ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.98
Committed: Mon Jun 13 15:31:25 2016 UTC (7 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.97: +1 -1 lines
Log Message:
fix JDK-8159351: non-atomic "bulk" ops note in class javadoc for ConcurrentLinkedQueue, ConcurrentLinkedDeque, & LinkedTransferQueue should not include equals

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.5 import java.util.Queue;
17 dl 1.52 import java.util.Spliterator;
18 dl 1.54 import java.util.Spliterators;
19 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
20     import java.util.function.Consumer;
21 dl 1.22
22 jsr166 1.1 /**
23 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
24 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
25     * to any given producer. The <em>head</em> of the queue is that
26     * element that has been on the queue the longest time for some
27     * producer. The <em>tail</em> of the queue is that element that has
28     * been on the queue the shortest time for some producer.
29     *
30 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
31     * is <em>NOT</em> a constant-time operation. Because of the
32 jsr166 1.1 * asynchronous nature of these queues, determining the current number
33 dl 1.40 * of elements requires a traversal of the elements, and so may report
34     * inaccurate results if this collection is modified during traversal.
35 dl 1.41 * Additionally, the bulk operations {@code addAll},
36     * {@code removeAll}, {@code retainAll}, {@code containsAll},
37 jsr166 1.98 * and {@code toArray} are <em>not</em> guaranteed
38 dl 1.40 * to be performed atomically. For example, an iterator operating
39 dl 1.41 * concurrently with an {@code addAll} operation might view only some
40 dl 1.40 * of the added elements.
41 jsr166 1.1 *
42     * <p>This class and its iterator implement all of the
43     * <em>optional</em> methods of the {@link Collection} and {@link
44     * Iterator} interfaces.
45     *
46     * <p>Memory consistency effects: As with other concurrent
47     * collections, actions in a thread prior to placing an object into a
48     * {@code LinkedTransferQueue}
49     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
50     * actions subsequent to the access or removal of that element from
51     * the {@code LinkedTransferQueue} in another thread.
52     *
53     * <p>This class is a member of the
54     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
55     * Java Collections Framework</a>.
56     *
57     * @since 1.7
58     * @author Doug Lea
59 jsr166 1.75 * @param <E> the type of elements held in this queue
60 jsr166 1.1 */
61     public class LinkedTransferQueue<E> extends AbstractQueue<E>
62     implements TransferQueue<E>, java.io.Serializable {
63     private static final long serialVersionUID = -3223113410248163686L;
64    
65     /*
66 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
67 jsr166 1.1 *
68 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
69     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
70     * (linked) queues in which nodes may represent either data or
71     * requests. When a thread tries to enqueue a data node, but
72     * encounters a request node, it instead "matches" and removes it;
73     * and vice versa for enqueuing requests. Blocking Dual Queues
74     * arrange that threads enqueuing unmatched requests block until
75     * other threads provide the match. Dual Synchronous Queues (see
76     * Scherer, Lea, & Scott
77     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
78     * additionally arrange that threads enqueuing unmatched data also
79     * block. Dual Transfer Queues support all of these modes, as
80     * dictated by callers.
81     *
82     * A FIFO dual queue may be implemented using a variation of the
83     * Michael & Scott (M&S) lock-free queue algorithm
84 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
85 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
86     * (matched) node that in turn points to the first actual
87     * (unmatched) queue node (or null if empty); and "tail" that
88     * points to the last node on the queue (or again null if
89     * empty). For example, here is a possible queue with four data
90     * elements:
91     *
92     * head tail
93     * | |
94     * v v
95     * M -> U -> U -> U -> U
96     *
97     * The M&S queue algorithm is known to be prone to scalability and
98     * overhead limitations when maintaining (via CAS) these head and
99     * tail pointers. This has led to the development of
100     * contention-reducing variants such as elimination arrays (see
101     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
102     * optimistic back pointers (see Ladan-Mozes & Shavit
103     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
104     * However, the nature of dual queues enables a simpler tactic for
105     * improving M&S-style implementations when dual-ness is needed.
106     *
107     * In a dual queue, each node must atomically maintain its match
108     * status. While there are other possible variants, we implement
109     * this here as: for a data-mode node, matching entails CASing an
110     * "item" field from a non-null data value to null upon match, and
111     * vice-versa for request nodes, CASing from null to a data
112     * value. (Note that the linearization properties of this style of
113     * queue are easy to verify -- elements are made available by
114     * linking, and unavailable by matching.) Compared to plain M&S
115     * queues, this property of dual queues requires one additional
116     * successful atomic operation per enq/deq pair. But it also
117     * enables lower cost variants of queue maintenance mechanics. (A
118     * variation of this idea applies even for non-dual queues that
119     * support deletion of interior elements, such as
120     * j.u.c.ConcurrentLinkedQueue.)
121     *
122     * Once a node is matched, its match status can never again
123     * change. We may thus arrange that the linked list of them
124     * contain a prefix of zero or more matched nodes, followed by a
125     * suffix of zero or more unmatched nodes. (Note that we allow
126     * both the prefix and suffix to be zero length, which in turn
127     * means that we do not use a dummy header.) If we were not
128     * concerned with either time or space efficiency, we could
129     * correctly perform enqueue and dequeue operations by traversing
130     * from a pointer to the initial node; CASing the item of the
131     * first unmatched node on match and CASing the next field of the
132     * trailing node on appends. (Plus some special-casing when
133     * initially empty). While this would be a terrible idea in
134     * itself, it does have the benefit of not requiring ANY atomic
135     * updates on head/tail fields.
136     *
137     * We introduce here an approach that lies between the extremes of
138     * never versus always updating queue (head and tail) pointers.
139     * This offers a tradeoff between sometimes requiring extra
140     * traversal steps to locate the first and/or last unmatched
141     * nodes, versus the reduced overhead and contention of fewer
142     * updates to queue pointers. For example, a possible snapshot of
143     * a queue is:
144     *
145     * head tail
146     * | |
147     * v v
148     * M -> M -> U -> U -> U -> U
149     *
150     * The best value for this "slack" (the targeted maximum distance
151     * between the value of "head" and the first unmatched node, and
152     * similarly for "tail") is an empirical matter. We have found
153     * that using very small constants in the range of 1-3 work best
154     * over a range of platforms. Larger values introduce increasing
155     * costs of cache misses and risks of long traversal chains, while
156     * smaller values increase CAS contention and overhead.
157     *
158     * Dual queues with slack differ from plain M&S dual queues by
159     * virtue of only sometimes updating head or tail pointers when
160     * matching, appending, or even traversing nodes; in order to
161     * maintain a targeted slack. The idea of "sometimes" may be
162     * operationalized in several ways. The simplest is to use a
163     * per-operation counter incremented on each traversal step, and
164     * to try (via CAS) to update the associated queue pointer
165     * whenever the count exceeds a threshold. Another, that requires
166     * more overhead, is to use random number generators to update
167     * with a given probability per traversal step.
