ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.70
Committed: Mon Jun 23 23:04:42 2014 UTC (9 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.69: +10 -11 lines
Log Message:
replace cast() method with straight-forward uses of @SuppressWarnings, in the spirit of Java

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10 dl 1.52 import java.util.Arrays;
11 jsr166 1.1 import java.util.Collection;
12 dl 1.52 import java.util.Collections;
13 jsr166 1.1 import java.util.Iterator;
14     import java.util.NoSuchElementException;
15 jsr166 1.5 import java.util.Queue;
16 dl 1.33 import java.util.concurrent.TimeUnit;
17 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 dl 1.52 import java.util.stream.Stream;
21     import java.util.function.Consumer;
22 dl 1.22
23 jsr166 1.1 /**
24 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
25 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
26     * to any given producer. The <em>head</em> of the queue is that
27     * element that has been on the queue the longest time for some
28     * producer. The <em>tail</em> of the queue is that element that has
29     * been on the queue the shortest time for some producer.
30     *
31 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
32     * is <em>NOT</em> a constant-time operation. Because of the
33 jsr166 1.1 * asynchronous nature of these queues, determining the current number
34 dl 1.40 * of elements requires a traversal of the elements, and so may report
35     * inaccurate results if this collection is modified during traversal.
36 dl 1.41 * Additionally, the bulk operations {@code addAll},
37     * {@code removeAll}, {@code retainAll}, {@code containsAll},
38     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
39 dl 1.40 * to be performed atomically. For example, an iterator operating
40 dl 1.41 * concurrently with an {@code addAll} operation might view only some
41 dl 1.40 * of the added elements.
42 jsr166 1.1 *
43     * <p>This class and its iterator implement all of the
44     * <em>optional</em> methods of the {@link Collection} and {@link
45     * Iterator} interfaces.
46     *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60     * @param <E> the type of elements held in this collection
61     */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
71     * (linked) queues in which nodes may represent either data or
72     * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
86     * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171     * fields may fail, the actual slack may exceed targeted
172     * slack. However, they may be retried at any time to maintain
173     * targets. Even when using very small slack values, this
174     * approach works well for dual queues because it allows all
175     * operations up to the point of matching or appending an item
176     * (hence potentially allowing progress by another thread) to be
177     * read-only, thus not introducing any further contention. As
178     * described below, we implement this by performing slack
179     * maintenance retries only after these points.
180     *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
193 jsr166 1.8 * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198     * only to itself; thus limiting the length of connected dead lists.
199     * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273     * start at the new head.
274     *
275     * If no candidates are found and the call was untimed
276     * poll/offer, (argument "how" is NOW) return.
277     *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421     * them after use. Relies heavily on Unsafe mechanics to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431     // CAS methods for fields
432 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
433 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
434     }
435 jsr166 1.1
436 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
437 dl 1.33 // assert cmp == null || cmp.getClass() != Node.class;
438 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
439     }
440 jsr166 1.1
441 jsr166 1.8 /**
442 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
443     * only be seen after publication via casNext.
444 jsr166 1.8 */
445 jsr166 1.14 Node(Object item, boolean isData) {
446 jsr166 1.8 UNSAFE.putObject(this, itemOffset, item); // relaxed write
447     this.isData = isData;
448     }
449 jsr166 1.1
450 jsr166 1.8 /**
451     * Links node to itself to avoid garbage retention. Called
452     * only after CASing head field, so uses relaxed write.
453     */
454     final void forgetNext() {
455     UNSAFE.putObject(this, nextOffset, this);
456     }
457 jsr166 1.1
458 jsr166 1.8 /**
459 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
460     * retention after matching or cancelling. Uses relaxed writes
461 dl 1.22 * because order is already constrained in the only calling
462 dl 1.16 * contexts: item is forgotten only after volatile/atomic
463     * mechanics that extract items. Similarly, clearing waiter
464     * follows either CAS or return from park (if ever parked;
465     * else we don't care).
466 jsr166 1.8 */
467     final void forgetContents() {
468 dl 1.16 UNSAFE.putObject(this, itemOffset, this);
469     UNSAFE.putObject(this, waiterOffset, null);
470 jsr166 1.8 }
471 jsr166 1.1
472 jsr166 1.8 /**
473     * Returns true if this node has been matched, including the
474     * case of artificial matches due to cancellation.
475     */
476     final boolean isMatched() {
477     Object x = item;
478 jsr166 1.11 return (x == this) || ((x == null) == isData);
479     }
480    
481     /**
482     * Returns true if this is an unmatched request node.
