ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java (file contents):
Revision 1.7 by jsr166, Tue Aug 4 20:41:40 2009 UTC vs.
Revision 1.8 by jsr166, Tue Oct 27 23:21:32 2009 UTC

# Line 13 | Line 13 | import java.util.Iterator;
13   import java.util.NoSuchElementException;
14   import java.util.Queue;
15   import java.util.concurrent.locks.LockSupport;
16 import java.util.concurrent.atomic.AtomicReference;
17
16   /**
17   * An unbounded {@link TransferQueue} based on linked nodes.
18   * This queue orders elements FIFO (first-in-first-out) with respect
# Line 52 | Line 50 | public class LinkedTransferQueue<E> exte
50      private static final long serialVersionUID = -3223113410248163686L;
51  
52      /*
53 <     * This class extends the approach used in FIFO-mode
56 <     * SynchronousQueues. See the internal documentation, as well as
57 <     * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
58 <     * Lea & Scott
59 <     * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
53 >     * *** Overview of Dual Queues with Slack ***
54       *
55 <     * The main extension is to provide different Wait modes for the
56 <     * main "xfer" method that puts or takes items.  These don't
57 <     * impact the basic dual-queue logic, but instead control whether
58 <     * or how threads block upon insertion of request or data nodes
59 <     * into the dual queue. It also uses slightly different
60 <     * conventions for tracking whether nodes are off-list or
61 <     * cancelled.
62 <     */
55 >     * Dual Queues, introduced by Scherer and Scott
56 >     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57 >     * (linked) queues in which nodes may represent either data or
58 >     * requests.  When a thread tries to enqueue a data node, but
59 >     * encounters a request node, it instead "matches" and removes it;
60 >     * and vice versa for enqueuing requests. Blocking Dual Queues
61 >     * arrange that threads enqueuing unmatched requests block until
62 >     * other threads provide the match. Dual Synchronous Queues (see
63 >     * Scherer, Lea, & Scott
64 >     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65 >     * additionally arrange that threads enqueuing unmatched data also
66 >     * block.  Dual Transfer Queues support all of these modes, as
67 >     * dictated by callers.
68 >     *
69 >     * A FIFO dual queue may be implemented using a variation of the
70 >     * Michael & Scott (M&S) lock-free queue algorithm
71 >     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72 >     * It maintains two pointer fields, "head", pointing to a
73 >     * (matched) node that in turn points to the first actual
74 >     * (unmatched) queue node (or null if empty); and "tail" that
75 >     * points to the last node on the queue (or again null if
76 >     * empty). For example, here is a possible queue with four data
77 >     * elements:
78 >     *
79 >     *  head                tail
80 >     *    |                   |
81 >     *    v                   v
82 >     *    M -> U -> U -> U -> U
83 >     *
84 >     * The M&S queue algorithm is known to be prone to scalability and
85 >     * overhead limitations when maintaining (via CAS) these head and
86 >     * tail pointers. This has led to the development of
87 >     * contention-reducing variants such as elimination arrays (see
88 >     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89 >     * optimistic back pointers (see Ladan-Mozes & Shavit
90 >     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91 >     * However, the nature of dual queues enables a simpler tactic for
92 >     * improving M&S-style implementations when dual-ness is needed.
93 >     *
94 >     * In a dual queue, each node must atomically maintain its match
95 >     * status. While there are other possible variants, we implement
96 >     * this here as: for a data-mode node, matching entails CASing an
97 >     * "item" field from a non-null data value to null upon match, and
98 >     * vice-versa for request nodes, CASing from null to a data
99 >     * value. (Note that the linearization properties of this style of
100 >     * queue are easy to verify -- elements are made available by
101 >     * linking, and unavailable by matching.) Compared to plain M&S
102 >     * queues, this property of dual queues requires one additional
103 >     * successful atomic operation per enq/deq pair. But it also
104 >     * enables lower cost variants of queue maintenance mechanics. (A
105 >     * variation of this idea applies even for non-dual queues that
106 >     * support deletion of interior elements, such as
107 >     * j.u.c.ConcurrentLinkedQueue.)
108 >     *
109 >     * Once a node is matched, its match status can never again
110 >     * change.  We may thus arrange that the linked list of them
111 >     * contain a prefix of zero or more matched nodes, followed by a
112 >     * suffix of zero or more unmatched nodes. (Note that we allow
113 >     * both the prefix and suffix to be zero length, which in turn
114 >     * means that we do not use a dummy header.)  If we were not
115 >     * concerned with either time or space efficiency, we could
116 >     * correctly perform enqueue and dequeue operations by traversing
117 >     * from a pointer to the initial node; CASing the item of the
118 >     * first unmatched node on match and CASing the next field of the
119 >     * trailing node on appends. (Plus some special-casing when
120 >     * initially empty).  While this would be a terrible idea in
121 >     * itself, it does have the benefit of not requiring ANY atomic
122 >     * updates on head/tail fields.
123 >     *
124 >     * We introduce here an approach that lies between the extremes of
125 >     * never versus always updating queue (head and tail) pointers.
126 >     * This offers a tradeoff between sometimes requiring extra
127 >     * traversal steps to locate the first and/or last unmatched
128 >     * nodes, versus the reduced overhead and contention of fewer
129 >     * updates to queue pointers. For example, a possible snapshot of
130 >     * a queue is:
131 >     *
132 >     *  head           tail
133 >     *    |              |
134 >     *    v              v
135 >     *    M -> M -> U -> U -> U -> U
136 >     *
137 >     * The best value for this "slack" (the targeted maximum distance
138 >     * between the value of "head" and the first unmatched node, and
139 >     * similarly for "tail") is an empirical matter. We have found
140 >     * that using very small constants in the range of 1-3 work best
141 >     * over a range of platforms. Larger values introduce increasing
142 >     * costs of cache misses and risks of long traversal chains, while
143 >     * smaller values increase CAS contention and overhead.
