ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.89
Committed: Thu Jun 11 16:23:03 2015 UTC (9 years ago) by dl
Branch: MAIN
Changes since 1.88: +3 -3 lines
Log Message:
Ensure only data nodes in Spliterator

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10 jsr166 1.82 import java.util.Arrays;
11 jsr166 1.1 import java.util.Collection;
12     import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.5 import java.util.Queue;
15 dl 1.52 import java.util.Spliterator;
16 dl 1.54 import java.util.Spliterators;
17 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
18     import java.util.function.Consumer;
19 dl 1.22
20 jsr166 1.1 /**
21 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
22 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
23     * to any given producer. The <em>head</em> of the queue is that
24     * element that has been on the queue the longest time for some
25     * producer. The <em>tail</em> of the queue is that element that has
26     * been on the queue the shortest time for some producer.
27     *
28 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
29     * is <em>NOT</em> a constant-time operation. Because of the
30 jsr166 1.1 * asynchronous nature of these queues, determining the current number
31 dl 1.40 * of elements requires a traversal of the elements, and so may report
32     * inaccurate results if this collection is modified during traversal.
33 dl 1.41 * Additionally, the bulk operations {@code addAll},
34     * {@code removeAll}, {@code retainAll}, {@code containsAll},
35     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
36 dl 1.40 * to be performed atomically. For example, an iterator operating
37 dl 1.41 * concurrently with an {@code addAll} operation might view only some
38 dl 1.40 * of the added elements.
39 jsr166 1.1 *
40     * <p>This class and its iterator implement all of the
41     * <em>optional</em> methods of the {@link Collection} and {@link
42     * Iterator} interfaces.
43     *
44     * <p>Memory consistency effects: As with other concurrent
45     * collections, actions in a thread prior to placing an object into a
46     * {@code LinkedTransferQueue}
47     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
48     * actions subsequent to the access or removal of that element from
49     * the {@code LinkedTransferQueue} in another thread.
50     *
51     * <p>This class is a member of the
52     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
53     * Java Collections Framework</a>.
54     *
55     * @since 1.7
56     * @author Doug Lea
57 jsr166 1.75 * @param <E> the type of elements held in this queue
58 jsr166 1.1 */
59     public class LinkedTransferQueue<E> extends AbstractQueue<E>
60     implements TransferQueue<E>, java.io.Serializable {
61     private static final long serialVersionUID = -3223113410248163686L;
62    
63     /*
64 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
65 jsr166 1.1 *
66 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
67     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
68     * (linked) queues in which nodes may represent either data or
69     * requests. When a thread tries to enqueue a data node, but
70     * encounters a request node, it instead "matches" and removes it;
71     * and vice versa for enqueuing requests. Blocking Dual Queues
72     * arrange that threads enqueuing unmatched requests block until
73     * other threads provide the match. Dual Synchronous Queues (see
74     * Scherer, Lea, & Scott
75     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
76     * additionally arrange that threads enqueuing unmatched data also
77     * block. Dual Transfer Queues support all of these modes, as
78     * dictated by callers.
79     *
80     * A FIFO dual queue may be implemented using a variation of the
81     * Michael & Scott (M&S) lock-free queue algorithm
82 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
83 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
84     * (matched) node that in turn points to the first actual
85     * (unmatched) queue node (or null if empty); and "tail" that
86     * points to the last node on the queue (or again null if
87     * empty). For example, here is a possible queue with four data
88     * elements:
89     *
90     * head tail
91     * | |
92     * v v
93     * M -> U -> U -> U -> U
94     *
95     * The M&S queue algorithm is known to be prone to scalability and
96     * overhead limitations when maintaining (via CAS) these head and
97     * tail pointers. This has led to the development of
98     * contention-reducing variants such as elimination arrays (see
99     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
100     * optimistic back pointers (see Ladan-Mozes & Shavit
101     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
102     * However, the nature of dual queues enables a simpler tactic for
103     * improving M&S-style implementations when dual-ness is needed.
104     *
105     * In a dual queue, each node must atomically maintain its match
106     * status. While there are other possible variants, we implement
107     * this here as: for a data-mode node, matching entails CASing an
108     * "item" field from a non-null data value to null upon match, and
109     * vice-versa for request nodes, CASing from null to a data
110     * value. (Note that the linearization properties of this style of
111     * queue are easy to verify -- elements are made available by
112     * linking, and unavailable by matching.) Compared to plain M&S
113     * queues, this property of dual queues requires one additional
114     * successful atomic operation per enq/deq pair. But it also
115     * enables lower cost variants of queue maintenance mechanics. (A
116     * variation of this idea applies even for non-dual queues that
117     * support deletion of interior elements, such as
118     * j.u.c.ConcurrentLinkedQueue.)
119     *
120     * Once a node is matched, its match status can never again
121     * change. We may thus arrange that the linked list of them
122     * contain a prefix of zero or more matched nodes, followed by a
123     * suffix of zero or more unmatched nodes. (Note that we allow
124     * both the prefix and suffix to be zero length, which in turn
125     * means that we do not use a dummy header.) If we were not
126     * concerned with either time or space efficiency, we could
127     * correctly perform enqueue and dequeue operations by traversing
128     * from a pointer to the initial node; CASing the item of the
129     * first unmatched node on match and CASing the next field of the
130     * trailing node on appends. (Plus some special-casing when
131     * initially empty). While this would be a terrible idea in
132     * itself, it does have the benefit of not requiring ANY atomic
133     * updates on head/tail fields.
134     *
135     * We introduce here an approach that lies between the extremes of
136     * never versus always updating queue (head and tail) pointers.
137     * This offers a tradeoff between sometimes requiring extra
138     * traversal steps to locate the first and/or last unmatched
139     * nodes, versus the reduced overhead and contention of fewer
140     * updates to queue pointers. For example, a possible snapshot of
141     * a queue is:
142     *
143     * head tail
144     * | |
145     * v v
146     * M -> M -> U -> U -> U -> U
147     *
148     * The best value for this "slack" (the targeted maximum distance
149     * between the value of "head" and the first unmatched node, and
150     * similarly for "tail") is an empirical matter. We have found
151     * that using very small constants in the range of 1-3 work best
152     * over a range of platforms. Larger values introduce increasing
153     * costs of cache misses and risks of long traversal chains, while
154     * smaller values increase CAS contention and overhead.
155     *
156     * Dual queues with slack differ from plain M&S dual queues by
157     * virtue of only sometimes updating head or tail pointers when
158     * matching, appending, or even traversing nodes; in order to
159     * maintain a targeted slack. The idea of "sometimes" may be
160     * operationalized in several ways. The simplest is to use a
161     * per-operation counter incremented on each traversal step, and
162     * to try (via CAS) to update the associated queue pointer
163     * whenever the count exceeds a threshold. Another, that requires
164     * more overhead, is to use random number generators to update
165     * with a given probability per traversal step.
166     *
167     * In any strategy along these lines, because CASes updating
168     * fields may fail, the actual slack may exceed targeted
169     * slack. However, they may be retried at any time to maintain
170     * targets. Even when using very small slack values, this
171     * approach works well for dual queues because it allows all
172     * operations up to the point of matching or appending an item
173     * (hence potentially allowing progress by another thread) to be
174     * read-only, thus not introducing any further contention. As
175     * described below, we implement this by performing slack
176     * maintenance retries only after these points.
