean findAndRemove(Object e) {
1088     if (e != null) {
1089 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
1090 jsr166 1.8 Object item = p.item;
1091     if (p.isData) {
1092     if (item != null && item != p && e.equals(item) &&
1093     p.tryMatchData()) {
1094     unsplice(pred, p);
1095     return true;
1096     }
1097     }
1098     else if (item == null)
1099     break;
1100     pred = p;
1101 jsr166 1.11 if ((p = p.next) == pred) { // stale
1102 jsr166 1.8 pred = null;
1103     p = head;
1104     }
1105     }
1106     }
1107     return false;
1108     }
1109    
1110     /**
1111 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1112     */
1113     public LinkedTransferQueue() {
1114     }
1115    
1116     /**
1117     * Creates a {@code LinkedTransferQueue}
1118     * initially containing the elements of the given collection,
1119     * added in traversal order of the collection's iterator.
1120     *
1121     * @param c the collection of elements to initially contain
1122     * @throws NullPointerException if the specified collection or any
1123     * of its elements are null
1124     */
1125     public LinkedTransferQueue(Collection<? extends E> c) {
1126     this();
1127     addAll(c);
1128     }
1129    
1130 jsr166 1.4 /**
1131 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1132     * As the queue is unbounded, this method will never block.
1133     *
1134     * @throws NullPointerException if the specified element is null
1135 jsr166 1.4 */
1136 jsr166 1.5 public void put(E e) {
1137 jsr166 1.8 xfer(e, true, ASYNC, 0);
1138 jsr166 1.1 }
1139    
1140 jsr166 1.4 /**
1141 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1142     * As the queue is unbounded, this method will never block or
1143     * return {@code false}.
1144     *
1145     * @return {@code true} (as specified by
1146 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1147     * BlockingQueue.offer})
1148 jsr166 1.5 * @throws NullPointerException if the specified element is null
1149 jsr166 1.4 */
1150 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1151 jsr166 1.8 xfer(e, true, ASYNC, 0);
1152     return true;
1153 jsr166 1.1 }
1154    
1155 jsr166 1.4 /**
1156 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1157     * As the queue is unbounded, this method will never return {@code false}.
1158     *
1159 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1160 jsr166 1.5 * @throws NullPointerException if the specified element is null
1161 jsr166 1.4 */
1162 jsr166 1.1 public boolean offer(E e) {
1163 jsr166 1.8 xfer(e, true, ASYNC, 0);
1164 jsr166 1.1 return true;
1165     }
1166    
1167 jsr166 1.4 /**
1168 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1169     * As the queue is unbounded, this method will never throw
1170     * {@link IllegalStateException} or return {@code false}.
1171     *
1172     * @return {@code true} (as specified by {@link Collection#add})
1173     * @throws NullPointerException if the specified element is null
1174 jsr166 1.4 */
1175 jsr166 1.1 public boolean add(E e) {
1176 jsr166 1.8 xfer(e, true, ASYNC, 0);
1177     return true;
1178 jsr166 1.5 }
1179    
1180     /**
1181 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1182     *
1183     * <p>More precisely, transfers the specified element immediately
1184     * if there exists a consumer already waiting to receive it (in
1185     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1186     * otherwise returning {@code false} without enqueuing the element.
1187 jsr166 1.5 *
1188     * @throws NullPointerException if the specified element is null
1189     */
1190     public boolean tryTransfer(E e) {
1191 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1192 jsr166 1.1 }
1193    
1194 jsr166 1.4 /**
1195 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1196     *
1197     * <p>More precisely, transfers the specified element immediately
1198     * if there exists a consumer already waiting to receive it (in
1199     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1200     * else inserts the specified element at the tail of this queue
1201     * and waits until the element is received by a consumer.
1202 jsr166 1.5 *
1203     * @throws NullPointerException if the specified element is null
1204 jsr166 1.4 */
1205 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1206 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1207     Thread.interrupted(); // failure possible only due to interrupt
1208 jsr166 1.1 throw new InterruptedException();
1209     }
1210     }
1211    
1212 jsr166 1.4 /**
1213 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1214     * before the timeout elapses.