483     */
484     final boolean isUnmatchedRequest() {
485     return !isData && item == null;
486 jsr166 1.8 }
487 jsr166 1.1
488 jsr166 1.8 /**
489     * Returns true if a node with the given mode cannot be
490     * appended to this node because this node is unmatched and
491     * has opposite data mode.
492     */
493     final boolean cannotPrecede(boolean haveData) {
494     boolean d = isData;
495     Object x;
496     return d != haveData && (x = item) != this && (x != null) == d;
497     }
498 jsr166 1.1
499 jsr166 1.8 /**
500     * Tries to artificially match a data node -- used by remove.
501     */
502     final boolean tryMatchData() {
503 dl 1.33 // assert isData;
504 jsr166 1.8 Object x = item;
505     if (x != null && x != this && casItem(x, null)) {
506     LockSupport.unpark(waiter);
507     return true;
508     }
509     return false;
510 jsr166 1.1 }
511    
512 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
513    
514 jsr166 1.4 // Unsafe mechanics
515 dl 1.38 private static final sun.misc.Unsafe UNSAFE;
516     private static final long itemOffset;
517     private static final long nextOffset;
518     private static final long waiterOffset;
519     static {
520     try {
521     UNSAFE = sun.misc.Unsafe.getUnsafe();
522 jsr166 1.43 Class<?> k = Node.class;
523 dl 1.38 itemOffset = UNSAFE.objectFieldOffset
524     (k.getDeclaredField("item"));
525     nextOffset = UNSAFE.objectFieldOffset
526     (k.getDeclaredField("next"));
527     waiterOffset = UNSAFE.objectFieldOffset
528     (k.getDeclaredField("waiter"));
529     } catch (Exception e) {
530     throw new Error(e);
531     }
532     }
533 jsr166 1.1 }
534    
535 jsr166 1.8 /** head of the queue; null until first enqueue */
536 jsr166 1.14 transient volatile Node head;
537 jsr166 1.8
538     /** tail of the queue; null until first append */
539 jsr166 1.14 private transient volatile Node tail;
540 jsr166 1.1
541 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
542     private transient volatile int sweepVotes;
543    
544 jsr166 1.8 // CAS methods for fields
545 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
546 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
547     }
548 jsr166 1.1
549 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
550 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
551     }
552 jsr166 1.1
553 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
554     return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
555 jsr166 1.8 }
556 jsr166 1.1
557 jsr166 1.8 /*
558 jsr166 1.14 * Possible values for "how" argument in xfer method.
559 jsr166 1.1 */
560 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
561     private static final int ASYNC = 1; // for offer, put, add
562     private static final int SYNC = 2; // for transfer, take
563     private static final int TIMED = 3; // for timed poll, tryTransfer
564 jsr166 1.1
565     /**
566 jsr166 1.8 * Implements all queuing methods. See above for explanation.
567 jsr166 1.1 *
568 jsr166 1.8 * @param e the item or null for take
569     * @param haveData true if this is a put, else a take
570 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
571     * @param nanos timeout in nanosecs, used only if mode is TIMED
572 jsr166 1.8 * @return an item if matched, else e
573     * @throws NullPointerException if haveData mode but e is null
574 jsr166 1.1 */
575 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
576     if (haveData && (e == null))
577     throw new NullPointerException();
578 jsr166 1.14 Node s = null; // the node to append, if needed
579 jsr166 1.1
580 jsr166 1.29 retry:
581     for (;;) { // restart on append race
582 jsr166 1.1
583 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
584 jsr166 1.8 boolean isData = p.isData;
585     Object item = p.item;
586     if (item != p && (item != null) == isData) { // unmatched
587     if (isData == haveData) // can't match
588     break;
589     if (p.casItem(item, e)) { // match
590 jsr166 1.14 for (Node q = p; q != h;) {
591 dl 1.16 Node n = q.next; // update by 2 unless singleton
592 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
593 jsr166 1.8 h.forgetNext();
594     break;
595     } // advance and retry
596     if ((h = head) == null ||
597     (q = h.next) == null || !q.isMatched())
598     break; // unless slack < 2
599     }
600     LockSupport.unpark(p.waiter);
601 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
602     return itemE;
603 jsr166 1.1 }
604     }
605 jsr166 1.14 Node n = p.next;
606 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
607     }
608    
609 jsr166 1.14 if (how != NOW) { // No matches available
610 jsr166 1.8 if (s == null)
611 jsr166 1.14 s = new Node(e, haveData);
612     Node pred = tryAppend(s, haveData);
613 jsr166 1.8 if (pred == null)
614     continue retry; // lost race vs opposite mode
615 jsr166 1.14 if (how != ASYNC)
616     return awaitMatch(s, pred, e, (how == TIMED), nanos);
617 jsr166 1.1 }
618 jsr166 1.8 return e; // not waiting
619 jsr166 1.1 }
620     }
621    
622     /**
623 jsr166 1.8 * Tries to append node s as tail.