177     *
178     * As an accompaniment to such techniques, traversal overhead can
179     * be further reduced without increasing contention of head
180     * pointer updates: Threads may sometimes shortcut the "next" link
181     * path from the current "head" node to be closer to the currently
182     * known first unmatched node, and similarly for tail. Again, this
183     * may be triggered with using thresholds or randomization.
184     *
185     * These ideas must be further extended to avoid unbounded amounts
186     * of costly-to-reclaim garbage caused by the sequential "next"
187     * links of nodes starting at old forgotten head nodes: As first
188     * described in detail by Boehm
189 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
190 jsr166 1.8 * delays noticing that any arbitrarily old node has become
191     * garbage, all newer dead nodes will also be unreclaimed.
192     * (Similar issues arise in non-GC environments.) To cope with
193     * this in our implementation, upon CASing to advance the head
194     * pointer, we set the "next" link of the previous head to point
195     * only to itself; thus limiting the length of connected dead lists.
196     * (We also take similar care to wipe out possibly garbage
197     * retaining values held in other Node fields.) However, doing so
198     * adds some further complexity to traversal: If any "next"
199     * pointer links to itself, it indicates that the current thread
200     * has lagged behind a head-update, and so the traversal must
201     * continue from the "head". Traversals trying to find the
202     * current tail starting from "tail" may also encounter
203     * self-links, in which case they also continue at "head".
204     *
205     * It is tempting in slack-based scheme to not even use CAS for
206     * updates (similarly to Ladan-Mozes & Shavit). However, this
207     * cannot be done for head updates under the above link-forgetting
208     * mechanics because an update may leave head at a detached node.
209     * And while direct writes are possible for tail updates, they
210     * increase the risk of long retraversals, and hence long garbage
211     * chains, which can be much more costly than is worthwhile
212     * considering that the cost difference of performing a CAS vs
213     * write is smaller when they are not triggered on each operation
214     * (especially considering that writes and CASes equally require
215     * additional GC bookkeeping ("write barriers") that are sometimes
216     * more costly than the writes themselves because of contention).
217     *
218     * *** Overview of implementation ***
219     *
220     * We use a threshold-based approach to updates, with a slack
221     * threshold of two -- that is, we update head/tail when the
222     * current pointer appears to be two or more steps away from the
223     * first/last node. The slack value is hard-wired: a path greater
224     * than one is naturally implemented by checking equality of
225     * traversal pointers except when the list has only one element,
226     * in which case we keep slack threshold at one. Avoiding tracking
227     * explicit counts across method calls slightly simplifies an
228     * already-messy implementation. Using randomization would
229     * probably work better if there were a low-quality dirt-cheap
230     * per-thread one available, but even ThreadLocalRandom is too
231     * heavy for these purposes.
232     *
233 dl 1.16 * With such a small slack threshold value, it is not worthwhile
234     * to augment this with path short-circuiting (i.e., unsplicing
235     * interior nodes) except in the case of cancellation/removal (see
236     * below).
237 jsr166 1.8 *
238     * We allow both the head and tail fields to be null before any
239     * nodes are enqueued; initializing upon first append. This
240     * simplifies some other logic, as well as providing more
241     * efficient explicit control paths instead of letting JVMs insert
242     * implicit NullPointerExceptions when they are null. While not
243     * currently fully implemented, we also leave open the possibility
244     * of re-nulling these fields when empty (which is complicated to
245     * arrange, for little benefit.)
246     *
247     * All enqueue/dequeue operations are handled by the single method
248     * "xfer" with parameters indicating whether to act as some form
249     * of offer, put, poll, take, or transfer (each possibly with
250     * timeout). The relative complexity of using one monolithic
251     * method outweighs the code bulk and maintenance problems of
252     * using separate methods for each case.
253     *
254     * Operation consists of up to three phases. The first is
255     * implemented within method xfer, the second in tryAppend, and
256     * the third in method awaitMatch.
257     *
258     * 1. Try to match an existing node
259     *
260     * Starting at head, skip already-matched nodes until finding
261     * an unmatched node of opposite mode, if one exists, in which
262     * case matching it and returning, also if necessary updating
263     * head to one past the matched node (or the node itself if the
264     * list has no other unmatched nodes). If the CAS misses, then
265     * a loop retries advancing head by two steps until either
266     * success or the slack is at most two. By requiring that each
267     * attempt advances head by two (if applicable), we ensure that
268     * the slack does not grow without bound. Traversals also check
269     * if the initial head is now off-list, in which case they
270     * start at the new head.
271     *
272     * If no candidates are found and the call was untimed
273     * poll/offer, (argument "how" is NOW) return.
274     *
275     * 2. Try to append a new node (method tryAppend)
276     *
277     * Starting at current tail pointer, find the actual last node
278     * and try to append a new node (or if head was null, establish
279     * the first node). Nodes can be appended only if their
280     * predecessors are either already matched or are of the same
281     * mode. If we detect otherwise, then a new node with opposite
282     * mode must have been appended during traversal, so we must
283     * restart at phase 1. The traversal and update steps are
284     * otherwise similar to phase 1: Retrying upon CAS misses and
285     * checking for staleness. In particular, if a self-link is
286     * encountered, then we can safely jump to a node on the list
287     * by continuing the traversal at current head.
288     *
289     * On successful append, if the call was ASYNC, return.
290     *
291     * 3. Await match or cancellation (method awaitMatch)
292     *
293     * Wait for another thread to match node; instead cancelling if
294     * the current thread was interrupted or the wait timed out. On
295     * multiprocessors, we use front-of-queue spinning: If a node
296     * appears to be the first unmatched node in the queue, it
297     * spins a bit before blocking. In either case, before blocking
298     * it tries to unsplice any nodes between the current "head"
299     * and the first unmatched node.
300     *
301     * Front-of-queue spinning vastly improves performance of
302     * heavily contended queues. And so long as it is relatively
303     * brief and "quiet", spinning does not much impact performance
304     * of less-contended queues. During spins threads check their
305     * interrupt status and generate a thread-local random number
306     * to decide to occasionally perform a Thread.yield. While
307 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
308 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
309 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
310     * not known to be front but whose predecessors have not
311     * blocked -- these "chained" spins avoid artifacts of
312     * front-of-queue rules which otherwise lead to alternating
313     * nodes spinning vs blocking. Further, front threads that
314     * represent phase changes (from data to request node or vice
315     * versa) compared to their predecessors receive additional
316     * chained spins, reflecting longer paths typically required to
317     * unblock threads during phase changes.
318 dl 1.16 *
319     *
320     * ** Unlinking removed interior nodes **
321     *
322     * In addition to minimizing garbage retention via self-linking
323     * described above, we also unlink removed interior nodes. These
324     * may arise due to timed out or interrupted waits, or calls to
325     * remove(x) or Iterator.remove. Normally, given a node that was
326     * at one time known to be the predecessor of some node s that is
327     * to be removed, we can unsplice s by CASing the next field of
328     * its predecessor if it still points to s (otherwise s must
329     * already have been removed or is now offlist). But there are two
330     * situations in which we cannot guarantee to make node s
331     * unreachable in this way: (1) If s is the trailing node of list
332     * (i.e., with null next), then it is pinned as the target node
333 jsr166 1.23 * for appends, so can only be removed later after other nodes are
334 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
335     * predecessor node that is matched (including the case of being
336 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
337     * case some previous reachable node may still point to s.