168     *
169     * In any strategy along these lines, because CASes updating
170     * fields may fail, the actual slack may exceed targeted
171     * slack. However, they may be retried at any time to maintain
172     * targets. Even when using very small slack values, this
173     * approach works well for dual queues because it allows all
174     * operations up to the point of matching or appending an item
175     * (hence potentially allowing progress by another thread) to be
176     * read-only, thus not introducing any further contention. As
177     * described below, we implement this by performing slack
178     * maintenance retries only after these points.
179     *
180     * As an accompaniment to such techniques, traversal overhead can
181     * be further reduced without increasing contention of head
182     * pointer updates: Threads may sometimes shortcut the "next" link
183     * path from the current "head" node to be closer to the currently
184     * known first unmatched node, and similarly for tail. Again, this
185     * may be triggered with using thresholds or randomization.
186     *
187     * These ideas must be further extended to avoid unbounded amounts
188     * of costly-to-reclaim garbage caused by the sequential "next"
189     * links of nodes starting at old forgotten head nodes: As first
190     * described in detail by Boehm
191 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 jsr166 1.8 * delays noticing that any arbitrarily old node has become
193     * garbage, all newer dead nodes will also be unreclaimed.
194     * (Similar issues arise in non-GC environments.) To cope with
195     * this in our implementation, upon CASing to advance the head
196     * pointer, we set the "next" link of the previous head to point
197     * only to itself; thus limiting the length of connected dead lists.
198     * (We also take similar care to wipe out possibly garbage
199     * retaining values held in other Node fields.) However, doing so
200     * adds some further complexity to traversal: If any "next"
201     * pointer links to itself, it indicates that the current thread
202     * has lagged behind a head-update, and so the traversal must
203     * continue from the "head". Traversals trying to find the
204     * current tail starting from "tail" may also encounter
205     * self-links, in which case they also continue at "head".
206     *
207     * It is tempting in slack-based scheme to not even use CAS for
208     * updates (similarly to Ladan-Mozes & Shavit). However, this
209     * cannot be done for head updates under the above link-forgetting
210     * mechanics because an update may leave head at a detached node.
211     * And while direct writes are possible for tail updates, they
212     * increase the risk of long retraversals, and hence long garbage
213     * chains, which can be much more costly than is worthwhile
214     * considering that the cost difference of performing a CAS vs
215     * write is smaller when they are not triggered on each operation
216     * (especially considering that writes and CASes equally require
217     * additional GC bookkeeping ("write barriers") that are sometimes
218     * more costly than the writes themselves because of contention).
219     *
220     * *** Overview of implementation ***
221     *
222     * We use a threshold-based approach to updates, with a slack
223     * threshold of two -- that is, we update head/tail when the
224     * current pointer appears to be two or more steps away from the
225     * first/last node. The slack value is hard-wired: a path greater
226     * than one is naturally implemented by checking equality of
227     * traversal pointers except when the list has only one element,
228     * in which case we keep slack threshold at one. Avoiding tracking
229     * explicit counts across method calls slightly simplifies an
230     * already-messy implementation. Using randomization would
231     * probably work better if there were a low-quality dirt-cheap
232     * per-thread one available, but even ThreadLocalRandom is too
233     * heavy for these purposes.
234     *
235 dl 1.16 * With such a small slack threshold value, it is not worthwhile
236     * to augment this with path short-circuiting (i.e., unsplicing
237     * interior nodes) except in the case of cancellation/removal (see
238     * below).
239 jsr166 1.8 *
240     * We allow both the head and tail fields to be null before any
241     * nodes are enqueued; initializing upon first append. This
242     * simplifies some other logic, as well as providing more
243     * efficient explicit control paths instead of letting JVMs insert
244     * implicit NullPointerExceptions when they are null. While not
245     * currently fully implemented, we also leave open the possibility
246     * of re-nulling these fields when empty (which is complicated to
247     * arrange, for little benefit.)
248     *
249     * All enqueue/dequeue operations are handled by the single method
250     * "xfer" with parameters indicating whether to act as some form
251     * of offer, put, poll, take, or transfer (each possibly with
252     * timeout). The relative complexity of using one monolithic
253     * method outweighs the code bulk and maintenance problems of
254     * using separate methods for each case.
255     *
256     * Operation consists of up to three phases. The first is
257     * implemented within method xfer, the second in tryAppend, and
258     * the third in method awaitMatch.
259     *
260     * 1. Try to match an existing node
261     *
262     * Starting at head, skip already-matched nodes until finding
263     * an unmatched node of opposite mode, if one exists, in which
264     * case matching it and returning, also if necessary updating
265     * head to one past the matched node (or the node itself if the
266     * list has no other unmatched nodes). If the CAS misses, then
267     * a loop retries advancing head by two steps until either
268     * success or the slack is at most two. By requiring that each
269     * attempt advances head by two (if applicable), we ensure that
270     * the slack does not grow without bound. Traversals also check
271     * if the initial head is now off-list, in which case they
272     * start at the new head.
273     *
274     * If no candidates are found and the call was untimed
275     * poll/offer, (argument "how" is NOW) return.
276     *
277     * 2. Try to append a new node (method tryAppend)
278     *
279     * Starting at current tail pointer, find the actual last node
280     * and try to append a new node (or if head was null, establish
281     * the first node). Nodes can be appended only if their
282     * predecessors are either already matched or are of the same
283     * mode. If we detect otherwise, then a new node with opposite
284     * mode must have been appended during traversal, so we must
285     * restart at phase 1. The traversal and update steps are
286     * otherwise similar to phase 1: Retrying upon CAS misses and
287     * checking for staleness. In particular, if a self-link is
288     * encountered, then we can safely jump to a node on the list
289     * by continuing the traversal at current head.
290     *
291     * On successful append, if the call was ASYNC, return.
292     *
293     * 3. Await match or cancellation (method awaitMatch)
294     *
295     * Wait for another thread to match node; instead cancelling if
296     * the current thread was interrupted or the wait timed out. On
297     * multiprocessors, we use front-of-queue spinning: If a node
298     * appears to be the first unmatched node in the queue, it
299     * spins a bit before blocking. In either case, before blocking
300     * it tries to unsplice any nodes between the current "head"
301     * and the first unmatched node.
302     *
303     * Front-of-queue spinning vastly improves performance of
304     * heavily contended queues. And so long as it is relatively
305     * brief and "quiet", spinning does not much impact performance
306     * of less-contended queues. During spins threads check their
307     * interrupt status and generate a thread-local random number
308     * to decide to occasionally perform a Thread.yield. While
309 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
310 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
311 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
312     * not known to be front but whose predecessors have not
313     * blocked -- these "chained" spins avoid artifacts of
314     * front-of-queue rules which otherwise lead to alternating
315     * nodes spinning vs blocking. Further, front threads that
316     * represent phase changes (from data to request node or vice
317     * versa) compared to their predecessors receive additional
318     * chained spins, reflecting longer paths typically required to
319     * unblock threads during phase changes.