624     *
625     * @param s the node to append
626     * @param haveData true if appending in data mode
627     * @return null on failure due to losing race with append in
628     * different mode, else s's predecessor, or s itself if no
629     * predecessor
630 jsr166 1.1 */
631 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
632     for (Node t = tail, p = t;;) { // move p to last node and append
633     Node n, u; // temps for reads of next & tail
634 jsr166 1.8 if (p == null && (p = head) == null) {
635     if (casHead(null, s))
636     return s; // initialize
637     }
638     else if (p.cannotPrecede(haveData))
639     return null; // lost race vs opposite mode
640     else if ((n = p.next) != null) // not last; keep traversing
641     p = p != t && t != (u = tail) ? (t = u) : // stale tail
642     (p != n) ? n : null; // restart if off list
643     else if (!p.casNext(null, s))
644     p = p.next; // re-read on CAS failure
645     else {
646     if (p != t) { // update if slack now >= 2
647     while ((tail != t || !casTail(t, s)) &&
648     (t = tail) != null &&
649     (s = t.next) != null && // advance and retry
650     (s = s.next) != null && s != t);
651 jsr166 1.1 }
652 jsr166 1.8 return p;
653 jsr166 1.1 }
654     }
655     }
656    
657     /**
658 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
659 jsr166 1.1 *
660     * @param s the waiting node
661 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
662     * predecessor, or null if unknown (the null case does not occur
663     * in any current calls but may in possible future extensions)
664 jsr166 1.1 * @param e the comparison value for checking match
665 jsr166 1.14 * @param timed if true, wait only until timeout elapses
666     * @param nanos timeout in nanosecs, used only if timed is true
667 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
668 jsr166 1.1 */
669 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
670 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
671 jsr166 1.8 Thread w = Thread.currentThread();
672     int spins = -1; // initialized after first item and cancel checks
673     ThreadLocalRandom randomYields = null; // bound if needed
674 jsr166 1.1
675     for (;;) {
676 jsr166 1.8 Object item = s.item;
677     if (item != e) { // matched
678 dl 1.33 // assert item != s;
679 jsr166 1.8 s.forgetContents(); // avoid garbage
680 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
681     return itemE;
682 jsr166 1.8 }
683 jsr166 1.14 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
684 dl 1.16 s.casItem(e, s)) { // cancel
685 jsr166 1.8 unsplice(pred, s);
686     return e;
687     }
688    
689     if (spins < 0) { // establish spins at/near front
690     if ((spins = spinsFor(pred, s.isData)) > 0)
691     randomYields = ThreadLocalRandom.current();
692     }
693     else if (spins > 0) { // spin
694 dl 1.16 --spins;
695     if (randomYields.nextInt(CHAINED_SPINS) == 0)
696 jsr166 1.8 Thread.yield(); // occasionally yield
697     }
698     else if (s.waiter == null) {
699     s.waiter = w; // request unpark then recheck
700 jsr166 1.1 }
701 jsr166 1.14 else if (timed) {
702 jsr166 1.51 nanos = deadline - System.nanoTime();
703     if (nanos > 0L)
704 jsr166 1.8 LockSupport.parkNanos(this, nanos);
705 jsr166 1.1 }
706 jsr166 1.8 else {
707 jsr166 1.1 LockSupport.park(this);
708     }
709 jsr166 1.8 }
710     }
711    
712     /**
713     * Returns spin/yield value for a node with given predecessor and
714     * data mode. See above for explanation.
715     */
716 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
717 jsr166 1.8 if (MP && pred != null) {
718     if (pred.isData != haveData) // phase change
719     return FRONT_SPINS + CHAINED_SPINS;
720     if (pred.isMatched()) // probably at front
721     return FRONT_SPINS;
722     if (pred.waiter == null) // pred apparently spinning
723     return CHAINED_SPINS;
724     }
725     return 0;
726     }
727    
728     /* -------------- Traversal methods -------------- */
729    
730     /**
731 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
732     * linked to self, which will only be true if traversing with a
733     * stale pointer that is now off the list.
734     */
735     final Node succ(Node p) {
736     Node next = p.next;
737     return (p == next) ? head : next;
738     }
739    
740     /**
741 jsr166 1.8 * Returns the first unmatched node of the given mode, or null if
742     * none. Used by methods isEmpty, hasWaitingConsumer.