144 >     *
145 >     * Dual queues with slack differ from plain M&S dual queues by
146 >     * virtue of only sometimes updating head or tail pointers when
147 >     * matching, appending, or even traversing nodes; in order to
148 >     * maintain a targeted slack.  The idea of "sometimes" may be
149 >     * operationalized in several ways. The simplest is to use a
150 >     * per-operation counter incremented on each traversal step, and
151 >     * to try (via CAS) to update the associated queue pointer
152 >     * whenever the count exceeds a threshold. Another, that requires
153 >     * more overhead, is to use random number generators to update
154 >     * with a given probability per traversal step.
155 >     *
156 >     * In any strategy along these lines, because CASes updating
157 >     * fields may fail, the actual slack may exceed targeted
158 >     * slack. However, they may be retried at any time to maintain
159 >     * targets.  Even when using very small slack values, this
160 >     * approach works well for dual queues because it allows all
161 >     * operations up to the point of matching or appending an item
162 >     * (hence potentially allowing progress by another thread) to be
163 >     * read-only, thus not introducing any further contention. As
164 >     * described below, we implement this by performing slack
165 >     * maintenance retries only after these points.
166 >     *
167 >     * As an accompaniment to such techniques, traversal overhead can
168 >     * be further reduced without increasing contention of head
169 >     * pointer updates: Threads may sometimes shortcut the "next" link
170 >     * path from the current "head" node to be closer to the currently
171 >     * known first unmatched node, and similarly for tail. Again, this
172 >     * may be triggered with using thresholds or randomization.
173 >     *
174 >     * These ideas must be further extended to avoid unbounded amounts
175 >     * of costly-to-reclaim garbage caused by the sequential "next"
176 >     * links of nodes starting at old forgotten head nodes: As first
177 >     * described in detail by Boehm
178 >     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179 >     * delays noticing that any arbitrarily old node has become
180 >     * garbage, all newer dead nodes will also be unreclaimed.
181 >     * (Similar issues arise in non-GC environments.)  To cope with
182 >     * this in our implementation, upon CASing to advance the head
183 >     * pointer, we set the "next" link of the previous head to point
184 >     * only to itself; thus limiting the length of connected dead lists.
185 >     * (We also take similar care to wipe out possibly garbage
186 >     * retaining values held in other Node fields.)  However, doing so
187 >     * adds some further complexity to traversal: If any "next"
188 >     * pointer links to itself, it indicates that the current thread
189 >     * has lagged behind a head-update, and so the traversal must
190 >     * continue from the "head".  Traversals trying to find the
191 >     * current tail starting from "tail" may also encounter
192 >     * self-links, in which case they also continue at "head".
193 >     *
194 >     * It is tempting in slack-based scheme to not even use CAS for
195 >     * updates (similarly to Ladan-Mozes & Shavit). However, this
196 >     * cannot be done for head updates under the above link-forgetting
197 >     * mechanics because an update may leave head at a detached node.
198 >     * And while direct writes are possible for tail updates, they
199 >     * increase the risk of long retraversals, and hence long garbage
200 >     * chains, which can be much more costly than is worthwhile
201 >     * considering that the cost difference of performing a CAS vs
202 >     * write is smaller when they are not triggered on each operation
203 >     * (especially considering that writes and CASes equally require
204 >     * additional GC bookkeeping ("write barriers") that are sometimes
205 >     * more costly than the writes themselves because of contention).
206 >     *
207 >     * Removal of interior nodes (due to timed out or interrupted
208 >     * waits, or calls to remove(x) or Iterator.remove) can use a
209 >     * scheme roughly similar to that described in Scherer, Lea, and
210 >     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
211 >     * any node except the (actual) tail of the queue. To avoid
212 >     * build-up of cancelled trailing nodes, upon a request to remove
213 >     * a trailing node, it is placed in field "cleanMe" to be
214 >     * unspliced upon the next call to unsplice any other node.
215 >     * Situations needing such mechanics are not common but do occur
216 >     * in practice; for example when an unbounded series of short
217 >     * timed calls to poll repeatedly time out but never otherwise
218 >     * fall off the list because of an untimed call to take at the
219 >     * front of the queue. Note that maintaining field cleanMe does
220 >     * not otherwise much impact garbage retention even if never
221 >     * cleared by some other call because the held node will
222 >     * eventually either directly or indirectly lead to a self-link
223 >     * once off the list.
224 >     *
225 >     * *** Overview of implementation ***
226 >     *
227 >     * We use a threshold-based approach to updates, with a slack
228 >     * threshold of two -- that is, we update head/tail when the
229 >     * current pointer appears to be two or more steps away from the
230 >     * first/last node. The slack value is hard-wired: a path greater
231 >     * than one is naturally implemented by checking equality of
232 >     * traversal pointers except when the list has only one element,
233 >     * in which case we keep slack threshold at one. Avoiding tracking
234 >     * explicit counts across method calls slightly simplifies an
235 >     * already-messy implementation. Using randomization would
236 >     * probably work better if there were a low-quality dirt-cheap
237 >     * per-thread one available, but even ThreadLocalRandom is too
238 >     * heavy for these purposes.
239 >     *
240 >     * With such a small slack threshold value, it is rarely
241 >     * worthwhile to augment this with path short-circuiting; i.e.,
242 >     * unsplicing nodes between head and the first unmatched node, or
243 >     * similarly for tail, rather than advancing head or tail
244 >     * proper. However, it is used (in awaitMatch) immediately before
245 >     * a waiting thread starts to block, as a final bit of helping at
246 >     * a point when contention with others is extremely unlikely
247 >     * (since if other threads that could release it are operating,
248 >     * then the current thread wouldn't be blocking).