320 dl 1.16 *
321     *
322     * ** Unlinking removed interior nodes **
323     *
324     * In addition to minimizing garbage retention via self-linking
325     * described above, we also unlink removed interior nodes. These
326     * may arise due to timed out or interrupted waits, or calls to
327     * remove(x) or Iterator.remove. Normally, given a node that was
328     * at one time known to be the predecessor of some node s that is
329     * to be removed, we can unsplice s by CASing the next field of
330     * its predecessor if it still points to s (otherwise s must
331     * already have been removed or is now offlist). But there are two
332     * situations in which we cannot guarantee to make node s
333     * unreachable in this way: (1) If s is the trailing node of list
334     * (i.e., with null next), then it is pinned as the target node
335 jsr166 1.23 * for appends, so can only be removed later after other nodes are
336 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
337     * predecessor node that is matched (including the case of being
338 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
339     * case some previous reachable node may still point to s.
340     * (For further explanation see Herlihy & Shavit "The Art of
341 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
342     * cases, we can rule out the need for further action if either s
343     * or its predecessor are (or can be made to be) at, or fall off
344     * from, the head of list.
345     *
346     * Without taking these into account, it would be possible for an
347     * unbounded number of supposedly removed nodes to remain
348     * reachable. Situations leading to such buildup are uncommon but
349     * can occur in practice; for example when a series of short timed
350     * calls to poll repeatedly time out but never otherwise fall off
351     * the list because of an untimed call to take at the front of the
352     * queue.
353     *
354     * When these cases arise, rather than always retraversing the
355     * entire list to find an actual predecessor to unlink (which
356     * won't help for case (1) anyway), we record a conservative
357 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
358     * We trigger a full sweep when the estimate exceeds a threshold
359     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
360     * removal failures to tolerate before sweeping through, unlinking
361     * cancelled nodes that were not unlinked upon initial removal.
362     * We perform sweeps by the thread hitting threshold (rather than
363     * background threads or by spreading work to other threads)
364     * because in the main contexts in which removal occurs, the
365     * caller is already timed-out, cancelled, or performing a
366     * potentially O(n) operation (e.g. remove(x)), none of which are
367     * time-critical enough to warrant the overhead that alternatives
368     * would impose on other threads.
369 dl 1.16 *
370     * Because the sweepVotes estimate is conservative, and because
371     * nodes become unlinked "naturally" as they fall off the head of
372     * the queue, and because we allow votes to accumulate even while
373 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
374 dl 1.16 * such nodes than estimated. Choice of a threshold value
375     * balances the likelihood of wasted effort and contention, versus
376     * providing a worst-case bound on retention of interior nodes in
377     * quiescent queues. The value defined below was chosen
378     * empirically to balance these under various timeout scenarios.
379     *
380     * Note that we cannot self-link unlinked interior nodes during
381     * sweeps. However, the associated garbage chains terminate when
382     * some successor ultimately falls off the head of the list and is
383     * self-linked.
384 jsr166 1.8 */
385    
386     /** True if on multiprocessor */
387     private static final boolean MP =
388     Runtime.getRuntime().availableProcessors() > 1;
389    
390     /**
391     * The number of times to spin (with randomly interspersed calls
392     * to Thread.yield) on multiprocessor before blocking when a node
393     * is apparently the first waiter in the queue. See above for
394     * explanation. Must be a power of two. The value is empirically
395     * derived -- it works pretty well across a variety of processors,
396     * numbers of CPUs, and OSes.
397     */
398     private static final int FRONT_SPINS = 1 << 7;
399    
400     /**
401     * The number of times to spin before blocking when a node is
402     * preceded by another node that is apparently spinning. Also
403     * serves as an increment to FRONT_SPINS on phase changes, and as
404     * base average frequency for yielding during spins. Must be a
405     * power of two.
406     */
407     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
408    
409     /**
410 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
411     * to tolerate before sweeping through the queue unlinking
412     * cancelled nodes that were not unlinked upon initial
413     * removal. See above for explanation. The value must be at least
414     * two to avoid useless sweeps when removing trailing nodes.
415     */
416     static final int SWEEP_THRESHOLD = 32;
417    
418     /**
419 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
420 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
421 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
422     * ordered wrt other accesses or CASes use simple relaxed forms.
423 jsr166 1.8 */
424 jsr166 1.14 static final class Node {
425 jsr166 1.8 final boolean isData; // false if this is a request node
426     volatile Object item; // initially non-null if isData; CASed to match
427 jsr166 1.14 volatile Node next;
428 jsr166 1.8 volatile Thread waiter; // null until waiting
429    
430     // CAS methods for fields
431 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
432 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
433 jsr166 1.8 }
434 jsr166 1.1
435 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
436 dl 1.33 // assert cmp == null || cmp.getClass() != Node.class;
437 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
438 jsr166 1.8 }
439 jsr166 1.1
440 jsr166 1.8 /**
441 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
442     * only be seen after publication via casNext.
443 jsr166 1.8 */
444 jsr166 1.14 Node(Object item, boolean isData) {
445 dl 1.97 ITEM.set(this, item); // relaxed write
446 jsr166 1.8 this.isData = isData;
447     }
448 jsr166 1.1
449 jsr166 1.8 /**
450     * Links node to itself to avoid garbage retention. Called
451     * only after CASing head field, so uses relaxed write.
452     */
453     final void forgetNext() {
454 dl 1.97 NEXT.set(this, this);
455 jsr166 1.8 }
456 jsr166 1.1
457 jsr166 1.8 /**
458 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
459     * retention after matching or cancelling. Uses relaxed writes
460 dl 1.22 * because order is already constrained in the only calling
461 dl 1.16 * contexts: item is forgotten only after volatile/atomic
462     * mechanics that extract items. Similarly, clearing waiter
463     * follows either CAS or return from park (if ever parked;
464     * else we don't care).
465 jsr166 1.8 */
466     final void forgetContents() {
467 dl 1.97 ITEM.set(this, this);
468     WAITER.set(this, null);
469 jsr166 1.8 }
470 jsr166 1.1
471 jsr166 1.8 /**
472     * Returns true if this node has been matched, including the
473     * case of artificial matches due to cancellation.
474     */
475     final boolean isMatched() {
476     Object x = item;
477 jsr166 1.11 return (x == this) || ((x == null) == isData);
478     }
479    
480     /**
481     * Returns true if this is an unmatched request node.
482     */
483     final boolean isUnmatchedRequest() {
484     return !isData && item == null;
485 jsr166 1.8 }
486 jsr166 1.1
487 jsr166 1.8 /**
488     * Returns true if a node with the given mode cannot be
489     * appended to this node because this node is unmatched and
490     * has opposite data mode.
491     */
492     final boolean cannotPrecede(boolean haveData) {
493     boolean d = isData;
494     Object x;
495     return d != haveData && (x = item) != this && (x != null) == d;
496     }
497 jsr166 1.1
498 jsr166 1.8 /**
499     * Tries to artificially match a data node -- used by remove.