743     */
744 jsr166 1.14 private Node firstOfMode(boolean isData) {
745     for (Node p = head; p != null; p = succ(p)) {
746 jsr166 1.8 if (!p.isMatched())
747 jsr166 1.14 return (p.isData == isData) ? p : null;
748 jsr166 1.8 }
749     return null;
750     }
751    
752     /**
753 dl 1.52 * Version of firstOfMode used by Spliterator
754     */
755     final Node firstDataNode() {
756     for (Node p = head; p != null;) {
757     Object item = p.item;
758     if (p.isData) {
759     if (item != null && item != p)
760     return p;
761     }
762     else if (item == null)
763     break;
764     if (p == (p = p.next))
765     p = head;
766     }
767     return null;
768     }
769    
770     /**
771 jsr166 1.8 * Returns the item in the first unmatched node with isData; or
772     * null if none. Used by peek.
773     */
774     private E firstDataItem() {
775 jsr166 1.14 for (Node p = head; p != null; p = succ(p)) {
776 jsr166 1.8 Object item = p.item;
777 jsr166 1.14 if (p.isData) {
778 jsr166 1.70 if (item != null && item != p) {
779     @SuppressWarnings("unchecked") E itemE = (E) item;
780     return itemE;
781     }
782 jsr166 1.14 }
783     else if (item == null)
784     return null;
785 jsr166 1.8 }
786     return null;
787     }
788    
789 jsr166 1.1 /**
790 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
791     * Used by methods size and getWaitingConsumerCount.
792 jsr166 1.1 */
793 jsr166 1.8 private int countOfMode(boolean data) {
794     int count = 0;
795 jsr166 1.14 for (Node p = head; p != null; ) {
796 jsr166 1.8 if (!p.isMatched()) {
797     if (p.isData != data)
798     return 0;
799     if (++count == Integer.MAX_VALUE) // saturated
800     break;
801     }
802 jsr166 1.14 Node n = p.next;
803 jsr166 1.8 if (n != p)
804     p = n;
805     else {
806     count = 0;
807     p = head;
808 jsr166 1.1 }
809 jsr166 1.8 }
810     return count;
811     }
812    
813     final class Itr implements Iterator<E> {
814 jsr166 1.14 private Node nextNode; // next node to return item for
815     private E nextItem; // the corresponding item
816     private Node lastRet; // last returned node, to support remove
817     private Node lastPred; // predecessor to unlink lastRet
818 jsr166 1.8
819     /**
820     * Moves to next node after prev, or first node if prev null.
821     */
822 jsr166 1.14 private void advance(Node prev) {
823 dl 1.33 /*
824     * To track and avoid buildup of deleted nodes in the face
825     * of calls to both Queue.remove and Itr.remove, we must
826     * include variants of unsplice and sweep upon each
827     * advance: Upon Itr.remove, we may need to catch up links
828     * from lastPred, and upon other removes, we might need to
829     * skip ahead from stale nodes and unsplice deleted ones
830     * found while advancing.
831     */
832    
833     Node r, b; // reset lastPred upon possible deletion of lastRet
834     if ((r = lastRet) != null && !r.isMatched())
835     lastPred = r; // next lastPred is old lastRet
836     else if ((b = lastPred) == null || b.isMatched())
837     lastPred = null; // at start of list
838 jsr166 1.34 else {
839 dl 1.33 Node s, n; // help with removal of lastPred.next
840     while ((s = b.next) != null &&
841     s != b && s.isMatched() &&
842     (n = s.next) != null && n != s)
843     b.casNext(s, n);
844     }
845    
846     this.lastRet = prev;
847 jsr166 1.35
848 dl 1.33 for (Node p = prev, s, n;;) {
849     s = (p == null) ? head : p.next;
850     if (s == null)
851     break;
852     else if (s == p) {
853     p = null;
854     continue;
855     }
856     Object item = s.item;
857     if (s.isData) {
858     if (item != null && item != s) {
859 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
860     nextItem = itemE;
861 dl 1.33 nextNode = s;
862 jsr166 1.8 return;
863     }
864 jsr166 1.34 }
865 jsr166 1.8 else if (item == null)
866     break;
867 dl 1.33 // assert s.isMatched();
868     if (p == null)
869     p = s;
870     else if ((n = s.next) == null)
871     break;
872     else if (s == n)
873     p = null;
874     else
875     p.casNext(s, n);
876 jsr166 1.1 }
877 jsr166 1.8 nextNode = null;
878 dl 1.33 nextItem = null;
879 jsr166 1.8 }
880    
881     Itr() {
882     advance(null);
883     }
884    
885     public final boolean hasNext() {
886     return nextNode != null;
887     }
888    
889     public final E next() {
890 jsr166 1.14 Node p = nextNode;
891 jsr166 1.8 if (p == null) throw new NoSuchElementException();
892     E e = nextItem;
893     advance(p);
894     return e;
895     }
896    
897     public final void remove() {
898 dl 1.33 final Node lastRet = this.lastRet;
899     if (lastRet == null)