249 >     *
250 >     * We allow both the head and tail fields to be null before any
251 >     * nodes are enqueued; initializing upon first append.  This
252 >     * simplifies some other logic, as well as providing more
253 >     * efficient explicit control paths instead of letting JVMs insert
254 >     * implicit NullPointerExceptions when they are null.  While not
255 >     * currently fully implemented, we also leave open the possibility
256 >     * of re-nulling these fields when empty (which is complicated to
257 >     * arrange, for little benefit.)
258 >     *
259 >     * All enqueue/dequeue operations are handled by the single method
260 >     * "xfer" with parameters indicating whether to act as some form
261 >     * of offer, put, poll, take, or transfer (each possibly with
262 >     * timeout). The relative complexity of using one monolithic
263 >     * method outweighs the code bulk and maintenance problems of
264 >     * using separate methods for each case.
265 >     *
266 >     * Operation consists of up to three phases. The first is
267 >     * implemented within method xfer, the second in tryAppend, and
268 >     * the third in method awaitMatch.
269 >     *
270 >     * 1. Try to match an existing node
271 >     *
272 >     *    Starting at head, skip already-matched nodes until finding
273 >     *    an unmatched node of opposite mode, if one exists, in which
274 >     *    case matching it and returning, also if necessary updating
275 >     *    head to one past the matched node (or the node itself if the
276 >     *    list has no other unmatched nodes). If the CAS misses, then
277 >     *    a loop retries advancing head by two steps until either
278 >     *    success or the slack is at most two. By requiring that each
279 >     *    attempt advances head by two (if applicable), we ensure that
280 >     *    the slack does not grow without bound. Traversals also check
281 >     *    if the initial head is now off-list, in which case they
282 >     *    start at the new head.
283 >     *
284 >     *    If no candidates are found and the call was untimed
285 >     *    poll/offer, (argument "how" is NOW) return.
286 >     *
287 >     * 2. Try to append a new node (method tryAppend)
288 >     *
289 >     *    Starting at current tail pointer, find the actual last node
290 >     *    and try to append a new node (or if head was null, establish
291 >     *    the first node). Nodes can be appended only if their
292 >     *    predecessors are either already matched or are of the same
293 >     *    mode. If we detect otherwise, then a new node with opposite
294 >     *    mode must have been appended during traversal, so we must
295 >     *    restart at phase 1. The traversal and update steps are
296 >     *    otherwise similar to phase 1: Retrying upon CAS misses and
297 >     *    checking for staleness.  In particular, if a self-link is
298 >     *    encountered, then we can safely jump to a node on the list
299 >     *    by continuing the traversal at current head.
300 >     *
301 >     *    On successful append, if the call was ASYNC, return.
302 >     *
303 >     * 3. Await match or cancellation (method awaitMatch)
304 >     *
305 >     *    Wait for another thread to match node; instead cancelling if
306 >     *    the current thread was interrupted or the wait timed out. On
307 >     *    multiprocessors, we use front-of-queue spinning: If a node
308 >     *    appears to be the first unmatched node in the queue, it
309 >     *    spins a bit before blocking. In either case, before blocking
310 >     *    it tries to unsplice any nodes between the current "head"
311 >     *    and the first unmatched node.
312 >     *
313 >     *    Front-of-queue spinning vastly improves performance of
314 >     *    heavily contended queues. And so long as it is relatively
315 >     *    brief and "quiet", spinning does not much impact performance
316 >     *    of less-contended queues.  During spins threads check their
317 >     *    interrupt status and generate a thread-local random number
318 >     *    to decide to occasionally perform a Thread.yield. While
319 >     *    yield has underdefined specs, we assume that might it help,
320 >     *    and will not hurt in limiting impact of spinning on busy
321 >     *    systems.  We also use smaller (1/2) spins for nodes that are
322 >     *    not known to be front but whose predecessors have not
323 >     *    blocked -- these "chained" spins avoid artifacts of
324 >     *    front-of-queue rules which otherwise lead to alternating
325 >     *    nodes spinning vs blocking. Further, front threads that
326 >     *    represent phase changes (from data to request node or vice
327 >     *    versa) compared to their predecessors receive additional
328 >     *    chained spins, reflecting longer paths typically required to
329 >     *    unblock threads during phase changes.
330 >     */
331 >
332 >    /** True if on multiprocessor */
333 >    private static final boolean MP =
334 >        Runtime.getRuntime().availableProcessors() > 1;
335 >
336 >    /**
337 >     * The number of times to spin (with randomly interspersed calls
338 >     * to Thread.yield) on multiprocessor before blocking when a node
339 >     * is apparently the first waiter in the queue.  See above for
340 >     * explanation. Must be a power of two. The value is empirically
341 >     * derived -- it works pretty well across a variety of processors,
342 >     * numbers of CPUs, and OSes.
343 >     */
344 >    private static final int FRONT_SPINS   = 1 << 7;
345 >
346 >    /**
347 >     * The number of times to spin before blocking when a node is
348 >     * preceded by another node that is apparently spinning.  Also
349 >     * serves as an increment to FRONT_SPINS on phase changes, and as
350 >     * base average frequency for yielding during spins. Must be a
351 >     * power of two.
352 >     */
353 >    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
354 >
355 >    /**
356 >     * Queue nodes. Uses Object, not E, for items to allow forgetting
357 >     * them after use.  Relies heavily on Unsafe mechanics to minimize
358 >     * unnecessary ordering constraints: Writes that intrinsically
359 >     * precede or follow CASes use simple relaxed forms.  Other
360 >     * cleanups use releasing/lazy writes.