338     * (For further explanation see Herlihy & Shavit "The Art of
339 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
340     * cases, we can rule out the need for further action if either s
341     * or its predecessor are (or can be made to be) at, or fall off
342     * from, the head of list.
343     *
344     * Without taking these into account, it would be possible for an
345     * unbounded number of supposedly removed nodes to remain
346     * reachable. Situations leading to such buildup are uncommon but
347     * can occur in practice; for example when a series of short timed
348     * calls to poll repeatedly time out but never otherwise fall off
349     * the list because of an untimed call to take at the front of the
350     * queue.
351     *
352     * When these cases arise, rather than always retraversing the
353     * entire list to find an actual predecessor to unlink (which
354     * won't help for case (1) anyway), we record a conservative
355 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
356     * We trigger a full sweep when the estimate exceeds a threshold
357     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
358     * removal failures to tolerate before sweeping through, unlinking
359     * cancelled nodes that were not unlinked upon initial removal.
360     * We perform sweeps by the thread hitting threshold (rather than
361     * background threads or by spreading work to other threads)
362     * because in the main contexts in which removal occurs, the
363     * caller is already timed-out, cancelled, or performing a
364     * potentially O(n) operation (e.g. remove(x)), none of which are
365     * time-critical enough to warrant the overhead that alternatives
366     * would impose on other threads.
367 dl 1.16 *
368     * Because the sweepVotes estimate is conservative, and because
369     * nodes become unlinked "naturally" as they fall off the head of
370     * the queue, and because we allow votes to accumulate even while
371 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
372 dl 1.16 * such nodes than estimated. Choice of a threshold value
373     * balances the likelihood of wasted effort and contention, versus
374     * providing a worst-case bound on retention of interior nodes in
375     * quiescent queues. The value defined below was chosen
376     * empirically to balance these under various timeout scenarios.
377     *
378     * Note that we cannot self-link unlinked interior nodes during
379     * sweeps. However, the associated garbage chains terminate when
380     * some successor ultimately falls off the head of the list and is
381     * self-linked.
382 jsr166 1.8 */
383    
384     /** True if on multiprocessor */
385     private static final boolean MP =
386     Runtime.getRuntime().availableProcessors() > 1;
387    
388     /**
389     * The number of times to spin (with randomly interspersed calls
390     * to Thread.yield) on multiprocessor before blocking when a node
391     * is apparently the first waiter in the queue. See above for
392     * explanation. Must be a power of two. The value is empirically
393     * derived -- it works pretty well across a variety of processors,
394     * numbers of CPUs, and OSes.
395     */
396     private static final int FRONT_SPINS = 1 << 7;
397    
398     /**
399     * The number of times to spin before blocking when a node is
400     * preceded by another node that is apparently spinning. Also
401     * serves as an increment to FRONT_SPINS on phase changes, and as
402     * base average frequency for yielding during spins. Must be a
403     * power of two.
404     */
405     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
406    
407     /**
408 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
409     * to tolerate before sweeping through the queue unlinking
410     * cancelled nodes that were not unlinked upon initial
411     * removal. See above for explanation. The value must be at least
412     * two to avoid useless sweeps when removing trailing nodes.
413     */
414     static final int SWEEP_THRESHOLD = 32;
415    
416     /**
417 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
418     * them after use. Relies heavily on Unsafe mechanics to minimize
419 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
420     * ordered wrt other accesses or CASes use simple relaxed forms.
421 jsr166 1.8 */
422 jsr166 1.14 static final class Node {
423 jsr166 1.8 final boolean isData; // false if this is a request node
424     volatile Object item; // initially non-null if isData; CASed to match
425 jsr166 1.14 volatile Node next;
426 jsr166 1.8 volatile Thread waiter; // null until waiting
427    
428     // CAS methods for fields
429 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
430 jsr166 1.80 return U.compareAndSwapObject(this, NEXT, cmp, val);
431 jsr166 1.8 }
432 jsr166 1.1
433 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
434 dl 1.33 // assert cmp == null || cmp.getClass() != Node.class;
435 jsr166 1.80 return U.compareAndSwapObject(this, ITEM, cmp, val);
436 jsr166 1.8 }
437 jsr166 1.1
438 jsr166 1.8 /**
439 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
440     * only be seen after publication via casNext.
441 jsr166 1.8 */
442 jsr166 1.14 Node(Object item, boolean isData) {
443 jsr166 1.80 U.putObject(this, ITEM, item); // relaxed write
444 jsr166 1.8 this.isData = isData;
445     }
446 jsr166 1.1
447 jsr166 1.8 /**
448     * Links node to itself to avoid garbage retention. Called
449     * only after CASing head field, so uses relaxed write.
450     */
451     final void forgetNext() {
452 jsr166 1.80 U.putObject(this, NEXT, this);
453 jsr166 1.8 }
454 jsr166 1.1
455 jsr166 1.8 /**
456 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
457     * retention after matching or cancelling. Uses relaxed writes
458 dl 1.22 * because order is already constrained in the only calling
459 dl 1.16 * contexts: item is forgotten only after volatile/atomic
460     * mechanics that extract items. Similarly, clearing waiter
461     * follows either CAS or return from park (if ever parked;
462     * else we don't care).
463 jsr166 1.8 */
464     final void forgetContents() {
465 jsr166 1.80 U.putObject(this, ITEM, this);
466     U.putObject(this, WAITER, null);
467 jsr166 1.8 }
468 jsr166 1.1
469 jsr166 1.8 /**
470     * Returns true if this node has been matched, including the
471     * case of artificial matches due to cancellation.
472     */
473     final boolean isMatched() {
474     Object x = item;
475 jsr166 1.11 return (x == this) || ((x == null) == isData);
476     }
477    
478     /**
479     * Returns true if this is an unmatched request node.
480     */
481     final boolean isUnmatchedRequest() {
482     return !isData && item == null;
483 jsr166 1.8 }
484 jsr166 1.1
485 jsr166 1.8 /**
486     * Returns true if a node with the given mode cannot be
487     * appended to this node because this node is unmatched and
488     * has opposite data mode.
489     */
490     final boolean cannotPrecede(boolean haveData) {
491     boolean d = isData;
492     Object x;
493     return d != haveData && (x = item) != this && (x != null) == d;
494     }
495 jsr166 1.1
496 jsr166 1.8 /**
497     * Tries to artificially match a data node -- used by remove.