500     */
501     final boolean tryMatchData() {
502 dl 1.33 // assert isData;
503 jsr166 1.8 Object x = item;
504     if (x != null && x != this && casItem(x, null)) {
505     LockSupport.unpark(waiter);
506     return true;
507     }
508     return false;
509 jsr166 1.1 }
510    
511 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
512    
513 dl 1.97 // VarHandle mechanics
514     private static final VarHandle ITEM;
515     private static final VarHandle NEXT;
516     private static final VarHandle WAITER;
517 dl 1.38 static {
518     try {
519 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
520     ITEM = l.findVarHandle(Node.class, "item", Object.class);
521     NEXT = l.findVarHandle(Node.class, "next", Node.class);
522     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
523 jsr166 1.79 } catch (ReflectiveOperationException e) {
524 dl 1.38 throw new Error(e);
525     }
526     }
527 jsr166 1.1 }
528    
529 jsr166 1.8 /** head of the queue; null until first enqueue */
530 jsr166 1.14 transient volatile Node head;
531 jsr166 1.8
532     /** tail of the queue; null until first append */
533 jsr166 1.14 private transient volatile Node tail;
534 jsr166 1.1
535 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
536     private transient volatile int sweepVotes;
537    
538 jsr166 1.8 // CAS methods for fields
539 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
540 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
541 jsr166 1.8 }
542 jsr166 1.1
543 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
544 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
545 jsr166 1.8 }
546 jsr166 1.1
547 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
548 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
549 jsr166 1.8 }
550 jsr166 1.1
551 jsr166 1.8 /*
552 jsr166 1.14 * Possible values for "how" argument in xfer method.
553 jsr166 1.1 */
554 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
555     private static final int ASYNC = 1; // for offer, put, add
556     private static final int SYNC = 2; // for transfer, take
557     private static final int TIMED = 3; // for timed poll, tryTransfer
558 jsr166 1.1
559     /**
560 jsr166 1.8 * Implements all queuing methods. See above for explanation.
561 jsr166 1.1 *
562 jsr166 1.8 * @param e the item or null for take
563     * @param haveData true if this is a put, else a take
564 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
565     * @param nanos timeout in nanosecs, used only if mode is TIMED
566 jsr166 1.8 * @return an item if matched, else e
567     * @throws NullPointerException if haveData mode but e is null
568 jsr166 1.1 */
569 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
570     if (haveData && (e == null))
571     throw new NullPointerException();
572 jsr166 1.14 Node s = null; // the node to append, if needed
573 jsr166 1.1
574 jsr166 1.29 retry:
575     for (;;) { // restart on append race
576 jsr166 1.1
577 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
578 jsr166 1.8 boolean isData = p.isData;
579     Object item = p.item;
580     if (item != p && (item != null) == isData) { // unmatched
581     if (isData == haveData) // can't match
582     break;
583     if (p.casItem(item, e)) { // match
584 jsr166 1.14 for (Node q = p; q != h;) {
585 dl 1.16 Node n = q.next; // update by 2 unless singleton
586 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
587 jsr166 1.8 h.forgetNext();
588     break;
589     } // advance and retry
590     if ((h = head) == null ||
591     (q = h.next) == null || !q.isMatched())
592     break; // unless slack < 2
593     }
594     LockSupport.unpark(p.waiter);
595 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
596     return itemE;
597 jsr166 1.1 }
598     }
599 jsr166 1.14 Node n = p.next;
600 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
601     }
602    
603 jsr166 1.14 if (how != NOW) { // No matches available
604 jsr166 1.8 if (s == null)
605 jsr166 1.14 s = new Node(e, haveData);
606     Node pred = tryAppend(s, haveData);
607 jsr166 1.8 if (pred == null)
608     continue retry; // lost race vs opposite mode
609 jsr166 1.14 if (how != ASYNC)
610     return awaitMatch(s, pred, e, (how == TIMED), nanos);
611 jsr166 1.1 }
612 jsr166 1.8 return e; // not waiting
613 jsr166 1.1 }
614     }
615    
616     /**
617 jsr166 1.8 * Tries to append node s as tail.
618     *
619     * @param s the node to append
620     * @param haveData true if appending in data mode
621     * @return null on failure due to losing race with append in
622     * different mode, else s's predecessor, or s itself if no
623     * predecessor
624 jsr166 1.1 */
625 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
626     for (Node t = tail, p = t;;) { // move p to last node and append
627     Node n, u; // temps for reads of next & tail
628 jsr166 1.8 if (p == null && (p = head) == null) {
629     if (casHead(null, s))
630     return s; // initialize
631     }
632     else if (p.cannotPrecede(haveData))
633     return null; // lost race vs opposite mode
634     else if ((n = p.next) != null) // not last; keep traversing
635     p = p != t && t != (u = tail) ? (t = u) : // stale tail
636     (p != n) ? n : null; // restart if off list
637     else if (!p.casNext(null, s))
638     p = p.next; // re-read on CAS failure
639     else {
640     if (p != t) { // update if slack now >= 2
641     while ((tail != t || !casTail(t, s)) &&
642     (t = tail) != null &&
643     (s = t.next) != null && // advance and retry
644     (s = s.next) != null && s != t);
645 jsr166 1.1 }
646 jsr166 1.8 return p;
647 jsr166 1.1 }
648     }
649     }
650    
651     /**
652 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
653 jsr166 1.1 *
654     * @param s the waiting node
655 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
656     * predecessor, or null if unknown (the null case does not occur
657     * in any current calls but may in possible future extensions)
658 jsr166 1.1 * @param e the comparison value for checking match
659 jsr166 1.14 * @param timed if true, wait only until timeout elapses
660     * @param nanos timeout in nanosecs, used only if timed is true
661 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
662 jsr166 1.1 */
663 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
664 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
665 jsr166 1.8 Thread w = Thread.currentThread();
666     int spins = -1; // initialized after first item and cancel checks
667     ThreadLocalRandom randomYields = null; // bound if needed
668 jsr166 1.1
669     for (;;) {
670 jsr166 1.8 Object item = s.item;
671     if (item != e) { // matched
672 dl 1.33 // assert item != s;
673 jsr166 1.8 s.forgetContents(); // avoid garbage
674 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
675     return itemE;
676 jsr166 1.8 }
677 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
678 dl 1.84 unsplice(pred, s); // try to unlink and cancel
679     if (s.casItem(e, s)) // return normally if lost CAS
680 jsr166 1.77 return e;
681 jsr166 1.8 }
682 dl 1.84 else if (spins < 0) { // establish spins at/near front
683 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
684     randomYields = ThreadLocalRandom.current();
685     }
686     else if (spins > 0) { // spin
687 dl 1.16 --spins;
688     if (randomYields.nextInt(CHAINED_SPINS) == 0)
689 jsr166 1.8 Thread.yield(); // occasionally yield
690     }
691     else if (s.waiter == null) {
692     s.waiter = w; // request unpark then recheck
693 jsr166 1.1 }
694 jsr166 1.14 else if (timed) {
695 jsr166 1.51 nanos = deadline - System.nanoTime();
696     if (nanos > 0L)
697 jsr166 1.8 LockSupport.parkNanos(this, nanos);
698 jsr166 1.1 }
699 jsr166 1.8 else {
700 jsr166 1.1 LockSupport.park(this);
701     }
702 jsr166 1.8 }
703     }
704    
705     /**
706     * Returns spin/yield value for a node with given predecessor and
707     * data mode. See above for explanation.