361 >     */
362 >    static final class Node<E> {
363 >        final boolean isData;   // false if this is a request node
364 >        volatile Object item;   // initially non-null if isData; CASed to match
365 >        volatile Node<E> next;
366 >        volatile Thread waiter; // null until waiting
367  
368 <    // Wait modes for xfer method
369 <    static final int NOWAIT  = 0;
370 <    static final int TIMEOUT = 1;
371 <    static final int WAIT    = 2;
368 >        // CAS methods for fields
369 >        final boolean casNext(Node<E> cmp, Node<E> val) {
370 >            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
371 >        }
372  
373 <    /** The number of CPUs, for spin control */
374 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
373 >        final boolean casItem(Object cmp, Object val) {
374 >            assert cmp.getClass() != Node.class;
375 >            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
376 >        }
377  
378 <    /**
379 <     * The number of times to spin before blocking in timed waits.
380 <     * The value is empirically derived -- it works well across a
381 <     * variety of processors and OSes. Empirically, the best value
382 <     * seems not to vary with number of CPUs (beyond 2) so is just
383 <     * a constant.
384 <     */
385 <    static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
378 >        /**
379 >         * Creates a new node. Uses relaxed write because item can only
380 >         * be seen if followed by CAS.
381 >         */
382 >        Node(E item, boolean isData) {
383 >            UNSAFE.putObject(this, itemOffset, item); // relaxed write
384 >            this.isData = isData;
385 >        }
386  
387 <    /**
388 <     * The number of times to spin before blocking in untimed waits.
389 <     * This is greater than timed value because untimed waits spin
390 <     * faster since they don't need to check times on each spin.
391 <     */
392 <    static final int maxUntimedSpins = maxTimedSpins * 16;
387 >        /**
388 >         * Links node to itself to avoid garbage retention.  Called
389 >         * only after CASing head field, so uses relaxed write.
390 >         */
391 >        final void forgetNext() {
392 >            UNSAFE.putObject(this, nextOffset, this);
393 >        }
394  
395 <    /**
396 <     * The number of nanoseconds for which it is faster to spin
397 <     * rather than to use timed park. A rough estimate suffices.
398 <     */
399 <    static final long spinForTimeoutThreshold = 1000L;
395 >        /**
396 >         * Sets item to self (using a releasing/lazy write) and waiter
397 >         * to null, to avoid garbage retention after extracting or
398 >         * cancelling.
399 >         */
400 >        final void forgetContents() {
401 >            UNSAFE.putOrderedObject(this, itemOffset, this);
402 >            UNSAFE.putOrderedObject(this, waiterOffset, null);
403 >        }
404  
405 <    /**
406 <     * Node class for LinkedTransferQueue. Opportunistically
407 <     * subclasses from AtomicReference to represent item. Uses Object,
408 <     * not E, to allow setting item to "this" after use, to avoid
409 <     * garbage retention. Similarly, setting the next field to this is
410 <     * used as sentinel that node is off list.
411 <     */
412 <    static final class Node<E> extends AtomicReference<Object> {
108 <        volatile Node<E> next;
109 <        volatile Thread waiter;       // to control park/unpark
110 <        final boolean isData;
405 >        /**
406 >         * Returns true if this node has been matched, including the
407 >         * case of artificial matches due to cancellation.
408 >         */
409 >        final boolean isMatched() {
410 >            Object x = item;
411 >            return x == this || (x != null) != isData;
412 >        }
413  
414 <        Node(E item, boolean isData) {
415 <            super(item);
416 <            this.isData = isData;
414 >        /**
415 >         * Returns true if a node with the given mode cannot be
416 >         * appended to this node because this node is unmatched and
417 >         * has opposite data mode.
418 >         */
419 >        final boolean cannotPrecede(boolean haveData) {
420 >            boolean d = isData;
421 >            Object x;
422 >            return d != haveData && (x = item) != this && (x != null) == d;
423          }
424  
425 <        // Unsafe mechanics
425 >        /**
426 >         * Tries to artificially match a data node -- used by remove.
427 >         */
428 >        final boolean tryMatchData() {
429 >            Object x = item;
430 >            if (x != null && x != this && casItem(x, null)) {
431 >                LockSupport.unpark(waiter);
432 >                return true;
433 >            }
434 >            return false;
435 >        }
436  
437 +        // Unsafe mechanics
438          private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
439          private static final long nextOffset =
440              objectFieldOffset(UNSAFE, "next", Node.class);
441 <
442 <        final boolean casNext(Node<E> cmp, Node<E> val) {
443 <            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
444 <        }
126 <
127 <        final void clearNext() {
128 <            UNSAFE.putOrderedObject(this, nextOffset, this);
129 <        }
441 >        private static final long itemOffset =
442 >            objectFieldOffset(UNSAFE, "item", Node.class);
443 >        private static final long waiterOffset =
444 >            objectFieldOffset(UNSAFE, "waiter", Node.class);
445  
446          private static final long serialVersionUID = -3375979862319811754L;
447      }
448  
449 <    /**
450 <     * Padded version of AtomicReference used for head, tail and
136 <     * cleanMe, to alleviate contention across threads CASing one vs
137 <     * the other.
138 <     */
139 <    static final class PaddedAtomicReference<T> extends AtomicReference<T> {
140 <        // enough padding for 64bytes with 4byte refs
141 <        Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
142 <        PaddedAtomicReference(T r) { super(r); }
143 <        private static final long serialVersionUID = 8170090609809740854L;
144 <    }
449 >    /** head of the queue; null until first enqueue */
450 >    transient volatile Node<E> head;
451  
452 +    /** predecessor of dangling unspliceable node */
453 +    private transient volatile Node<E> cleanMe; // decl here reduces contention
454  
455 <    /** head of the queue */
456 <    private transient final PaddedAtomicReference<Node<E>> head;
455 >    /** tail of the queue; null until first append */
456 >    private transient volatile Node<E> tail;
457  
458 <    /** tail of the queue */
459 <    private transient final PaddedAtomicReference<Node<E>> tail;
458 >    // CAS methods for fields
459 >    private boolean casTail(Node<E> cmp, Node<E> val) {
460 >        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
461 >    }
462  
463 <    /**
464 <     * Reference to a cancelled node that might not yet have been
465 <     * unlinked from queue because it was the last inserted node
156 <     * when it cancelled.