498     */
499     final boolean tryMatchData() {
500 dl 1.33 // assert isData;
501 jsr166 1.8 Object x = item;
502     if (x != null && x != this && casItem(x, null)) {
503     LockSupport.unpark(waiter);
504     return true;
505     }
506     return false;
507 jsr166 1.1 }
508    
509 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
510    
511 jsr166 1.4 // Unsafe mechanics
512 jsr166 1.80 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
513     private static final long ITEM;
514     private static final long NEXT;
515     private static final long WAITER;
516 dl 1.38 static {
517     try {
518 jsr166 1.80 ITEM = U.objectFieldOffset
519     (Node.class.getDeclaredField("item"));
520     NEXT = U.objectFieldOffset
521     (Node.class.getDeclaredField("next"));
522     WAITER = U.objectFieldOffset
523     (Node.class.getDeclaredField("waiter"));
524 jsr166 1.79 } catch (ReflectiveOperationException e) {
525 dl 1.38 throw new Error(e);
526     }
527     }
528 jsr166 1.1 }
529    
530 jsr166 1.8 /** head of the queue; null until first enqueue */
531 jsr166 1.14 transient volatile Node head;
532 jsr166 1.8
533     /** tail of the queue; null until first append */
534 jsr166 1.14 private transient volatile Node tail;
535 jsr166 1.1
536 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
537     private transient volatile int sweepVotes;
538    
539 jsr166 1.8 // CAS methods for fields
540 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
541 jsr166 1.80 return U.compareAndSwapObject(this, TAIL, cmp, val);
542 jsr166 1.8 }
543 jsr166 1.1
544 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
545 jsr166 1.80 return U.compareAndSwapObject(this, HEAD, cmp, val);
546 jsr166 1.8 }
547 jsr166 1.1
548 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
549 jsr166 1.80 return U.compareAndSwapInt(this, SWEEPVOTES, cmp, val);
550 jsr166 1.8 }
551 jsr166 1.1
552 jsr166 1.8 /*
553 jsr166 1.14 * Possible values for "how" argument in xfer method.
554 jsr166 1.1 */
555 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
556     private static final int ASYNC = 1; // for offer, put, add
557     private static final int SYNC = 2; // for transfer, take
558     private static final int TIMED = 3; // for timed poll, tryTransfer
559 jsr166 1.1
560     /**
561 jsr166 1.8 * Implements all queuing methods. See above for explanation.
562 jsr166 1.1 *
563 jsr166 1.8 * @param e the item or null for take
564     * @param haveData true if this is a put, else a take
565 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
566     * @param nanos timeout in nanosecs, used only if mode is TIMED
567 jsr166 1.8 * @return an item if matched, else e
568     * @throws NullPointerException if haveData mode but e is null
569 jsr166 1.1 */
570 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
571     if (haveData && (e == null))
572     throw new NullPointerException();
573 jsr166 1.14 Node s = null; // the node to append, if needed
574 jsr166 1.1
575 jsr166 1.29 retry:
576     for (;;) { // restart on append race
577 jsr166 1.1
578 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
579 jsr166 1.8 boolean isData = p.isData;
580     Object item = p.item;
581     if (item != p && (item != null) == isData) { // unmatched
582     if (isData == haveData) // can't match
583     break;
584     if (p.casItem(item, e)) { // match
585 jsr166 1.14 for (Node q = p; q != h;) {
586 dl 1.16 Node n = q.next; // update by 2 unless singleton
587 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
588 jsr166 1.8 h.forgetNext();
589     break;
590     } // advance and retry
591     if ((h = head) == null ||
592     (q = h.next) == null || !q.isMatched())
593     break; // unless slack < 2
594     }
595     LockSupport.unpark(p.waiter);
596 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
597     return itemE;
598 jsr166 1.1 }
599     }
600 jsr166 1.14 Node n = p.next;
601 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
602     }
603    
604 jsr166 1.14 if (how != NOW) { // No matches available
605 jsr166 1.8 if (s == null)
606 jsr166 1.14 s = new Node(e, haveData);
607     Node pred = tryAppend(s, haveData);
608 jsr166 1.8 if (pred == null)
609     continue retry; // lost race vs opposite mode
610 jsr166 1.14 if (how != ASYNC)
611     return awaitMatch(s, pred, e, (how == TIMED), nanos);
612 jsr166 1.1 }
613 jsr166 1.8 return e; // not waiting
614 jsr166 1.1 }
615     }
616    
617     /**
618 jsr166 1.8 * Tries to append node s as tail.
619     *
620     * @param s the node to append
621     * @param haveData true if appending in data mode
622     * @return null on failure due to losing race with append in
623     * different mode, else s's predecessor, or s itself if no
624     * predecessor
625 jsr166 1.1 */
626 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
627     for (Node t = tail, p = t;;) { // move p to last node and append
628     Node n, u; // temps for reads of next & tail
629 jsr166 1.8 if (p == null && (p = head) == null) {
630     if (casHead(null, s))
631     return s; // initialize
632     }
633     else if (p.cannotPrecede(haveData))
634     return null; // lost race vs opposite mode
635     else if ((n = p.next) != null) // not last; keep traversing
636     p = p != t && t != (u = tail) ? (t = u) : // stale tail
637     (p != n) ? n : null; // restart if off list
638     else if (!p.casNext(null, s))
639     p = p.next; // re-read on CAS failure
640     else {
641     if (p != t) { // update if slack now >= 2
642     while ((tail != t || !casTail(t, s)) &&
643     (t = tail) != null &&
644     (s = t.next) != null && // advance and retry
645     (s = s.next) != null && s != t);
646 jsr166 1.1 }
647 jsr166 1.8 return p;
648 jsr166 1.1 }
649     }
650     }
651    
652     /**
653 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
654 jsr166 1.1 *
655     * @param s the waiting node
656 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
657     * predecessor, or null if unknown (the null case does not occur
658     * in any current calls but may in possible future extensions)
659 jsr166 1.1 * @param e the comparison value for checking match
660 jsr166 1.14 * @param timed if true, wait only until timeout elapses
661     * @param nanos timeout in nanosecs, used only if timed is true
662 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
663 jsr166 1.1 */
664 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
665 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
666 jsr166 1.8 Thread w = Thread.currentThread();
667     int spins = -1; // initialized after first item and cancel checks
668     ThreadLocalRandom randomYields = null; // bound if needed
669 jsr166 1.1
670     for (;;) {
671 jsr166 1.8 Object item = s.item;
672     if (item != e) { // matched
673 dl 1.33 // assert item != s;
674 jsr166 1.8 s.forgetContents(); // avoid garbage
675 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
676     return itemE;
677 jsr166 1.8 }
678 dl 1.71 else if (w.isInterrupted() || (timed && nanos <= 0)) {
679 dl 1.84 unsplice(pred, s); // try to unlink and cancel
680     if (s.casItem(e, s)) // return normally if lost CAS
681 jsr166 1.77 return e;
682 jsr166 1.8 }
683 dl 1.84 else if (spins < 0) { // establish spins at/near front
684 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
685     randomYields = ThreadLocalRandom.current();
686     }
687     else if (spins > 0) { // spin
688 dl 1.16 --spins;
689     if (randomYields.nextInt(CHAINED_SPINS) == 0)
690 jsr166 1.8 Thread.yield(); // occasionally yield
691     }
692     else if (s.waiter == null) {
693     s.waiter = w; // request unpark then recheck
694 jsr166 1.1 }
695 jsr166 1.14 else if (timed) {
696 jsr166 1.51 nanos = deadline - System.nanoTime();
697     if (nanos > 0L)
698 jsr166 1.8 LockSupport.parkNanos(this, nanos);
699 jsr166 1.1 }
700 jsr166 1.8 else {
701 jsr166 1.1 LockSupport.park(this);
702     }
703 jsr166 1.8 }
704     }
705    
706     /**
707     * Returns spin/yield value for a node with given predecessor and
708     * data mode. See above for explanation.