900     throw new IllegalStateException();
901     this.lastRet = null;
902     if (lastRet.tryMatchData())
903     unsplice(lastPred, lastRet);
904 jsr166 1.1 }
905     }
906 jsr166 1.53
907 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
908 dl 1.52 static final class LTQSpliterator<E> implements Spliterator<E> {
909 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
910 dl 1.52 final LinkedTransferQueue<E> queue;
911     Node current; // current node; null until initialized
912     int batch; // batch size for splits
913     boolean exhausted; // true when no more nodes
914 jsr166 1.53 LTQSpliterator(LinkedTransferQueue<E> queue) {
915 dl 1.52 this.queue = queue;
916     }
917    
918     public Spliterator<E> trySplit() {
919 dl 1.60 Node p;
920 dl 1.52 final LinkedTransferQueue<E> q = this.queue;
921 dl 1.60 int b = batch;
922     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
923 jsr166 1.58 if (!exhausted &&
924 dl 1.54 ((p = current) != null || (p = q.firstDataNode()) != null) &&
925     p.next != null) {
926 dl 1.63 Object[] a = new Object[n];
927 dl 1.52 int i = 0;
928     do {
929     if ((a[i] = p.item) != null)
930     ++i;
931 jsr166 1.53 if (p == (p = p.next))
932 dl 1.52 p = q.firstDataNode();
933     } while (p != null && i < n);
934     if ((current = p) == null)
935     exhausted = true;
936 dl 1.60 if (i > 0) {
937     batch = i;
938     return Spliterators.spliterator
939     (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
940     Spliterator.CONCURRENT);
941     }
942 dl 1.52 }
943     return null;
944     }
945    
946     @SuppressWarnings("unchecked")
947 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
948 dl 1.52 Node p;
949     if (action == null) throw new NullPointerException();
950     final LinkedTransferQueue<E> q = this.queue;
951     if (!exhausted &&
952     ((p = current) != null || (p = q.firstDataNode()) != null)) {
953     exhausted = true;
954     do {
955     Object e = p.item;
956 jsr166 1.53 if (p == (p = p.next))
957 dl 1.52 p = q.firstDataNode();
958     if (e != null)
959     action.accept((E)e);
960     } while (p != null);
961     }
962     }
963    
964     @SuppressWarnings("unchecked")
965     public boolean tryAdvance(Consumer<? super E> action) {
966     Node p;
967     if (action == null) throw new NullPointerException();
968     final LinkedTransferQueue<E> q = this.queue;
969     if (!exhausted &&
970     ((p = current) != null || (p = q.firstDataNode()) != null)) {
971     Object e;
972     do {
973     e = p.item;
974 jsr166 1.53 if (p == (p = p.next))
975 dl 1.52 p = q.firstDataNode();
976     } while (e == null && p != null);
977     if ((current = p) == null)
978     exhausted = true;
979     if (e != null) {
980     action.accept((E)e);
981     return true;
982     }
983     }
984     return false;
985     }
986    
987 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
988    
989 dl 1.52 public int characteristics() {
990     return Spliterator.ORDERED | Spliterator.NONNULL |
991     Spliterator.CONCURRENT;
992     }
993     }
994    
995 jsr166 1.67 /**
996     * Returns a {@link Spliterator} over the elements in this queue.
997     *
998 jsr166 1.68 * <p>The returned spliterator is
999     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1000     *
1001 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1002     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1003     *
1004     * @implNote
1005     * The {@code Spliterator} implements {@code trySplit} to permit limited
1006     * parallelism.
1007     *
1008     * @return a {@code Spliterator} over the elements in this queue
1009     * @since 1.8
1010     */
1011 dl 1.56 public Spliterator<E> spliterator() {
1012 dl 1.52 return new LTQSpliterator<E>(this);
1013     }
1014    
1015 jsr166 1.8 /* -------------- Removal methods -------------- */
1016    
1017 jsr166 1.1 /**
1018 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1019     * the given predecessor.
1020 jsr166 1.1 *
1021 dl 1.16 * @param pred a node that was at one time known to be the
1022     * predecessor of s, or null or s itself if s is/was at head
1023 jsr166 1.8 * @param s the node to be unspliced
1024 jsr166 1.1 */
1025 dl 1.16 final void unsplice(Node pred, Node s) {
1026     s.forgetContents(); // forget unneeded fields
1027 jsr166 1.1 /*
1028 dl 1.16 * See above for rationale. Briefly: if pred still points to
1029     * s, try to unlink s. If s cannot be unlinked, because it is
1030     * trailing node or pred might be unlinked, and neither pred
1031     * nor s are head or offlist, add to sweepVotes, and if enough
1032     * votes have accumulated, sweep.