157 <     */
158 <    private transient final PaddedAtomicReference<Node<E>> cleanMe;
463 >    private boolean casHead(Node<E> cmp, Node<E> val) {
464 >        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
465 >    }
466  
467 <    /**
468 <     * Tries to cas nh as new head; if successful, unlink
162 <     * old head's next node to avoid garbage retention.
163 <     */
164 <    private boolean advanceHead(Node<E> h, Node<E> nh) {
165 <        if (h == head.get() && head.compareAndSet(h, nh)) {
166 <            h.clearNext(); // forget old next
167 <            return true;
168 <        }
169 <        return false;
467 >    private boolean casCleanMe(Node<E> cmp, Node<E> val) {
468 >        return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
469      }
470  
471 +    /*
472 +     * Possible values for "how" argument in xfer method. Beware that
473 +     * the order of assigned numerical values matters.
474 +     */
475 +    private static final int NOW     = 0; // for untimed poll, tryTransfer
476 +    private static final int ASYNC   = 1; // for offer, put, add
477 +    private static final int SYNC    = 2; // for transfer, take
478 +    private static final int TIMEOUT = 3; // for timed poll, tryTransfer
479 +
480      /**
481 <     * Puts or takes an item. Used for most queue operations (except
174 <     * poll() and tryTransfer()). See the similar code in
175 <     * SynchronousQueue for detailed explanation.
481 >     * Implements all queuing methods. See above for explanation.
482       *
483 <     * @param e the item or if null, signifies that this is a take
484 <     * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
483 >     * @param e the item or null for take
484 >     * @param haveData true if this is a put, else a take
485 >     * @param how NOW, ASYNC, SYNC, or TIMEOUT
486       * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
487 <     * @return an item, or null on failure
487 >     * @return an item if matched, else e
488 >     * @throws NullPointerException if haveData mode but e is null
489       */
490 <    private E xfer(E e, int mode, long nanos) {
491 <        boolean isData = (e != null);
492 <        Node<E> s = null;
493 <        final PaddedAtomicReference<Node<E>> head = this.head;
186 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
490 >    private E xfer(E e, boolean haveData, int how, long nanos) {
491 >        if (haveData && (e == null))
492 >            throw new NullPointerException();
493 >        Node<E> s = null;                     // the node to append, if needed
494  
495 <        for (;;) {
189 <            Node<E> t = tail.get();
190 <            Node<E> h = head.get();
495 >        retry: for (;;) {                     // restart on append race
496  
497 <            if (t == h || t.isData == isData) {
498 <                if (s == null)
499 <                    s = new Node<E>(e, isData);
500 <                Node<E> last = t.next;
501 <                if (last != null) {
502 <                    if (t == tail.get())
503 <                        tail.compareAndSet(t, last);
504 <                }
505 <                else if (t.casNext(null, s)) {
506 <                    tail.compareAndSet(t, s);
507 <                    return awaitFulfill(t, s, e, mode, nanos);
508 <                }
509 <            } else {
510 <                Node<E> first = h.next;
511 <                if (t == tail.get() && first != null &&
512 <                    advanceHead(h, first)) {
513 <                    Object x = first.get();
514 <                    if (x != first && first.compareAndSet(x, e)) {
515 <                        LockSupport.unpark(first.waiter);
516 <                        return isData ? e : (E) x;
497 >            for (Node<E> h = head, p = h; p != null;) {
498 >                // find & match first node
499 >                boolean isData = p.isData;
500 >                Object item = p.item;
501 >                if (item != p && (item != null) == isData) { // unmatched
502 >                    if (isData == haveData)   // can't match
503 >                        break;
504 >                    if (p.casItem(item, e)) { // match
505 >                        for (Node<E> q = p; q != h;) {
506 >                            Node<E> n = q.next; // update head by 2
507 >                            if (n != null)    // unless singleton
508 >                                q = n;
509 >                            if (head == h && casHead(h, q)) {
510 >                                h.forgetNext();
511 >                                break;
512 >                            }                 // advance and retry
513 >                            if ((h = head)   == null ||
514 >                                (q = h.next) == null || !q.isMatched())
515 >                                break;        // unless slack < 2
516 >                        }
517 >                        LockSupport.unpark(p.waiter);
518 >                        return this.<E>cast(item);
519                      }
520                  }
521 +                Node<E> n = p.next;
522 +                p = (p != n) ? n : (h = head); // Use head if p offlist
523 +            }
524 +
525 +            if (how >= ASYNC) {               // No matches available
526 +                if (s == null)
527 +                    s = new Node<E>(e, haveData);
528 +                Node<E> pred = tryAppend(s, haveData);
529 +                if (pred == null)
530 +                    continue retry;           // lost race vs opposite mode
531 +                if (how >= SYNC)
532 +                    return awaitMatch(s, pred, e, how, nanos);
533              }
534 +            return e; // not waiting
535          }
536      }
537  
218
538      /**
539 <     * Version of xfer for poll() and tryTransfer, which
540 <     * simplifies control paths both here and in xfer.
539 >     * Tries to append node s as tail.