709     */
710 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
711 jsr166 1.8 if (MP && pred != null) {
712     if (pred.isData != haveData) // phase change
713     return FRONT_SPINS + CHAINED_SPINS;
714     if (pred.isMatched()) // probably at front
715     return FRONT_SPINS;
716     if (pred.waiter == null) // pred apparently spinning
717     return CHAINED_SPINS;
718     }
719     return 0;
720     }
721    
722     /* -------------- Traversal methods -------------- */
723    
724     /**
725 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
726     * linked to self, which will only be true if traversing with a
727     * stale pointer that is now off the list.
728     */
729     final Node succ(Node p) {
730     Node next = p.next;
731     return (p == next) ? head : next;
732     }
733    
734     /**
735 jsr166 1.8 * Returns the first unmatched node of the given mode, or null if
736     * none. Used by methods isEmpty, hasWaitingConsumer.
737     */
738 jsr166 1.14 private Node firstOfMode(boolean isData) {
739     for (Node p = head; p != null; p = succ(p)) {
740 jsr166 1.8 if (!p.isMatched())
741 jsr166 1.14 return (p.isData == isData) ? p : null;
742 jsr166 1.8 }
743     return null;
744     }
745    
746     /**
747 dl 1.88 * Version of firstOfMode used by Spliterator. Callers must
748     * recheck if the returned node's item field is null or
749     * self-linked before using.
750 dl 1.52 */
751     final Node firstDataNode() {
752     for (Node p = head; p != null;) {
753     Object item = p.item;
754     if (p.isData) {
755     if (item != null && item != p)
756     return p;
757     }
758     else if (item == null)
759     break;
760     if (p == (p = p.next))
761     p = head;
762     }
763     return null;
764     }
765    
766     /**
767 jsr166 1.8 * Returns the item in the first unmatched node with isData; or
768     * null if none. Used by peek.
769     */
770     private E firstDataItem() {
771 jsr166 1.14 for (Node p = head; p != null; p = succ(p)) {
772 jsr166 1.8 Object item = p.item;
773 jsr166 1.14 if (p.isData) {
774 jsr166 1.70 if (item != null && item != p) {
775     @SuppressWarnings("unchecked") E itemE = (E) item;
776     return itemE;
777     }
778 jsr166 1.14 }
779     else if (item == null)
780     return null;
781 jsr166 1.8 }
782     return null;
783     }
784    
785 jsr166 1.1 /**
786 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
787     * Used by methods size and getWaitingConsumerCount.
788 jsr166 1.1 */
789 jsr166 1.8 private int countOfMode(boolean data) {
790 jsr166 1.73 restartFromHead: for (;;) {
791     int count = 0;
792     for (Node p = head; p != null;) {
793     if (!p.isMatched()) {
794     if (p.isData != data)
795     return 0;
796     if (++count == Integer.MAX_VALUE)
797     break; // @see Collection.size()
798     }
799 jsr166 1.81 if (p == (p = p.next))
800 jsr166 1.73 continue restartFromHead;
801 jsr166 1.1 }
802 jsr166 1.73 return count;
803 jsr166 1.8 }
804     }
805    
806 jsr166 1.82 public String toString() {
807     String[] a = null;
808     restartFromHead: for (;;) {
809     int charLength = 0;
810     int size = 0;
811     for (Node p = head; p != null;) {
812     Object item = p.item;
813     if (p.isData) {
814     if (item != null && item != p) {
815     if (a == null)
816     a = new String[4];
817     else if (size == a.length)
818     a = Arrays.copyOf(a, 2 * size);
819     String s = item.toString();
820     a[size++] = s;
821     charLength += s.length();
822     }
823     } else if (item == null)
824     break;
825     if (p == (p = p.next))
826     continue restartFromHead;
827     }
828    
829     if (size == 0)
830     return "[]";
831    
832 jsr166 1.83 return Helpers.toString(a, size, charLength);
833 jsr166 1.82 }
834     }
835    
836     private Object[] toArrayInternal(Object[] a) {
837     Object[] x = a;
838     restartFromHead: for (;;) {
839     int size = 0;
840     for (Node p = head; p != null;) {
841     Object item = p.item;
842     if (p.isData) {
843     if (item != null && item != p) {
844     if (x == null)
845     x = new Object[4];
846     else if (size == x.length)
847     x = Arrays.copyOf(x, 2 * (size + 4));
848     x[size++] = item;
849     }
850     } else if (item == null)
851     break;
852     if (p == (p = p.next))
853     continue restartFromHead;
854     }
855     if (x == null)
856     return new Object[0];
857     else if (a != null && size <= a.length) {
858     if (a != x)
859     System.arraycopy(x, 0, a, 0, size);
860     if (size < a.length)
861     a[size] = null;
862     return a;
863     }
864     return (size == x.length) ? x : Arrays.copyOf(x, size);
865     }
866     }
867    
868     /**
869     * Returns an array containing all of the elements in this queue, in
870     * proper sequence.
871     *
872     * <p>The returned array will be "safe" in that no references to it are
873     * maintained by this queue. (In other words, this method must allocate
874     * a new array). The caller is thus free to modify the returned array.
875     *
876     * <p>This method acts as bridge between array-based and collection-based
877     * APIs.
878     *
879     * @return an array containing all of the elements in this queue
880     */
881     public Object[] toArray() {
882     return toArrayInternal(null);
883     }
884    
885     /**
886     * Returns an array containing all of the elements in this queue, in
887     * proper sequence; the runtime type of the returned array is that of
888     * the specified array. If the queue fits in the specified array, it
889     * is returned therein. Otherwise, a new array is allocated with the
890     * runtime type of the specified array and the size of this queue.
891     *
892     * <p>If this queue fits in the specified array with room to spare
893     * (i.e., the array has more elements than this queue), the element in
894     * the array immediately following the end of the queue is set to
895     * {@code null}.
896     *
897     * <p>Like the {@link #toArray()} method, this method acts as bridge between
898     * array-based and collection-based APIs. Further, this method allows
899     * precise control over the runtime type of the output array, and may,
900     * under certain circumstances, be used to save allocation costs.
901     *
902     * <p>Suppose {@code x} is a queue known to contain only strings.
903     * The following code can be used to dump the queue into a newly
904     * allocated array of {@code String}:
905     *
906     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
907     *
908     * Note that {@code toArray(new Object[0])} is identical in function to
909     * {@code toArray()}.
910     *
911     * @param a the array into which the elements of the queue are to
912     * be stored, if it is big enough; otherwise, a new array of the
913     * same runtime type is allocated for this purpose
914     * @return an array containing all of the elements in this queue
915     * @throws ArrayStoreException if the runtime type of the specified array
916     * is not a supertype of the runtime type of every element in
917     * this queue
918     * @throws NullPointerException if the specified array is null
919     */
920     @SuppressWarnings("unchecked")
921     public <T> T[] toArray(T[] a) {
922     if (a == null) throw new NullPointerException();
923     return (T[]) toArrayInternal(a);
924     }
925    
926 jsr166 1.8 final class Itr implements Iterator<E> {
927 jsr166 1.14 private Node nextNode; // next node to return item for
928     private E nextItem; // the corresponding item
929     private Node lastRet; // last returned node, to support remove
930     private Node lastPred; // predecessor to unlink lastRet
931 jsr166 1.8
932     /**
933     * Moves to next node after prev, or first node if prev null.