708     */
709 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
710 jsr166 1.8 if (MP && pred != null) {
711     if (pred.isData != haveData) // phase change
712     return FRONT_SPINS + CHAINED_SPINS;
713     if (pred.isMatched()) // probably at front
714     return FRONT_SPINS;
715     if (pred.waiter == null) // pred apparently spinning
716     return CHAINED_SPINS;
717     }
718     return 0;
719     }
720    
721     /* -------------- Traversal methods -------------- */
722    
723     /**
724 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
725     * linked to self, which will only be true if traversing with a
726     * stale pointer that is now off the list.
727     */
728     final Node succ(Node p) {
729     Node next = p.next;
730     return (p == next) ? head : next;
731     }
732    
733     /**
734 jsr166 1.93 * Returns the first unmatched data node, or null if none.
735     * Callers must recheck if the returned node's item field is null
736     * or self-linked before using.
737 dl 1.52 */
738     final Node firstDataNode() {
739 jsr166 1.91 restartFromHead: for (;;) {
740     for (Node p = head; p != null;) {
741     Object item = p.item;
742     if (p.isData) {
743     if (item != null && item != p)
744     return p;
745     }
746     else if (item == null)
747     break;
748     if (p == (p = p.next))
749     continue restartFromHead;
750 dl 1.52 }
751 jsr166 1.91 return null;
752 dl 1.52 }
753     }
754    
755     /**
756 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
757     * Used by methods size and getWaitingConsumerCount.
758 jsr166 1.1 */
759 jsr166 1.8 private int countOfMode(boolean data) {
760 jsr166 1.73 restartFromHead: for (;;) {
761     int count = 0;
762     for (Node p = head; p != null;) {
763     if (!p.isMatched()) {
764     if (p.isData != data)
765     return 0;
766     if (++count == Integer.MAX_VALUE)
767     break; // @see Collection.size()
768     }
769 jsr166 1.81 if (p == (p = p.next))
770 jsr166 1.73 continue restartFromHead;
771 jsr166 1.1 }
772 jsr166 1.73 return count;
773 jsr166 1.8 }
774     }
775    
776 jsr166 1.82 public String toString() {
777     String[] a = null;
778     restartFromHead: for (;;) {
779     int charLength = 0;
780     int size = 0;
781     for (Node p = head; p != null;) {
782     Object item = p.item;
783     if (p.isData) {
784     if (item != null && item != p) {
785     if (a == null)
786     a = new String[4];
787     else if (size == a.length)
788     a = Arrays.copyOf(a, 2 * size);
789     String s = item.toString();
790     a[size++] = s;
791     charLength += s.length();
792     }
793     } else if (item == null)
794     break;
795     if (p == (p = p.next))
796     continue restartFromHead;
797     }
798    
799     if (size == 0)
800     return "[]";
801    
802 jsr166 1.83 return Helpers.toString(a, size, charLength);
803 jsr166 1.82 }
804     }
805    
806     private Object[] toArrayInternal(Object[] a) {
807     Object[] x = a;
808     restartFromHead: for (;;) {
809     int size = 0;
810     for (Node p = head; p != null;) {
811     Object item = p.item;
812     if (p.isData) {
813     if (item != null && item != p) {
814     if (x == null)
815     x = new Object[4];
816     else if (size == x.length)
817     x = Arrays.copyOf(x, 2 * (size + 4));
818     x[size++] = item;
819     }
820     } else if (item == null)
821     break;
822     if (p == (p = p.next))
823     continue restartFromHead;
824     }
825     if (x == null)
826     return new Object[0];
827     else if (a != null && size <= a.length) {
828     if (a != x)
829     System.arraycopy(x, 0, a, 0, size);
830     if (size < a.length)
831     a[size] = null;
832     return a;
833     }
834     return (size == x.length) ? x : Arrays.copyOf(x, size);
835     }
836     }
837    
838     /**
839     * Returns an array containing all of the elements in this queue, in
840     * proper sequence.
841     *
842     * <p>The returned array will be "safe" in that no references to it are
843     * maintained by this queue. (In other words, this method must allocate
844     * a new array). The caller is thus free to modify the returned array.
845     *
846     * <p>This method acts as bridge between array-based and collection-based
847     * APIs.
848     *
849     * @return an array containing all of the elements in this queue
850     */
851     public Object[] toArray() {
852     return toArrayInternal(null);
853     }
854    
855     /**
856     * Returns an array containing all of the elements in this queue, in
857     * proper sequence; the runtime type of the returned array is that of
858     * the specified array. If the queue fits in the specified array, it
859     * is returned therein. Otherwise, a new array is allocated with the
860     * runtime type of the specified array and the size of this queue.
861     *
862     * <p>If this queue fits in the specified array with room to spare
863     * (i.e., the array has more elements than this queue), the element in
864     * the array immediately following the end of the queue is set to
865     * {@code null}.
866     *
867     * <p>Like the {@link #toArray()} method, this method acts as bridge between
868     * array-based and collection-based APIs. Further, this method allows
869     * precise control over the runtime type of the output array, and may,
870     * under certain circumstances, be used to save allocation costs.
871     *
872     * <p>Suppose {@code x} is a queue known to contain only strings.
873     * The following code can be used to dump the queue into a newly
874     * allocated array of {@code String}:
875     *
876     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
877     *
878     * Note that {@code toArray(new Object[0])} is identical in function to
879     * {@code toArray()}.
880     *
881     * @param a the array into which the elements of the queue are to
882     * be stored, if it is big enough; otherwise, a new array of the
883     * same runtime type is allocated for this purpose
884     * @return an array containing all of the elements in this queue
885     * @throws ArrayStoreException if the runtime type of the specified array
886     * is not a supertype of the runtime type of every element in
887     * this queue
888     * @throws NullPointerException if the specified array is null
889     */
890     @SuppressWarnings("unchecked")
891     public <T> T[] toArray(T[] a) {
892     if (a == null) throw new NullPointerException();
893     return (T[]) toArrayInternal(a);
894     }
895    
896 jsr166 1.8 final class Itr implements Iterator<E> {
897 jsr166 1.14 private Node nextNode; // next node to return item for
898     private E nextItem; // the corresponding item
899     private Node lastRet; // last returned node, to support remove
900     private Node lastPred; // predecessor to unlink lastRet
901 jsr166 1.8
902     /**
903     * Moves to next node after prev, or first node if prev null.
904     */
905 jsr166 1.14 private void advance(Node prev) {
906 dl 1.33 /*
907     * To track and avoid buildup of deleted nodes in the face
908     * of calls to both Queue.remove and Itr.remove, we must
909     * include variants of unsplice and sweep upon each
910     * advance: Upon Itr.remove, we may need to catch up links
911     * from lastPred, and upon other removes, we might need to
912     * skip ahead from stale nodes and unsplice deleted ones
913     * found while advancing.