540 >     *
541 >     * @param s the node to append
542 >     * @param haveData true if appending in data mode
543 >     * @return null on failure due to losing race with append in
544 >     * different mode, else s's predecessor, or s itself if no
545 >     * predecessor
546       */
547 <    private E fulfill(E e) {
548 <        boolean isData = (e != null);
549 <        final PaddedAtomicReference<Node<E>> head = this.head;
550 <        final PaddedAtomicReference<Node<E>> tail = this.tail;
551 <
552 <        for (;;) {
553 <            Node<E> t = tail.get();
554 <            Node<E> h = head.get();
555 <
556 <            if (t == h || t.isData == isData) {
557 <                Node<E> last = t.next;
558 <                if (t == tail.get()) {
559 <                    if (last != null)
560 <                        tail.compareAndSet(t, last);
561 <                    else
562 <                        return null;
563 <                }
564 <            } else {
565 <                Node<E> first = h.next;
566 <                if (t == tail.get() &&
243 <                    first != null &&
244 <                    advanceHead(h, first)) {
245 <                    Object x = first.get();
246 <                    if (x != first && first.compareAndSet(x, e)) {
247 <                        LockSupport.unpark(first.waiter);
248 <                        return isData ? e : (E) x;
249 <                    }
547 >    private Node<E> tryAppend(Node<E> s, boolean haveData) {
548 >        for (Node<E> t = tail, p = t;;) { // move p to last node and append
549 >            Node<E> n, u;                     // temps for reads of next & tail
550 >            if (p == null && (p = head) == null) {
551 >                if (casHead(null, s))
552 >                    return s;                 // initialize
553 >            }
554 >            else if (p.cannotPrecede(haveData))
555 >                return null;                  // lost race vs opposite mode
556 >            else if ((n = p.next) != null)    // not last; keep traversing
557 >                p = p != t && t != (u = tail) ? (t = u) : // stale tail
558 >                    (p != n) ? n : null;      // restart if off list
559 >            else if (!p.casNext(null, s))
560 >                p = p.next;                   // re-read on CAS failure
561 >            else {
562 >                if (p != t) {                 // update if slack now >= 2
563 >                    while ((tail != t || !casTail(t, s)) &&
564 >                           (t = tail)   != null &&
565 >                           (s = t.next) != null && // advance and retry
566 >                           (s = s.next) != null && s != t);
567                  }
568 +                return p;
569              }
570          }
571      }
572  
573      /**
574 <     * Spins/blocks until node s is fulfilled or caller gives up,
257 <     * depending on wait mode.
574 >     * Spins/yields/blocks until node s is matched or caller gives up.
575       *
259     * @param pred the predecessor of waiting node
576       * @param s the waiting node
577 +     * @param pred the predecessor of s, or s itself if it has no
578 +     * predecessor, or null if unknown (the null case does not occur
579 +     * in any current calls but may in possible future extensions)
580       * @param e the comparison value for checking match
581 <     * @param mode mode
581 >     * @param how either SYNC or TIMEOUT
582       * @param nanos timeout value
583 <     * @return matched item, or null if cancelled
583 >     * @return matched item, or e if unmatched on interrupt or timeout
584       */
585 <    private E awaitFulfill(Node<E> pred, Node<E> s, E e,
586 <                           int mode, long nanos) {
268 <        if (mode == NOWAIT)
269 <            return null;
270 <
271 <        long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
585 >    private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
586 >        long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
587          Thread w = Thread.currentThread();
588 <        int spins = -1; // set to desired spin count below
588 >        int spins = -1; // initialized after first item and cancel checks
589 >        ThreadLocalRandom randomYields = null; // bound if needed
590 >
591          for (;;) {
592 <            if (w.isInterrupted())
593 <                s.compareAndSet(e, s);
594 <            Object x = s.get();
595 <            if (x != e) {                 // Node was matched or cancelled
596 <                advanceHead(pred, s);     // unlink if head
597 <                if (x == s) {             // was cancelled
598 <                    clean(pred, s);
599 <                    return null;
600 <                }
601 <                else if (x != null) {
285 <                    s.set(s);             // avoid garbage retention
286 <                    return (E) x;
287 <                }
288 <                else
289 <                    return e;
592 >            Object item = s.item;
593 >            if (item != e) {                  // matched
594 >                assert item != s;
595 >                s.forgetContents();           // avoid garbage
596 >                return this.<E>cast(item);
597 >            }
598 >            if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
599 >                    s.casItem(e, s)) {       // cancel
600 >                unsplice(pred, s);
601 >                return e;
602              }
603 <            if (mode == TIMEOUT) {
603 >
604 >            if (spins < 0) {                  // establish spins at/near front
605 >                if ((spins = spinsFor(pred, s.isData)) > 0)
606 >                    randomYields = ThreadLocalRandom.current();
607 >            }
608 >            else if (spins > 0) {             // spin
609 >                if (--spins == 0)
610 >                    shortenHeadPath();        // reduce slack before blocking
611 >                else if (randomYields.nextInt(CHAINED_SPINS) == 0)
612 >                    Thread.yield();           // occasionally yield
613 >            }
614 >            else if (s.waiter == null) {
615 >                s.waiter = w;                 // request unpark then recheck
616 >            }
617 >            else if (how == TIMEOUT) {
618                  long now = System.nanoTime();
619 <                nanos -= now - lastTime;
619 >                if ((nanos -= now - lastTime) > 0)
620 >                    LockSupport.parkNanos(this, nanos);
621                  lastTime = now;
295                if (nanos <= 0) {
296                    s.compareAndSet(e, s); // try to cancel
297                    continue;
298                }
622              }
623 <            if (spins < 0) {
301 <                Node<E> h = head.get(); // only spin if at head
302 <                spins = ((h.next != s) ? 0 :
303 <                         (mode == TIMEOUT) ? maxTimedSpins :
304 <                         maxUntimedSpins);
305 <            }
306 <            if (spins > 0)
307 <                --spins;
308 <            else if (s.waiter == null)
309 <                s.waiter = w;
310 <            else if (mode != TIMEOUT) {
623 >            else {
624                  LockSupport.park(this);
625                  s.waiter = null;
626 <                spins = -1;
314 <            }
315 <            else if (nanos > spinForTimeoutThreshold) {
316 <                LockSupport.parkNanos(this, nanos);
317 <                s.waiter = null;
318 <                spins = -1;
626 >                spins = -1;                   // spin if front upon wakeup
627              }
628          }
629      }
630  
631      /**
632 <     * Returns validated tail for use in cleaning methods.