1215     *
1216     * <p>More precisely, transfers the specified element immediately
1217     * if there exists a consumer already waiting to receive it (in
1218     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1219     * else inserts the specified element at the tail of this queue
1220     * and waits until the element is received by a consumer,
1221     * returning {@code false} if the specified wait time elapses
1222     * before the element can be transferred.
1223 jsr166 1.5 *
1224     * @throws NullPointerException if the specified element is null
1225 jsr166 1.4 */
1226 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1227     throws InterruptedException {
1228 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1229 jsr166 1.1 return true;
1230     if (!Thread.interrupted())
1231     return false;
1232     throw new InterruptedException();
1233     }
1234    
1235     public E take() throws InterruptedException {
1236 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1237 jsr166 1.1 if (e != null)
1238 jsr166 1.5 return e;
1239 jsr166 1.1 Thread.interrupted();
1240     throw new InterruptedException();
1241     }
1242    
1243     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1244 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1245 jsr166 1.1 if (e != null || !Thread.interrupted())
1246 jsr166 1.5 return e;
1247 jsr166 1.1 throw new InterruptedException();
1248     }
1249    
1250     public E poll() {
1251 jsr166 1.8 return xfer(null, false, NOW, 0);
1252 jsr166 1.1 }
1253    
1254 jsr166 1.4 /**
1255     * @throws NullPointerException {@inheritDoc}
1256     * @throws IllegalArgumentException {@inheritDoc}
1257     */
1258 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1259     if (c == null)
1260     throw new NullPointerException();
1261     if (c == this)
1262     throw new IllegalArgumentException();
1263     int n = 0;
1264 jsr166 1.47 for (E e; (e = poll()) != null;) {
1265 jsr166 1.1 c.add(e);
1266     ++n;
1267     }
1268     return n;
1269     }
1270    
1271 jsr166 1.4 /**
1272     * @throws NullPointerException {@inheritDoc}
1273     * @throws IllegalArgumentException {@inheritDoc}
1274     */
1275 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1276     if (c == null)
1277     throw new NullPointerException();
1278     if (c == this)
1279     throw new IllegalArgumentException();
1280     int n = 0;
1281 jsr166 1.47 for (E e; n < maxElements && (e = poll()) != null;) {
1282 jsr166 1.1 c.add(e);
1283     ++n;
1284     }
1285     return n;
1286     }
1287    
1288 jsr166 1.5 /**
1289 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1290     * The elements will be returned in order from first (head) to last (tail).
1291 jsr166 1.5 *
1292     * <p>The returned iterator is a "weakly consistent" iterator that
1293 jsr166 1.36 * will never throw {@link java.util.ConcurrentModificationException
1294     * ConcurrentModificationException}, and guarantees to traverse
1295     * elements as they existed upon construction of the iterator, and
1296     * may (but is not guaranteed to) reflect any modifications
1297     * subsequent to construction.
1298 jsr166 1.5 *
1299     * @return an iterator over the elements in this queue in proper sequence
1300     */
1301 jsr166 1.1 public Iterator<E> iterator() {
1302     return new Itr();
1303     }
1304    
1305     public E peek() {
1306 jsr166 1.8 return firstDataItem();
1307 jsr166 1.1 }
1308    
1309 jsr166 1.6 /**
1310     * Returns {@code true} if this queue contains no elements.
1311     *
1312     * @return {@code true} if this queue contains no elements
1313     */
1314 jsr166 1.1 public boolean isEmpty() {
1315 dl 1.21 for (Node p = head; p != null; p = succ(p)) {
1316     if (!p.isMatched())
1317     return !p.isData;
1318     }
1319     return true;
1320 jsr166 1.1 }
1321    
1322     public boolean hasWaitingConsumer() {
1323 jsr166 1.8 return firstOfMode(false) != null;
1324 jsr166 1.1 }
1325    
1326     /**
1327     * Returns the number of elements in this queue. If this queue
1328     * contains more than {@code Integer.MAX_VALUE} elements, returns
1329     * {@code Integer.MAX_VALUE}.
1330     *
1331     * <p>Beware that, unlike in most collections, this method is
1332     * <em>NOT</em> a constant-time operation. Because of the
1333     * asynchronous nature of these queues, determining the current
1334     * number of elements requires an O(n) traversal.