914     */
915    
916     Node r, b; // reset lastPred upon possible deletion of lastRet
917     if ((r = lastRet) != null && !r.isMatched())
918     lastPred = r; // next lastPred is old lastRet
919     else if ((b = lastPred) == null || b.isMatched())
920     lastPred = null; // at start of list
921 jsr166 1.34 else {
922 dl 1.33 Node s, n; // help with removal of lastPred.next
923     while ((s = b.next) != null &&
924     s != b && s.isMatched() &&
925     (n = s.next) != null && n != s)
926     b.casNext(s, n);
927     }
928    
929     this.lastRet = prev;
930 jsr166 1.35
931 dl 1.33 for (Node p = prev, s, n;;) {
932     s = (p == null) ? head : p.next;
933     if (s == null)
934     break;
935     else if (s == p) {
936     p = null;
937     continue;
938     }
939     Object item = s.item;
940     if (s.isData) {
941     if (item != null && item != s) {
942 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
943     nextItem = itemE;
944 dl 1.33 nextNode = s;
945 jsr166 1.8 return;
946     }
947 jsr166 1.34 }
948 jsr166 1.8 else if (item == null)
949     break;
950 dl 1.33 // assert s.isMatched();
951     if (p == null)
952     p = s;
953     else if ((n = s.next) == null)
954     break;
955     else if (s == n)
956     p = null;
957     else
958     p.casNext(s, n);
959 jsr166 1.1 }
960 jsr166 1.8 nextNode = null;
961 dl 1.33 nextItem = null;
962 jsr166 1.8 }
963    
964     Itr() {
965     advance(null);
966     }
967    
968     public final boolean hasNext() {
969     return nextNode != null;
970     }
971    
972     public final E next() {
973 jsr166 1.14 Node p = nextNode;
974 jsr166 1.8 if (p == null) throw new NoSuchElementException();
975     E e = nextItem;
976     advance(p);
977     return e;
978     }
979    
980     public final void remove() {
981 dl 1.33 final Node lastRet = this.lastRet;
982     if (lastRet == null)
983     throw new IllegalStateException();
984     this.lastRet = null;
985     if (lastRet.tryMatchData())
986     unsplice(lastPred, lastRet);
987 jsr166 1.1 }
988     }
989 jsr166 1.53
990 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
991 jsr166 1.94 final class LTQSpliterator<E> implements Spliterator<E> {
992 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
993 jsr166 1.87 Node current; // current node; null until initialized
994 dl 1.52 int batch; // batch size for splits
995     boolean exhausted; // true when no more nodes
996 jsr166 1.94 LTQSpliterator() {}
997 dl 1.52
998     public Spliterator<E> trySplit() {
999 dl 1.60 Node p;
1000     int b = batch;
1001     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1002 jsr166 1.58 if (!exhausted &&
1003 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null) &&
1004 dl 1.54 p.next != null) {
1005 dl 1.63 Object[] a = new Object[n];
1006 dl 1.52 int i = 0;
1007     do {
1008 dl 1.88 Object e = p.item;
1009     if (e != p && (a[i] = e) != null)
1010 dl 1.52 ++i;
1011 jsr166 1.53 if (p == (p = p.next))
1012 jsr166 1.94 p = firstDataNode();
1013 dl 1.89 } while (p != null && i < n && p.isData);
1014 dl 1.52 if ((current = p) == null)
1015     exhausted = true;
1016 dl 1.60 if (i > 0) {
1017     batch = i;
1018     return Spliterators.spliterator
1019 jsr166 1.86 (a, 0, i, (Spliterator.ORDERED |
1020     Spliterator.NONNULL |
1021     Spliterator.CONCURRENT));
1022 dl 1.60 }
1023 dl 1.52 }
1024     return null;
1025     }
1026    
1027     @SuppressWarnings("unchecked")
1028 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1029 dl 1.52 Node p;
1030     if (action == null) throw new NullPointerException();
1031     if (!exhausted &&
1032 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null)) {
1033 dl 1.52 exhausted = true;
1034     do {
1035     Object e = p.item;
1036 dl 1.88 if (e != null && e != p)
1037     action.accept((E)e);
1038 jsr166 1.53 if (p == (p = p.next))
1039 jsr166 1.94 p = firstDataNode();
1040 dl 1.89 } while (p != null && p.isData);
1041 dl 1.52 }
1042     }
1043    
1044     @SuppressWarnings("unchecked")
1045     public boolean tryAdvance(Consumer<? super E> action) {
1046     Node p;
1047     if (action == null) throw new NullPointerException();
1048     if (!exhausted &&
1049 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null)) {
1050 dl 1.52 Object e;
1051     do {
1052 dl 1.88 if ((e = p.item) == p)
1053     e = null;
1054 jsr166 1.53 if (p == (p = p.next))
1055 jsr166 1.94 p = firstDataNode();
1056 dl 1.89 } while (e == null && p != null && p.isData);
1057 dl 1.52 if ((current = p) == null)
1058     exhausted = true;
1059     if (e != null) {
1060     action.accept((E)e);
1061     return true;
1062     }
1063     }
1064     return false;
1065     }
1066    
1067 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1068    
1069 dl 1.52 public int characteristics() {
1070     return Spliterator.ORDERED | Spliterator.NONNULL |
1071     Spliterator.CONCURRENT;
1072     }
1073     }
1074    
1075 jsr166 1.67 /**
1076     * Returns a {@link Spliterator} over the elements in this queue.
1077     *
1078 jsr166 1.68 * <p>The returned spliterator is
1079     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1080     *
1081 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1082     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1083     *
1084     * @implNote
1085     * The {@code Spliterator} implements {@code trySplit} to permit limited
1086     * parallelism.
1087     *
1088     * @return a {@code Spliterator} over the elements in this queue
1089     * @since 1.8
1090     */
1091 dl 1.56 public Spliterator<E> spliterator() {
1092 jsr166 1.94 return new LTQSpliterator<E>();
1093 dl 1.52 }
1094    
1095 jsr166 1.8 /* -------------- Removal methods -------------- */
1096    
1097 jsr166 1.1 /**
1098 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1099     * the given predecessor.
1100 jsr166 1.1 *
1101 dl 1.16 * @param pred a node that was at one time known to be the
1102     * predecessor of s, or null or s itself if s is/was at head
1103 jsr166 1.8 * @param s the node to be unspliced
1104 jsr166 1.1 */
1105 dl 1.16 final void unsplice(Node pred, Node s) {
1106 dl 1.71 s.waiter = null; // disable signals
1107 jsr166 1.1 /*
1108 dl 1.16 * See above for rationale. Briefly: if pred still points to
1109     * s, try to unlink s. If s cannot be unlinked, because it is
1110     * trailing node or pred might be unlinked, and neither pred
1111     * nor s are head or offlist, add to sweepVotes, and if enough
1112     * votes have accumulated, sweep.