632 >     * Returns spin/yield value for a node with given predecessor and
633 >     * data mode. See above for explanation.
634       */
635 <    private Node<E> getValidatedTail() {
636 <        for (;;) {
637 <            Node<E> h = head.get();
638 <            Node<E> first = h.next;
639 <            if (first != null && first.get() == first) { // help advance
640 <                advanceHead(h, first);
641 <                continue;
642 <            }
643 <            Node<E> t = tail.get();
644 <            Node<E> last = t.next;
645 <            if (t == tail.get()) {
646 <                if (last != null)
647 <                    tail.compareAndSet(t, last); // help advance
648 <                else
649 <                    return t;
635 >    private static int spinsFor(Node<?> pred, boolean haveData) {
636 >        if (MP && pred != null) {
637 >            if (pred.isData != haveData)      // phase change
638 >                return FRONT_SPINS + CHAINED_SPINS;
639 >            if (pred.isMatched())             // probably at front
640 >                return FRONT_SPINS;
641 >            if (pred.waiter == null)          // pred apparently spinning
642 >                return CHAINED_SPINS;
643 >        }
644 >        return 0;
645 >    }
646 >
647 >    /**
648 >     * Tries (once) to unsplice nodes between head and first unmatched
649 >     * or trailing node; failing on contention.
650 >     */
651 >    private void shortenHeadPath() {
652 >        Node<E> h, hn, p, q;
653 >        if ((p = h = head) != null && h.isMatched() &&
654 >            (q = hn = h.next) != null) {
655 >            Node<E> n;
656 >            while ((n = q.next) != q) {
657 >                if (n == null || !q.isMatched()) {
658 >                    if (hn != q && h.next == hn)
659 >                        h.casNext(hn, q);
660 >                    break;
661 >                }
662 >                p = q;
663 >                q = n;
664              }
665          }
666      }
667  
668 +    /* -------------- Traversal methods -------------- */
669 +
670      /**
671 <     * Gets rid of cancelled node s with original predecessor pred.
672 <     *
673 <     * @param pred predecessor of cancelled node
674 <     * @param s the cancelled node
671 >     * Returns the first unmatched node of the given mode, or null if
672 >     * none.  Used by methods isEmpty, hasWaitingConsumer.
673 >     */
674 >    private Node<E> firstOfMode(boolean data) {
675 >        for (Node<E> p = head; p != null; ) {
676 >            if (!p.isMatched())
677 >                return (p.isData == data) ? p : null;
678 >            Node<E> n = p.next;
679 >            p = (n != p) ? n : head;
680 >        }
681 >        return null;
682 >    }
683 >
684 >    @SuppressWarnings("unchecked")
685 >    static <E> E cast(Object item) {
686 >        assert item.getClass() != Node.class;
687 >        return (E) item;
688 >    }
689 >
690 >    /**
691 >     * Returns the item in the first unmatched node with isData; or
692 >     * null if none.  Used by peek.
693 >     */
694 >    private E firstDataItem() {
695 >        for (Node<E> p = head; p != null; ) {
696 >            boolean isData = p.isData;
697 >            Object item = p.item;
698 >            if (item != p && (item != null) == isData)
699 >                return isData ? this.<E>cast(item) : null;
700 >            Node<E> n = p.next;
701 >            p = (n != p) ? n : head;
702 >        }
703 >        return null;
704 >    }
705 >
706 >    /**
707 >     * Traverses and counts unmatched nodes of the given mode.
708 >     * Used by methods size and getWaitingConsumerCount.
709       */
710 <    private void clean(Node<E> pred, Node<E> s) {
711 <        Thread w = s.waiter;
712 <        if (w != null) {             // Wake up thread
713 <            s.waiter = null;
714 <            if (w != Thread.currentThread())
715 <                LockSupport.unpark(w);
710 >    private int countOfMode(boolean data) {
711 >        int count = 0;
712 >        for (Node<E> p = head; p != null; ) {
713 >            if (!p.isMatched()) {
714 >                if (p.isData != data)
715 >                    return 0;
716 >                if (++count == Integer.MAX_VALUE) // saturated
717 >                    break;
718 >            }
719 >            Node<E> n = p.next;
720 >            if (n != p)
721 >                p = n;
722 >            else {
723 >                count = 0;
724 >                p = head;
725 >            }
726 >        }
727 >        return count;
728 >    }
729 >
730 >    final class Itr implements Iterator<E> {
731 >        private Node<E> nextNode;   // next node to return item for
732 >        private E nextItem;         // the corresponding item
733 >        private Node<E> lastRet;    // last returned node, to support remove
734 >
735 >        /**
736 >         * Moves to next node after prev, or first node if prev null.
737 >         */
738 >        private void advance(Node<E> prev) {
739 >            lastRet = prev;
740 >            Node<E> p;
741 >            if (prev == null || (p = prev.next) == prev)
742 >                p = head;
743 >            while (p != null) {
744 >                Object item = p.item;
745 >                if (p.isData) {
746 >                    if (item != null && item != p) {
747 >                        nextItem = LinkedTransferQueue.this.<E>cast(item);
748 >                        nextNode = p;
749 >                        return;
750 >                    }
751 >                }
752 >                else if (item == null)
753 >                    break;
754 >                Node<E> n = p.next;
755 >                p = (n != p) ? n : head;
756 >            }
757 >            nextNode = null;
758 >        }
759 >
760 >        Itr() {
761 >            advance(null);
762 >        }
763 >
764 >        public final boolean hasNext() {
765 >            return nextNode != null;
766 >        }
767 >
768 >        public final E next() {
769 >            Node<E> p = nextNode;
770 >            if (p == null) throw new NoSuchElementException();
771 >            E e = nextItem;
772 >            advance(p);
773 >            return e;
774          }
775  
776 <        if (pred == null)
777 <            return;
776 >        public final void remove() {
777 >            Node<E> p = lastRet;
778 >            if (p == null) throw new IllegalStateException();
779 >            lastRet = null;
780 >            findAndRemoveNode(p);
781 >        }
782 >    }
783  
784 +    /* -------------- Removal methods -------------- */
785 +
786 +    /**
787 +     * Unsplices (now or later) the given deleted/cancelled node with
788 +     * the given predecessor.