1335     *
1336     * @return the number of elements in this queue
1337     */
1338     public int size() {
1339 jsr166 1.8 return countOfMode(true);
1340 jsr166 1.1 }
1341    
1342     public int getWaitingConsumerCount() {
1343 jsr166 1.8 return countOfMode(false);
1344 jsr166 1.1 }
1345    
1346 jsr166 1.6 /**
1347     * Removes a single instance of the specified element from this queue,
1348     * if it is present. More formally, removes an element {@code e} such
1349     * that {@code o.equals(e)}, if this queue contains one or more such
1350     * elements.
1351     * Returns {@code true} if this queue contained the specified element
1352     * (or equivalently, if this queue changed as a result of the call).
1353     *
1354     * @param o element to be removed from this queue, if present
1355     * @return {@code true} if this queue changed as a result of the call
1356     */
1357 jsr166 1.1 public boolean remove(Object o) {
1358 jsr166 1.8 return findAndRemove(o);
1359 jsr166 1.1 }
1360    
1361     /**
1362 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1363     * More formally, returns {@code true} if and only if this queue contains
1364     * at least one element {@code e} such that {@code o.equals(e)}.
1365     *
1366     * @param o object to be checked for containment in this queue
1367     * @return {@code true} if this queue contains the specified element
1368     */
1369     public boolean contains(Object o) {
1370     if (o == null) return false;
1371     for (Node p = head; p != null; p = succ(p)) {
1372     Object item = p.item;
1373     if (p.isData) {
1374     if (item != null && item != p && o.equals(item))
1375     return true;
1376     }
1377     else if (item == null)
1378     break;
1379     }
1380     return false;
1381     }
1382    
1383     /**
1384 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1385     * {@code LinkedTransferQueue} is not capacity constrained.
1386     *
1387     * @return {@code Integer.MAX_VALUE} (as specified by
1388 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1389     * BlockingQueue.remainingCapacity})
1390 jsr166 1.5 */
1391     public int remainingCapacity() {
1392     return Integer.MAX_VALUE;
1393     }
1394    
1395     /**
1396 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1397 jsr166 1.1 *
1398 jsr166 1.65 * @param s the stream
1399 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1400 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1401     * the proper order, followed by a null
1402     */
1403     private void writeObject(java.io.ObjectOutputStream s)
1404     throws java.io.IOException {
1405     s.defaultWriteObject();
1406     for (E e : this)
1407     s.writeObject(e);
1408     // Use trailing null as sentinel
1409     s.writeObject(null);
1410     }
1411    
1412     /**
1413 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1414 jsr166 1.65 * @param s the stream
1415 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1416     * could not be found
1417     * @throws java.io.IOException if an I/O error occurs
1418 jsr166 1.1 */
1419     private void readObject(java.io.ObjectInputStream s)
1420     throws java.io.IOException, ClassNotFoundException {
1421     s.defaultReadObject();
1422     for (;;) {
1423 jsr166 1.49 @SuppressWarnings("unchecked")
1424     E item = (E) s.readObject();
1425 jsr166 1.1 if (item == null)
1426     break;
1427     else
1428     offer(item);
1429     }
1430     }
1431    
1432 jsr166 1.3 // Unsafe mechanics
1433 jsr166 1.1
1434 dl 1.38 private static final sun.misc.Unsafe UNSAFE;
1435     private static final long headOffset;
1436     private static final long tailOffset;
1437     private static final long sweepVotesOffset;
1438     static {
1439 jsr166 1.1 try {
1440 dl 1.38 UNSAFE = sun.misc.Unsafe.getUnsafe();
1441 jsr166 1.43 Class<?> k = LinkedTransferQueue.class;
1442 dl 1.38 headOffset = UNSAFE.objectFieldOffset
1443     (k.getDeclaredField("head"));
1444     tailOffset = UNSAFE.objectFieldOffset
1445     (k.getDeclaredField("tail"));
1446     sweepVotesOffset = UNSAFE.objectFieldOffset
1447     (k.getDeclaredField("sweepVotes"));
1448     } catch (Exception e) {
1449     throw new Error(e);
1450 jsr166 1.1 }
1451     }
1452     }