934     */
935 jsr166 1.14 private void advance(Node prev) {
936 dl 1.33 /*
937     * To track and avoid buildup of deleted nodes in the face
938     * of calls to both Queue.remove and Itr.remove, we must
939     * include variants of unsplice and sweep upon each
940     * advance: Upon Itr.remove, we may need to catch up links
941     * from lastPred, and upon other removes, we might need to
942     * skip ahead from stale nodes and unsplice deleted ones
943     * found while advancing.
944     */
945    
946     Node r, b; // reset lastPred upon possible deletion of lastRet
947     if ((r = lastRet) != null && !r.isMatched())
948     lastPred = r; // next lastPred is old lastRet
949     else if ((b = lastPred) == null || b.isMatched())
950     lastPred = null; // at start of list
951 jsr166 1.34 else {
952 dl 1.33 Node s, n; // help with removal of lastPred.next
953     while ((s = b.next) != null &&
954     s != b && s.isMatched() &&
955     (n = s.next) != null && n != s)
956     b.casNext(s, n);
957     }
958    
959     this.lastRet = prev;
960 jsr166 1.35
961 dl 1.33 for (Node p = prev, s, n;;) {
962     s = (p == null) ? head : p.next;
963     if (s == null)
964     break;
965     else if (s == p) {
966     p = null;
967     continue;
968     }
969     Object item = s.item;
970     if (s.isData) {
971     if (item != null && item != s) {
972 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
973     nextItem = itemE;
974 dl 1.33 nextNode = s;
975 jsr166 1.8 return;
976     }
977 jsr166 1.34 }
978 jsr166 1.8 else if (item == null)
979     break;
980 dl 1.33 // assert s.isMatched();
981     if (p == null)
982     p = s;
983     else if ((n = s.next) == null)
984     break;
985     else if (s == n)
986     p = null;
987     else
988     p.casNext(s, n);
989 jsr166 1.1 }
990 jsr166 1.8 nextNode = null;
991 dl 1.33 nextItem = null;
992 jsr166 1.8 }
993    
994     Itr() {
995     advance(null);
996     }
997    
998     public final boolean hasNext() {
999     return nextNode != null;
1000     }
1001    
1002     public final E next() {
1003 jsr166 1.14 Node p = nextNode;
1004 jsr166 1.8 if (p == null) throw new NoSuchElementException();
1005     E e = nextItem;
1006     advance(p);
1007     return e;
1008     }
1009    
1010     public final void remove() {
1011 dl 1.33 final Node lastRet = this.lastRet;
1012     if (lastRet == null)
1013     throw new IllegalStateException();
1014     this.lastRet = null;
1015     if (lastRet.tryMatchData())
1016     unsplice(lastPred, lastRet);
1017 jsr166 1.1 }
1018     }
1019 jsr166 1.53
1020 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1021 dl 1.52 static final class LTQSpliterator<E> implements Spliterator<E> {
1022 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1023 dl 1.52 final LinkedTransferQueue<E> queue;
1024 jsr166 1.87 Node current; // current node; null until initialized
1025 dl 1.52 int batch; // batch size for splits
1026     boolean exhausted; // true when no more nodes
1027 jsr166 1.53 LTQSpliterator(LinkedTransferQueue<E> queue) {
1028 dl 1.52 this.queue = queue;
1029     }
1030    
1031     public Spliterator<E> trySplit() {
1032 dl 1.60 Node p;
1033 dl 1.52 final LinkedTransferQueue<E> q = this.queue;
1034 dl 1.60 int b = batch;
1035     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1036 jsr166 1.58 if (!exhausted &&
1037 dl 1.54 ((p = current) != null || (p = q.firstDataNode()) != null) &&
1038     p.next != null) {
1039 dl 1.63 Object[] a = new Object[n];
1040 dl 1.52 int i = 0;
1041     do {
1042 dl 1.88 Object e = p.item;
1043     if (e != p && (a[i] = e) != null)
1044 dl 1.52 ++i;
1045 jsr166 1.53 if (p == (p = p.next))
1046 dl 1.52 p = q.firstDataNode();
1047 dl 1.89 } while (p != null && i < n && p.isData);
1048 dl 1.52 if ((current = p) == null)
1049     exhausted = true;
1050 dl 1.60 if (i > 0) {
1051     batch = i;
1052     return Spliterators.spliterator
1053 jsr166 1.86 (a, 0, i, (Spliterator.ORDERED |
1054     Spliterator.NONNULL |
1055     Spliterator.CONCURRENT));
1056 dl 1.60 }
1057 dl 1.52 }
1058     return null;
1059     }
1060    
1061     @SuppressWarnings("unchecked")
1062 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1063 dl 1.52 Node p;
1064     if (action == null) throw new NullPointerException();
1065     final LinkedTransferQueue<E> q = this.queue;
1066     if (!exhausted &&
1067     ((p = current) != null || (p = q.firstDataNode()) != null)) {
1068     exhausted = true;
1069     do {
1070     Object e = p.item;
1071 dl 1.88 if (e != null && e != p)
1072     action.accept((E)e);
1073 jsr166 1.53 if (p == (p = p.next))
1074 dl 1.52 p = q.firstDataNode();
1075 dl 1.89 } while (p != null && p.isData);
1076 dl 1.52 }
1077     }
1078    
1079     @SuppressWarnings("unchecked")
1080     public boolean tryAdvance(Consumer<? super E> action) {
1081     Node p;
1082     if (action == null) throw new NullPointerException();
1083     final LinkedTransferQueue<E> q = this.queue;
1084     if (!exhausted &&
1085     ((p = current) != null || (p = q.firstDataNode()) != null)) {
1086     Object e;
1087     do {
1088 dl 1.88 if ((e = p.item) == p)
1089     e = null;
1090 jsr166 1.53 if (p == (p = p.next))
1091 dl 1.52 p = q.firstDataNode();
1092 dl 1.89 } while (e == null && p != null && p.isData);
1093 dl 1.52 if ((current = p) == null)
1094     exhausted = true;
1095     if (e != null) {
1096     action.accept((E)e);
1097     return true;
1098     }
1099     }
1100     return false;
1101     }
1102    
1103 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1104    
1105 dl 1.52 public int characteristics() {
1106     return Spliterator.ORDERED | Spliterator.NONNULL |
1107     Spliterator.CONCURRENT;
1108     }
1109     }
1110    
1111 jsr166 1.67 /**
1112     * Returns a {@link Spliterator} over the elements in this queue.
1113     *
1114 jsr166 1.68 * <p>The returned spliterator is
1115     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1116     *
1117 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1118     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1119     *
1120     * @implNote
1121     * The {@code Spliterator} implements {@code trySplit} to permit limited
1122     * parallelism.
1123     *
1124     * @return a {@code Spliterator} over the elements in this queue
1125     * @since 1.8
1126     */
1127 dl 1.56 public Spliterator<E> spliterator() {
1128 dl 1.52 return new LTQSpliterator<E>(this);
1129     }
1130    
1131 jsr166 1.8 /* -------------- Removal methods -------------- */
1132    
1133 jsr166 1.1 /**
1134 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1135     * the given predecessor.