1033 jsr166 1.1 */
1034 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1035     Node n = s.next;
1036     if (n == null ||
1037     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1038     for (;;) { // check if at, or could be, head
1039     Node h = head;
1040     if (h == pred || h == s || h == null)
1041     return; // at head or list empty
1042     if (!h.isMatched())
1043     break;
1044     Node hn = h.next;
1045     if (hn == null)
1046     return; // now empty
1047     if (hn != h && casHead(h, hn))
1048     h.forgetNext(); // advance head
1049 jsr166 1.8 }
1050 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1051     for (;;) { // sweep now if enough votes
1052     int v = sweepVotes;
1053     if (v < SWEEP_THRESHOLD) {
1054     if (casSweepVotes(v, v + 1))
1055     break;
1056     }
1057     else if (casSweepVotes(v, 0)) {
1058     sweep();
1059     break;
1060     }
1061     }
1062 jsr166 1.12 }
1063 jsr166 1.1 }
1064     }
1065     }
1066    
1067     /**
1068 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1069     * traversal from head.
1070 jsr166 1.1 */
1071 dl 1.16 private void sweep() {
1072 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1073 jsr166 1.28 if (!s.isMatched())
1074     // Unmatched nodes are never self-linked
1075 jsr166 1.20 p = s;
1076 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1077 jsr166 1.20 break;
1078 jsr166 1.28 else if (s == n) // stale
1079     // No need to also check for p == s, since that implies s == n
1080     p = head;
1081 jsr166 1.20 else
1082 dl 1.16 p.casNext(s, n);
1083 jsr166 1.8 }
1084     }
1085    
1086     /**
1087     * Main implementation of remove(Object)
1088     */
1089     private boolean findAndRemove(Object e) {
1090     if (e != null) {
1091 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
1092 jsr166 1.8 Object item = p.item;
1093     if (p.isData) {
1094     if (item != null && item != p && e.equals(item) &&
1095     p.tryMatchData()) {
1096     unsplice(pred, p);
1097     return true;
1098     }
1099     }
1100     else if (item == null)
1101     break;
1102     pred = p;
1103 jsr166 1.11 if ((p = p.next) == pred) { // stale
1104 jsr166 1.8 pred = null;
1105     p = head;
1106     }
1107     }
1108     }
1109     return false;
1110     }
1111    
1112     /**
1113 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1114     */
1115     public LinkedTransferQueue() {
1116     }
1117    
1118     /**
1119     * Creates a {@code LinkedTransferQueue}
1120     * initially containing the elements of the given collection,
1121     * added in traversal order of the collection's iterator.
1122     *
1123     * @param c the collection of elements to initially contain
1124     * @throws NullPointerException if the specified collection or any
1125     * of its elements are null
1126     */
1127     public LinkedTransferQueue(Collection<? extends E> c) {
1128     this();
1129     addAll(c);
1130     }
1131    
1132 jsr166 1.4 /**
1133 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1134     * As the queue is unbounded, this method will never block.
1135     *
1136     * @throws NullPointerException if the specified element is null
1137 jsr166 1.4 */
1138 jsr166 1.5 public void put(E e) {
1139 jsr166 1.8 xfer(e, true, ASYNC, 0);
1140 jsr166 1.1 }
1141    
1142 jsr166 1.4 /**
1143 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1144     * As the queue is unbounded, this method will never block or
1145     * return {@code false}.
1146     *
1147     * @return {@code true} (as specified by
1148 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1149     * BlockingQueue.offer})
1150 jsr166 1.5 * @throws NullPointerException if the specified element is null
1151 jsr166 1.4 */
1152 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1153 jsr166 1.8 xfer(e, true, ASYNC, 0);
1154     return true;
1155 jsr166 1.1 }
1156    
1157 jsr166 1.4 /**
1158 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1159     * As the queue is unbounded, this method will never return {@code false}.
1160     *
1161 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1162 jsr166 1.5 * @throws NullPointerException if the specified element is null
1163 jsr166 1.4 */
1164 jsr166 1.1 public boolean offer(E e) {
1165 jsr166 1.8 xfer(e, true, ASYNC, 0);
1166 jsr166 1.1 return true;
1167     }
1168    
1169 jsr166 1.4 /**
1170 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1171     * As the queue is unbounded, this method will never throw
1172     * {@link IllegalStateException} or return {@code false}.