1113 jsr166 1.1 */
1114 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1115     Node n = s.next;
1116     if (n == null ||
1117     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1118     for (;;) { // check if at, or could be, head
1119     Node h = head;
1120     if (h == pred || h == s || h == null)
1121     return; // at head or list empty
1122     if (!h.isMatched())
1123     break;
1124     Node hn = h.next;
1125     if (hn == null)
1126     return; // now empty
1127     if (hn != h && casHead(h, hn))
1128     h.forgetNext(); // advance head
1129 jsr166 1.8 }
1130 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1131     for (;;) { // sweep now if enough votes
1132     int v = sweepVotes;
1133     if (v < SWEEP_THRESHOLD) {
1134     if (casSweepVotes(v, v + 1))
1135     break;
1136     }
1137     else if (casSweepVotes(v, 0)) {
1138     sweep();
1139     break;
1140     }
1141     }
1142 jsr166 1.12 }
1143 jsr166 1.1 }
1144     }
1145     }
1146    
1147     /**
1148 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1149     * traversal from head.
1150 jsr166 1.1 */
1151 dl 1.16 private void sweep() {
1152 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1153 jsr166 1.28 if (!s.isMatched())
1154     // Unmatched nodes are never self-linked
1155 jsr166 1.20 p = s;
1156 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1157 jsr166 1.20 break;
1158 jsr166 1.28 else if (s == n) // stale
1159     // No need to also check for p == s, since that implies s == n
1160     p = head;
1161 jsr166 1.20 else
1162 dl 1.16 p.casNext(s, n);
1163 jsr166 1.8 }
1164     }
1165    
1166     /**
1167     * Main implementation of remove(Object)
1168     */
1169     private boolean findAndRemove(Object e) {
1170     if (e != null) {
1171 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
1172 jsr166 1.8 Object item = p.item;
1173     if (p.isData) {
1174     if (item != null && item != p && e.equals(item) &&
1175     p.tryMatchData()) {
1176     unsplice(pred, p);
1177     return true;
1178     }
1179     }
1180     else if (item == null)
1181     break;
1182     pred = p;
1183 jsr166 1.11 if ((p = p.next) == pred) { // stale
1184 jsr166 1.8 pred = null;
1185     p = head;
1186     }
1187     }
1188     }
1189     return false;
1190     }
1191    
1192     /**
1193 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1194     */
1195     public LinkedTransferQueue() {
1196     }
1197    
1198     /**
1199     * Creates a {@code LinkedTransferQueue}
1200     * initially containing the elements of the given collection,
1201     * added in traversal order of the collection's iterator.
1202     *
1203     * @param c the collection of elements to initially contain
1204     * @throws NullPointerException if the specified collection or any
1205     * of its elements are null
1206     */
1207     public LinkedTransferQueue(Collection<? extends E> c) {
1208     this();
1209     addAll(c);
1210     }
1211    
1212 jsr166 1.4 /**
1213 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1214     * As the queue is unbounded, this method will never block.
1215     *
1216     * @throws NullPointerException if the specified element is null
1217 jsr166 1.4 */
1218 jsr166 1.5 public void put(E e) {
1219 jsr166 1.8 xfer(e, true, ASYNC, 0);
1220 jsr166 1.1 }
1221    
1222 jsr166 1.4 /**
1223 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1224     * As the queue is unbounded, this method will never block or
1225     * return {@code false}.
1226     *
1227     * @return {@code true} (as specified by
1228 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1229     * BlockingQueue.offer})
1230 jsr166 1.5 * @throws NullPointerException if the specified element is null
1231 jsr166 1.4 */
1232 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1233 jsr166 1.8 xfer(e, true, ASYNC, 0);
1234     return true;
1235 jsr166 1.1 }
1236    
1237 jsr166 1.4 /**
1238 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1239     * As the queue is unbounded, this method will never return {@code false}.
1240     *
1241 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1242 jsr166 1.5 * @throws NullPointerException if the specified element is null
1243 jsr166 1.4 */
1244 jsr166 1.1 public boolean offer(E e) {
1245 jsr166 1.8 xfer(e, true, ASYNC, 0);
1246 jsr166 1.1 return true;
1247     }
1248    
1249 jsr166 1.4 /**
1250 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1251     * As the queue is unbounded, this method will never throw
1252     * {@link IllegalStateException} or return {@code false}.
1253     *
1254     * @return {@code true} (as specified by {@link Collection#add})
1255     * @throws NullPointerException if the specified element is null
1256 jsr166 1.4 */
1257 jsr166 1.1 public boolean add(E e) {
1258 jsr166 1.8 xfer(e, true, ASYNC, 0);
1259     return true;
1260 jsr166 1.5 }
1261    
1262     /**
1263 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1264     *
1265     * <p>More precisely, transfers the specified element immediately
1266     * if there exists a consumer already waiting to receive it (in
1267     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1268     * otherwise returning {@code false} without enqueuing the element.
1269 jsr166 1.5 *
1270     * @throws NullPointerException if the specified element is null
1271     */
1272     public boolean tryTransfer(E e) {
1273 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1274 jsr166 1.1 }
1275    
1276 jsr166 1.4 /**
1277 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1278     *
1279     * <p>More precisely, transfers the specified element immediately
1280     * if there exists a consumer already waiting to receive it (in
1281     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1282     * else inserts the specified element at the tail of this queue
1283     * and waits until the element is received by a consumer.
1284 jsr166 1.5 *
1285     * @throws NullPointerException if the specified element is null
1286 jsr166 1.4 */
1287 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1288 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1289     Thread.interrupted(); // failure possible only due to interrupt
1290 jsr166 1.1 throw new InterruptedException();
1291     }
1292     }
1293    
1294 jsr166 1.4 /**
1295 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1296     * before the timeout elapses.
1297     *
1298     * <p>More precisely, transfers the specified element immediately
1299     * if there exists a consumer already waiting to receive it (in
1300     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1301     * else inserts the specified element at the tail of this queue
1302     * and waits until the element is received by a consumer,
1303     * returning {@code false} if the specified wait time elapses
1304     * before the element can be transferred.
1305 jsr166 1.5 *
1306     * @throws NullPointerException if the specified element is null
1307 jsr166 1.4 */
1308 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1309     throws InterruptedException {
1310 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1311 jsr166 1.1 return true;
1312     if (!Thread.interrupted())
1313     return false;
1314     throw new InterruptedException();
1315     }
1316    
1317     public E take() throws InterruptedException {
1318 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1319 jsr166 1.1 if (e != null)
1320 jsr166 1.5 return e;
1321 jsr166 1.1 Thread.interrupted();
1322     throw new InterruptedException();
1323     }
1324    
1325     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1326 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1327 jsr166 1.1 if (e != null || !Thread.interrupted())
1328 jsr166 1.5 return e;
1329 jsr166 1.1 throw new InterruptedException();
1330     }
1331    
1332     public E poll() {
1333 jsr166 1.8 return xfer(null, false, NOW, 0);
1334 jsr166 1.1 }
1335    
1336 jsr166 1.4 /**
1337     * @throws NullPointerException {@inheritDoc}
1338     * @throws IllegalArgumentException {@inheritDoc}
1339     */
1340 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1341     if (c == null)
1342     throw new NullPointerException();
1343     if (c == this)
1344     throw new IllegalArgumentException();
1345     int n = 0;
1346 jsr166 1.47 for (E e; (e = poll()) != null;) {
1347 jsr166 1.1 c.add(e);
1348     ++n;
1349     }
1350     return n;
1351     }
1352    
1353 jsr166 1.4 /**
1354     * @throws NullPointerException {@inheritDoc}
1355     * @throws IllegalArgumentException {@inheritDoc}
1356     */
1357 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1358     if (c == null)
1359     throw new NullPointerException();
1360     if (c == this)
1361     throw new IllegalArgumentException();
1362     int n = 0;
1363 jsr166 1.47 for (E e; n < maxElements && (e = poll()) != null;) {
1364 jsr166 1.1 c.add(e);
1365     ++n;
1366     }
1367     return n;
1368     }
1369    
1370 jsr166 1.5 /**
1371 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1372     * The elements will be returned in order from first (head) to last (tail).