1136 jsr166 1.1 *
1137 dl 1.16 * @param pred a node that was at one time known to be the
1138     * predecessor of s, or null or s itself if s is/was at head
1139 jsr166 1.8 * @param s the node to be unspliced
1140 jsr166 1.1 */
1141 dl 1.16 final void unsplice(Node pred, Node s) {
1142 dl 1.71 s.waiter = null; // disable signals
1143 jsr166 1.1 /*
1144 dl 1.16 * See above for rationale. Briefly: if pred still points to
1145     * s, try to unlink s. If s cannot be unlinked, because it is
1146     * trailing node or pred might be unlinked, and neither pred
1147     * nor s are head or offlist, add to sweepVotes, and if enough
1148     * votes have accumulated, sweep.
1149 jsr166 1.1 */
1150 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1151     Node n = s.next;
1152     if (n == null ||
1153     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1154     for (;;) { // check if at, or could be, head
1155     Node h = head;
1156     if (h == pred || h == s || h == null)
1157     return; // at head or list empty
1158     if (!h.isMatched())
1159     break;
1160     Node hn = h.next;
1161     if (hn == null)
1162     return; // now empty
1163     if (hn != h && casHead(h, hn))
1164     h.forgetNext(); // advance head
1165 jsr166 1.8 }
1166 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1167     for (;;) { // sweep now if enough votes
1168     int v = sweepVotes;
1169     if (v < SWEEP_THRESHOLD) {
1170     if (casSweepVotes(v, v + 1))
1171     break;
1172     }
1173     else if (casSweepVotes(v, 0)) {
1174     sweep();
1175     break;
1176     }
1177     }
1178 jsr166 1.12 }
1179 jsr166 1.1 }
1180     }
1181     }
1182    
1183     /**
1184 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1185     * traversal from head.
1186 jsr166 1.1 */
1187 dl 1.16 private void sweep() {
1188 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1189 jsr166 1.28 if (!s.isMatched())
1190     // Unmatched nodes are never self-linked
1191 jsr166 1.20 p = s;
1192 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1193 jsr166 1.20 break;
1194 jsr166 1.28 else if (s == n) // stale
1195     // No need to also check for p == s, since that implies s == n
1196     p = head;
1197 jsr166 1.20 else
1198 dl 1.16 p.casNext(s, n);
1199 jsr166 1.8 }
1200     }
1201    
1202     /**
1203     * Main implementation of remove(Object)
1204     */
1205     private boolean findAndRemove(Object e) {
1206     if (e != null) {
1207 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
1208 jsr166 1.8 Object item = p.item;
1209     if (p.isData) {
1210     if (item != null && item != p && e.equals(item) &&
1211     p.tryMatchData()) {
1212     unsplice(pred, p);
1213     return true;
1214     }
1215     }
1216     else if (item == null)
1217     break;
1218     pred = p;
1219 jsr166 1.11 if ((p = p.next) == pred) { // stale
1220 jsr166 1.8 pred = null;
1221     p = head;
1222     }
1223     }
1224     }
1225     return false;
1226     }
1227    
1228     /**
1229 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1230     */
1231     public LinkedTransferQueue() {
1232     }
1233    
1234     /**
1235     * Creates a {@code LinkedTransferQueue}
1236     * initially containing the elements of the given collection,
1237     * added in traversal order of the collection's iterator.
1238     *
1239     * @param c the collection of elements to initially contain
1240     * @throws NullPointerException if the specified collection or any
1241     * of its elements are null
1242     */
1243     public LinkedTransferQueue(Collection<? extends E> c) {
1244     this();
1245     addAll(c);
1246     }
1247    
1248 jsr166 1.4 /**
1249 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1250     * As the queue is unbounded, this method will never block.
1251     *
1252     * @throws NullPointerException if the specified element is null
1253 jsr166 1.4 */
1254 jsr166 1.5 public void put(E e) {
1255 jsr166 1.8 xfer(e, true, ASYNC, 0);
1256 jsr166 1.1 }
1257    
1258 jsr166 1.4 /**
1259 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1260     * As the queue is unbounded, this method will never block or
1261     * return {@code false}.
1262     *
1263     * @return {@code true} (as specified by
1264 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1265     * BlockingQueue.offer})
1266 jsr166 1.5 * @throws NullPointerException if the specified element is null
1267 jsr166 1.4 */
1268 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1269 jsr166 1.8 xfer(e, true, ASYNC, 0);
1270     return true;
1271 jsr166 1.1 }
1272    
1273 jsr166 1.4 /**
1274 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1275     * As the queue is unbounded, this method will never return {@code false}.
1276     *
1277 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1278 jsr166 1.5 * @throws NullPointerException if the specified element is null
1279 jsr166 1.4 */
1280 jsr166 1.1 public boolean offer(E e) {
1281 jsr166 1.8 xfer(e, true, ASYNC, 0);
1282 jsr166 1.1 return true;
1283     }
1284    
1285 jsr166 1.4 /**
1286 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1287     * As the queue is unbounded, this method will never throw
1288     * {@link IllegalStateException} or return {@code false}.
1289     *
1290     * @return {@code true} (as specified by {@link Collection#add})
1291     * @throws NullPointerException if the specified element is null
1292 jsr166 1.4 */
1293 jsr166 1.1 public boolean add(E e) {
1294 jsr166 1.8 xfer(e, true, ASYNC, 0);
1295     return true;
1296 jsr166 1.5 }
1297    
1298     /**
1299 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1300     *
1301     * <p>More precisely, transfers the specified element immediately
1302     * if there exists a consumer already waiting to receive it (in
1303     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1304     * otherwise returning {@code false} without enqueuing the element.
1305 jsr166 1.5 *
1306     * @throws NullPointerException if the specified element is null
1307     */
1308     public boolean tryTransfer(E e) {
1309 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1310 jsr166 1.1 }
1311    
1312 jsr166 1.4 /**
1313 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1314     *
1315     * <p>More precisely, transfers the specified element immediately
1316     * if there exists a consumer already waiting to receive it (in
1317     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1318     * else inserts the specified element at the tail of this queue
1319     * and waits until the element is received by a consumer.
1320 jsr166 1.5 *
1321     * @throws NullPointerException if the specified element is null
1322 jsr166 1.4 */
1323 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1324 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1325     Thread.interrupted(); // failure possible only due to interrupt
1326 jsr166 1.1 throw new InterruptedException();
1327     }
1328     }
1329    
1330 jsr166 1.4 /**
1331 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1332     * before the timeout elapses.
1333     *
1334     * <p>More precisely, transfers the specified element immediately
1335     * if there exists a consumer already waiting to receive it (in
1336     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1337     * else inserts the specified element at the tail of this queue
1338     * and waits until the element is received by a consumer,
1339     * returning {@code false} if the specified wait time elapses
1340     * before the element can be transferred.