1173     *
1174     * @return {@code true} (as specified by {@link Collection#add})
1175     * @throws NullPointerException if the specified element is null
1176 jsr166 1.4 */
1177 jsr166 1.1 public boolean add(E e) {
1178 jsr166 1.8 xfer(e, true, ASYNC, 0);
1179     return true;
1180 jsr166 1.5 }
1181    
1182     /**
1183 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1184     *
1185     * <p>More precisely, transfers the specified element immediately
1186     * if there exists a consumer already waiting to receive it (in
1187     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1188     * otherwise returning {@code false} without enqueuing the element.
1189 jsr166 1.5 *
1190     * @throws NullPointerException if the specified element is null
1191     */
1192     public boolean tryTransfer(E e) {
1193 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1194 jsr166 1.1 }
1195    
1196 jsr166 1.4 /**
1197 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1198     *
1199     * <p>More precisely, transfers the specified element immediately
1200     * if there exists a consumer already waiting to receive it (in
1201     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1202     * else inserts the specified element at the tail of this queue
1203     * and waits until the element is received by a consumer.
1204 jsr166 1.5 *
1205     * @throws NullPointerException if the specified element is null
1206 jsr166 1.4 */
1207 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1208 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1209     Thread.interrupted(); // failure possible only due to interrupt
1210 jsr166 1.1 throw new InterruptedException();
1211     }
1212     }
1213    
1214 jsr166 1.4 /**
1215 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1216     * before the timeout elapses.
1217     *
1218     * <p>More precisely, transfers the specified element immediately
1219     * if there exists a consumer already waiting to receive it (in
1220     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1221     * else inserts the specified element at the tail of this queue
1222     * and waits until the element is received by a consumer,
1223     * returning {@code false} if the specified wait time elapses
1224     * before the element can be transferred.
1225 jsr166 1.5 *
1226     * @throws NullPointerException if the specified element is null
1227 jsr166 1.4 */
1228 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1229     throws InterruptedException {
1230 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1231 jsr166 1.1 return true;
1232     if (!Thread.interrupted())
1233     return false;
1234     throw new InterruptedException();
1235     }
1236    
1237     public E take() throws InterruptedException {
1238 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1239 jsr166 1.1 if (e != null)
1240 jsr166 1.5 return e;
1241 jsr166 1.1 Thread.interrupted();
1242     throw new InterruptedException();
1243     }
1244    
1245     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1246 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1247 jsr166 1.1 if (e != null || !Thread.interrupted())
1248 jsr166 1.5 return e;
1249 jsr166 1.1 throw new InterruptedException();
1250     }
1251    
1252     public E poll() {
1253 jsr166 1.8 return xfer(null, false, NOW, 0);
1254 jsr166 1.1 }
1255    
1256 jsr166 1.4 /**
1257     * @throws NullPointerException {@inheritDoc}
1258     * @throws IllegalArgumentException {@inheritDoc}
1259     */
1260 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1261     if (c == null)
1262     throw new NullPointerException();
1263     if (c == this)
1264     throw new IllegalArgumentException();
1265     int n = 0;
1266 jsr166 1.47 for (E e; (e = poll()) != null;) {
1267 jsr166 1.1 c.add(e);
1268     ++n;
1269     }
1270     return n;
1271     }
1272    
1273 jsr166 1.4 /**
1274     * @throws NullPointerException {@inheritDoc}
1275     * @throws IllegalArgumentException {@inheritDoc}
1276     */
1277 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1278     if (c == null)
1279     throw new NullPointerException();
1280     if (c == this)
1281     throw new IllegalArgumentException();
1282     int n = 0;
1283 jsr166 1.47 for (E e; n < maxElements && (e = poll()) != null;) {
1284 jsr166 1.1 c.add(e);
1285     ++n;
1286     }
1287     return n;
1288     }
1289    
1290 jsr166 1.5 /**
1291 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1292     * The elements will be returned in order from first (head) to last (tail).
1293 jsr166 1.5 *
1294 jsr166 1.68 * <p>The returned iterator is
1295     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1296 jsr166 1.5 *
1297     * @return an iterator over the elements in this queue in proper sequence
1298     */
1299 jsr166 1.1 public Iterator<E> iterator() {
1300     return new Itr();
1301     }
1302    
1303     public E peek() {
1304 jsr166 1.8 return firstDataItem();
1305 jsr166 1.1 }
1306    
1307 jsr166 1.6 /**
1308     * Returns {@code true} if this queue contains no elements.
1309     *
1310     * @return {@code true} if this queue contains no elements
1311     */
1312 jsr166 1.1 public boolean isEmpty() {
1313 dl 1.21 for (Node p = head; p != null; p = succ(p)) {
1314     if (!p.isMatched())
1315     return !p.isData;
1316     }
1317     return true;
1318 jsr166 1.1 }
1319    
1320     public boolean hasWaitingConsumer() {
1321 jsr166 1.8 return firstOfMode(false) != null;
1322 jsr166 1.1 }
1323    
1324     /**
1325     * Returns the number of elements in this queue. If this queue
1326     * contains more than {@code Integer.MAX_VALUE} elements, returns
1327     * {@code Integer.MAX_VALUE}.