1373 jsr166 1.5 *
1374 jsr166 1.68 * <p>The returned iterator is
1375     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1376 jsr166 1.5 *
1377     * @return an iterator over the elements in this queue in proper sequence
1378     */
1379 jsr166 1.1 public Iterator<E> iterator() {
1380     return new Itr();
1381     }
1382    
1383     public E peek() {
1384 jsr166 1.92 restartFromHead: for (;;) {
1385     for (Node p = head; p != null;) {
1386     Object item = p.item;
1387     if (p.isData) {
1388     if (item != null && item != p) {
1389     @SuppressWarnings("unchecked") E e = (E) item;
1390     return e;
1391     }
1392     }
1393     else if (item == null)
1394     break;
1395     if (p == (p = p.next))
1396     continue restartFromHead;
1397     }
1398     return null;
1399     }
1400 jsr166 1.1 }
1401    
1402 jsr166 1.6 /**
1403     * Returns {@code true} if this queue contains no elements.
1404     *
1405     * @return {@code true} if this queue contains no elements
1406     */
1407 jsr166 1.1 public boolean isEmpty() {
1408 jsr166 1.90 return firstDataNode() == null;
1409 jsr166 1.1 }
1410    
1411     public boolean hasWaitingConsumer() {
1412 jsr166 1.93 restartFromHead: for (;;) {
1413     for (Node p = head; p != null;) {
1414     Object item = p.item;
1415     if (p.isData) {
1416     if (item != null && item != p)
1417     break;
1418     }
1419     else if (item == null)
1420     return true;
1421     if (p == (p = p.next))
1422     continue restartFromHead;
1423     }
1424     return false;
1425     }
1426 jsr166 1.1 }
1427    
1428     /**
1429     * Returns the number of elements in this queue. If this queue
1430     * contains more than {@code Integer.MAX_VALUE} elements, returns
1431     * {@code Integer.MAX_VALUE}.
1432     *
1433     * <p>Beware that, unlike in most collections, this method is
1434     * <em>NOT</em> a constant-time operation. Because of the
1435     * asynchronous nature of these queues, determining the current
1436     * number of elements requires an O(n) traversal.
1437     *
1438     * @return the number of elements in this queue
1439     */
1440     public int size() {
1441 jsr166 1.8 return countOfMode(true);
1442 jsr166 1.1 }
1443    
1444     public int getWaitingConsumerCount() {
1445 jsr166 1.8 return countOfMode(false);
1446 jsr166 1.1 }
1447    
1448 jsr166 1.6 /**
1449     * Removes a single instance of the specified element from this queue,
1450     * if it is present. More formally, removes an element {@code e} such
1451     * that {@code o.equals(e)}, if this queue contains one or more such
1452     * elements.
1453     * Returns {@code true} if this queue contained the specified element
1454     * (or equivalently, if this queue changed as a result of the call).
1455     *
1456     * @param o element to be removed from this queue, if present
1457     * @return {@code true} if this queue changed as a result of the call
1458     */
1459 jsr166 1.1 public boolean remove(Object o) {
1460 jsr166 1.8 return findAndRemove(o);
1461 jsr166 1.1 }
1462    
1463     /**
1464 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1465     * More formally, returns {@code true} if and only if this queue contains
1466     * at least one element {@code e} such that {@code o.equals(e)}.
1467     *
1468     * @param o object to be checked for containment in this queue
1469     * @return {@code true} if this queue contains the specified element
1470     */
1471     public boolean contains(Object o) {
1472 jsr166 1.74 if (o != null) {
1473     for (Node p = head; p != null; p = succ(p)) {
1474     Object item = p.item;
1475     if (p.isData) {
1476     if (item != null && item != p && o.equals(item))
1477     return true;
1478     }
1479     else if (item == null)
1480     break;
1481 jsr166 1.30 }
1482     }
1483     return false;
1484     }
1485    
1486     /**
1487 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1488     * {@code LinkedTransferQueue} is not capacity constrained.
1489     *
1490     * @return {@code Integer.MAX_VALUE} (as specified by
1491 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1492     * BlockingQueue.remainingCapacity})
1493 jsr166 1.5 */
1494     public int remainingCapacity() {
1495     return Integer.MAX_VALUE;
1496     }
1497    
1498     /**
1499 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1500 jsr166 1.1 *
1501 jsr166 1.65 * @param s the stream
1502 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1503 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1504     * the proper order, followed by a null
1505     */
1506     private void writeObject(java.io.ObjectOutputStream s)
1507     throws java.io.IOException {
1508     s.defaultWriteObject();
1509     for (E e : this)
1510     s.writeObject(e);
1511     // Use trailing null as sentinel
1512     s.writeObject(null);
1513     }
1514    
1515     /**
1516 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1517 jsr166 1.65 * @param s the stream
1518 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1519     * could not be found
1520     * @throws java.io.IOException if an I/O error occurs
1521 jsr166 1.1 */
1522     private void readObject(java.io.ObjectInputStream s)
1523     throws java.io.IOException, ClassNotFoundException {
1524     s.defaultReadObject();
1525     for (;;) {
1526 jsr166 1.49 @SuppressWarnings("unchecked")
1527     E item = (E) s.readObject();
1528 jsr166 1.1 if (item == null)
1529     break;
1530     else
1531     offer(item);
1532     }
1533     }
1534    
1535 dl 1.97 // VarHandle mechanics
1536     private static final VarHandle HEAD;
1537     private static final VarHandle TAIL;
1538     private static final VarHandle SWEEPVOTES;
1539 dl 1.38 static {
1540 jsr166 1.1 try {
1541 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1542     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1543     Node.class);
1544     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1545     Node.class);
1546     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1547     int.class);
1548 jsr166 1.79 } catch (ReflectiveOperationException e) {
1549 dl 1.38 throw new Error(e);
1550 jsr166 1.1 }
1551 jsr166 1.85
1552     // Reduce the risk of rare disastrous classloading in first call to
1553     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1554     Class<?> ensureLoaded = LockSupport.class;
1555 jsr166 1.1 }
1556     }