1341 jsr166 1.5 *
1342     * @throws NullPointerException if the specified element is null
1343 jsr166 1.4 */
1344 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1345     throws InterruptedException {
1346 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1347 jsr166 1.1 return true;
1348     if (!Thread.interrupted())
1349     return false;
1350     throw new InterruptedException();
1351     }
1352    
1353     public E take() throws InterruptedException {
1354 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1355 jsr166 1.1 if (e != null)
1356 jsr166 1.5 return e;
1357 jsr166 1.1 Thread.interrupted();
1358     throw new InterruptedException();
1359     }
1360    
1361     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1362 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1363 jsr166 1.1 if (e != null || !Thread.interrupted())
1364 jsr166 1.5 return e;
1365 jsr166 1.1 throw new InterruptedException();
1366     }
1367    
1368     public E poll() {
1369 jsr166 1.8 return xfer(null, false, NOW, 0);
1370 jsr166 1.1 }
1371    
1372 jsr166 1.4 /**
1373     * @throws NullPointerException {@inheritDoc}
1374     * @throws IllegalArgumentException {@inheritDoc}
1375     */
1376 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1377     if (c == null)
1378     throw new NullPointerException();
1379     if (c == this)
1380     throw new IllegalArgumentException();
1381     int n = 0;
1382 jsr166 1.47 for (E e; (e = poll()) != null;) {
1383 jsr166 1.1 c.add(e);
1384     ++n;
1385     }
1386     return n;
1387     }
1388    
1389 jsr166 1.4 /**
1390     * @throws NullPointerException {@inheritDoc}
1391     * @throws IllegalArgumentException {@inheritDoc}
1392     */
1393 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1394     if (c == null)
1395     throw new NullPointerException();
1396     if (c == this)
1397     throw new IllegalArgumentException();
1398     int n = 0;
1399 jsr166 1.47 for (E e; n < maxElements && (e = poll()) != null;) {
1400 jsr166 1.1 c.add(e);
1401     ++n;
1402     }
1403     return n;
1404     }
1405    
1406 jsr166 1.5 /**
1407 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1408     * The elements will be returned in order from first (head) to last (tail).
1409 jsr166 1.5 *
1410 jsr166 1.68 * <p>The returned iterator is
1411     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1412 jsr166 1.5 *
1413     * @return an iterator over the elements in this queue in proper sequence
1414     */
1415 jsr166 1.1 public Iterator<E> iterator() {
1416     return new Itr();
1417     }
1418    
1419     public E peek() {
1420 jsr166 1.8 return firstDataItem();
1421 jsr166 1.1 }
1422    
1423 jsr166 1.6 /**
1424     * Returns {@code true} if this queue contains no elements.
1425     *
1426     * @return {@code true} if this queue contains no elements
1427     */
1428 jsr166 1.1 public boolean isEmpty() {
1429 dl 1.21 for (Node p = head; p != null; p = succ(p)) {
1430     if (!p.isMatched())
1431     return !p.isData;
1432     }
1433     return true;
1434 jsr166 1.1 }
1435    
1436     public boolean hasWaitingConsumer() {
1437 jsr166 1.8 return firstOfMode(false) != null;
1438 jsr166 1.1 }
1439    
1440     /**
1441     * Returns the number of elements in this queue. If this queue
1442     * contains more than {@code Integer.MAX_VALUE} elements, returns
1443     * {@code Integer.MAX_VALUE}.
1444     *
1445     * <p>Beware that, unlike in most collections, this method is
1446     * <em>NOT</em> a constant-time operation. Because of the
1447     * asynchronous nature of these queues, determining the current
1448     * number of elements requires an O(n) traversal.
1449     *
1450     * @return the number of elements in this queue
1451     */
1452     public int size() {
1453 jsr166 1.8 return countOfMode(true);
1454 jsr166 1.1 }
1455    
1456     public int getWaitingConsumerCount() {
1457 jsr166 1.8 return countOfMode(false);
1458 jsr166 1.1 }
1459    
1460 jsr166 1.6 /**
1461     * Removes a single instance of the specified element from this queue,
1462     * if it is present. More formally, removes an element {@code e} such
1463     * that {@code o.equals(e)}, if this queue contains one or more such
1464     * elements.
1465     * Returns {@code true} if this queue contained the specified element
1466     * (or equivalently, if this queue changed as a result of the call).
1467     *
1468     * @param o element to be removed from this queue, if present
1469     * @return {@code true} if this queue changed as a result of the call
1470     */
1471 jsr166 1.1 public boolean remove(Object o) {
1472 jsr166 1.8 return findAndRemove(o);
1473 jsr166 1.1 }
1474    
1475     /**
1476 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1477     * More formally, returns {@code true} if and only if this queue contains
1478     * at least one element {@code e} such that {@code o.equals(e)}.
1479     *
1480     * @param o object to be checked for containment in this queue
1481     * @return {@code true} if this queue contains the specified element
1482     */
1483     public boolean contains(Object o) {
1484 jsr166 1.74 if (o != null) {
1485     for (Node p = head; p != null; p = succ(p)) {
1486     Object item = p.item;
1487     if (p.isData) {
1488     if (item != null && item != p && o.equals(item))
1489     return true;
1490     }
1491     else if (item == null)
1492     break;
1493 jsr166 1.30 }
1494     }
1495     return false;
1496     }
1497    
1498     /**
1499 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1500     * {@code LinkedTransferQueue} is not capacity constrained.
1501     *
1502     * @return {@code Integer.MAX_VALUE} (as specified by
1503 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1504     * BlockingQueue.remainingCapacity})
1505 jsr166 1.5 */
1506     public int remainingCapacity() {
1507     return Integer.MAX_VALUE;
1508     }
1509    
1510     /**
1511 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1512 jsr166 1.1 *
1513 jsr166 1.65 * @param s the stream
1514 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1515 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1516     * the proper order, followed by a null
1517     */
1518     private void writeObject(java.io.ObjectOutputStream s)
1519     throws java.io.IOException {
1520     s.defaultWriteObject();
1521     for (E e : this)
1522     s.writeObject(e);
1523     // Use trailing null as sentinel
1524     s.writeObject(null);
1525     }
1526    
1527     /**
1528 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1529 jsr166 1.65 * @param s the stream
1530 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1531     * could not be found
1532     * @throws java.io.IOException if an I/O error occurs
1533 jsr166 1.1 */
1534     private void readObject(java.io.ObjectInputStream s)
1535     throws java.io.IOException, ClassNotFoundException {
1536     s.defaultReadObject();
1537     for (;;) {
1538 jsr166 1.49 @SuppressWarnings("unchecked")
1539     E item = (E) s.readObject();
1540 jsr166 1.1 if (item == null)
1541     break;
1542     else
1543     offer(item);
1544     }
1545     }
1546    
1547 jsr166 1.3 // Unsafe mechanics
1548 jsr166 1.1
1549 jsr166 1.80 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1550     private static final long HEAD;
1551     private static final long TAIL;
1552     private static final long SWEEPVOTES;
1553 dl 1.38 static {
1554 jsr166 1.1 try {
1555 jsr166 1.80 HEAD = U.objectFieldOffset
1556     (LinkedTransferQueue.class.getDeclaredField("head"));
1557     TAIL = U.objectFieldOffset
1558     (LinkedTransferQueue.class.getDeclaredField("tail"));
1559     SWEEPVOTES = U.objectFieldOffset
1560     (LinkedTransferQueue.class.getDeclaredField("sweepVotes"));
1561 jsr166 1.79 } catch (ReflectiveOperationException e) {
1562 dl 1.38 throw new Error(e);
1563 jsr166 1.1 }
1564 jsr166 1.85
1565     // Reduce the risk of rare disastrous classloading in first call to
1566     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1567     Class<?> ensureLoaded = LockSupport.class;
1568 jsr166 1.1 }
1569     }