1328     *
1329     * <p>Beware that, unlike in most collections, this method is
1330     * <em>NOT</em> a constant-time operation. Because of the
1331     * asynchronous nature of these queues, determining the current
1332     * number of elements requires an O(n) traversal.
1333     *
1334     * @return the number of elements in this queue
1335     */
1336     public int size() {
1337 jsr166 1.8 return countOfMode(true);
1338 jsr166 1.1 }
1339    
1340     public int getWaitingConsumerCount() {
1341 jsr166 1.8 return countOfMode(false);
1342 jsr166 1.1 }
1343    
1344 jsr166 1.6 /**
1345     * Removes a single instance of the specified element from this queue,
1346     * if it is present. More formally, removes an element {@code e} such
1347     * that {@code o.equals(e)}, if this queue contains one or more such
1348     * elements.
1349     * Returns {@code true} if this queue contained the specified element
1350     * (or equivalently, if this queue changed as a result of the call).
1351     *
1352     * @param o element to be removed from this queue, if present
1353     * @return {@code true} if this queue changed as a result of the call
1354     */
1355 jsr166 1.1 public boolean remove(Object o) {
1356 jsr166 1.8 return findAndRemove(o);
1357 jsr166 1.1 }
1358    
1359     /**
1360 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1361     * More formally, returns {@code true} if and only if this queue contains
1362     * at least one element {@code e} such that {@code o.equals(e)}.
1363     *
1364     * @param o object to be checked for containment in this queue
1365     * @return {@code true} if this queue contains the specified element
1366     */
1367     public boolean contains(Object o) {
1368     if (o == null) return false;
1369     for (Node p = head; p != null; p = succ(p)) {
1370     Object item = p.item;
1371     if (p.isData) {
1372     if (item != null && item != p && o.equals(item))
1373     return true;
1374     }
1375     else if (item == null)
1376     break;
1377     }
1378     return false;
1379     }
1380    
1381     /**
1382 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1383     * {@code LinkedTransferQueue} is not capacity constrained.
1384     *
1385     * @return {@code Integer.MAX_VALUE} (as specified by
1386 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1387     * BlockingQueue.remainingCapacity})
1388 jsr166 1.5 */
1389     public int remainingCapacity() {
1390     return Integer.MAX_VALUE;
1391     }
1392    
1393     /**
1394 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1395 jsr166 1.1 *
1396 jsr166 1.65 * @param s the stream
1397 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1398 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1399     * the proper order, followed by a null
1400     */
1401     private void writeObject(java.io.ObjectOutputStream s)
1402     throws java.io.IOException {
1403     s.defaultWriteObject();
1404     for (E e : this)
1405     s.writeObject(e);
1406     // Use trailing null as sentinel
1407     s.writeObject(null);
1408     }
1409    
1410     /**
1411 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1412 jsr166 1.65 * @param s the stream
1413 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1414     * could not be found
1415     * @throws java.io.IOException if an I/O error occurs
1416 jsr166 1.1 */
1417     private void readObject(java.io.ObjectInputStream s)
1418     throws java.io.IOException, ClassNotFoundException {
1419     s.defaultReadObject();
1420     for (;;) {
1421 jsr166 1.49 @SuppressWarnings("unchecked")
1422     E item = (E) s.readObject();
1423 jsr166 1.1 if (item == null)
1424     break;
1425     else
1426     offer(item);
1427     }
1428     }
1429    
1430 jsr166 1.3 // Unsafe mechanics
1431 jsr166 1.1
1432 dl 1.38 private static final sun.misc.Unsafe UNSAFE;
1433     private static final long headOffset;
1434     private static final long tailOffset;
1435     private static final long sweepVotesOffset;
1436     static {
1437 jsr166 1.1 try {
1438 dl 1.38 UNSAFE = sun.misc.Unsafe.getUnsafe();
1439 jsr166 1.43 Class<?> k = LinkedTransferQueue.class;
1440 dl 1.38 headOffset = UNSAFE.objectFieldOffset
1441     (k.getDeclaredField("head"));
1442     tailOffset = UNSAFE.objectFieldOffset
1443     (k.getDeclaredField("tail"));
1444     sweepVotesOffset = UNSAFE.objectFieldOffset
1445     (k.getDeclaredField("sweepVotes"));
1446     } catch (Exception e) {
1447     throw new Error(e);
1448 jsr166 1.1 }
1449     }
1450     }