789 +     *
790 +     * @param pred predecessor of node to be unspliced
791 +     * @param s the node to be unspliced
792 +     */
793 +    private void unsplice(Node<E> pred, Node<E> s) {
794 +        s.forgetContents(); // clear unneeded fields
795          /*
796           * At any given time, exactly one node on list cannot be
797 <         * deleted -- the last inserted node. To accommodate this, if
798 <         * we cannot delete s, we save its predecessor as "cleanMe",
799 <         * processing the previously saved version first. At least one
800 <         * of node s or the node previously saved can always be
797 >         * unlinked -- the last inserted node. To accommodate this, if
798 >         * we cannot unlink s, we save its predecessor as "cleanMe",
799 >         * processing the previously saved version first. Because only
800 >         * one node in the list can have a null next, at least one of
801 >         * node s or the node previously saved can always be
802           * processed, so this always terminates.
803           */
804 <        while (pred.next == s) {
805 <            Node<E> oldpred = reclean();  // First, help get rid of cleanMe
806 <            Node<E> t = getValidatedTail();
807 <            if (s != t) {               // If not tail, try to unsplice
808 <                Node<E> sn = s.next;      // s.next == s means s already off list
809 <                if (sn == s || pred.casNext(s, sn))
804 >        if (pred != null && pred != s) {
805 >            while (pred.next == s) {
806 >                Node<E> oldpred = (cleanMe == null) ? null : reclean();
807 >                Node<E> n = s.next;
808 >                if (n != null) {
809 >                    if (n != s)
810 >                        pred.casNext(s, n);
811                      break;
812 +                }
813 +                if (oldpred == pred ||      // Already saved
814 +                    (oldpred == null && casCleanMe(null, pred)))
815 +                    break;                  // Postpone cleaning
816              }
378            else if (oldpred == pred || // Already saved
379                     (oldpred == null && cleanMe.compareAndSet(null, pred)))
380                break;                  // Postpone cleaning
817          }
818      }
819  
820      /**
821 <     * Tries to unsplice the cancelled node held in cleanMe that was
822 <     * previously uncleanable because it was at tail.
821 >     * Tries to unsplice the deleted/cancelled node held in cleanMe
822 >     * that was previously uncleanable because it was at tail.
823       *
824       * @return current cleanMe node (or null)
825       */
826      private Node<E> reclean() {
827          /*
828 <         * cleanMe is, or at one time was, predecessor of cancelled
829 <         * node s that was the tail so could not be unspliced.  If s
828 >         * cleanMe is, or at one time was, predecessor of a cancelled
829 >         * node s that was the tail so could not be unspliced.  If it
830           * is no longer the tail, try to unsplice if necessary and
831           * make cleanMe slot available.  This differs from similar
832 <         * code in clean() because we must check that pred still
833 <         * points to a cancelled node that must be unspliced -- if
834 <         * not, we can (must) clear cleanMe without unsplicing.
835 <         * This can loop only due to contention on casNext or
400 <         * clearing cleanMe.
832 >         * code in unsplice() because we must check that pred still
833 >         * points to a matched node that can be unspliced -- if not,
834 >         * we can (must) clear cleanMe without unsplicing.  This can
835 >         * loop only due to contention.
836           */
837          Node<E> pred;
838 <        while ((pred = cleanMe.get()) != null) {
404 <            Node<E> t = getValidatedTail();
838 >        while ((pred = cleanMe) != null) {
839              Node<E> s = pred.next;
840 <            if (s != t) {
841 <                Node<E> sn;
842 <                if (s == null || s == pred || s.get() != s ||
843 <                    (sn = s.next) == s || pred.casNext(s, sn))
844 <                    cleanMe.compareAndSet(pred, null);
840 >            Node<E> n;
841 >            if (s == null || s == pred || !s.isMatched())
842 >                casCleanMe(pred, null); // already gone
843 >            else if ((n = s.next) != null) {
844 >                if (n != s)
845 >                    pred.casNext(s, n);
846 >                casCleanMe(pred, null);
847              }
848 <            else // s is still tail; cannot clean
848 >            else
849                  break;
850          }
851          return pred;
852      }
853  
854      /**
855 +     * Main implementation of Iterator.remove(). Find
856 +     * and unsplice the given node.
857 +     */
858 +    final void findAndRemoveNode(Node<E> s) {
859 +        if (s.tryMatchData()) {
860 +            Node<E> pred = null;
861 +            Node<E> p = head;
862 +            while (p != null) {
863 +                if (p == s) {
864 +                    unsplice(pred, p);
865 +                    break;
866 +                }
867 +                if (!p.isData && !p.isMatched())
868 +                    break;
869 +                pred = p;
870 +                if ((p = p.next) == pred) { // stale
871 +                    pred = null;
872 +                    p = head;
873 +                }
874 +            }
875 +        }
876 +    }
877 +
878 +    /**
879 +     * Main implementation of remove(Object)
880 +     */
881 +    private boolean findAndRemove(Object e) {
882 +        if (e != null) {
883 +            Node<E> pred = null;
884 +            Node<E> p = head;
885 +            while (p != null) {
886 +                Object item = p.item;
887 +                if (p.isData) {
888 +                    if (item != null && item != p && e.equals(item) &&
889 +                        p.tryMatchData()) {
890 +                        unsplice(pred, p);
891 +                        return true;
892 +                    }
893 +                }
894 +                else if (item == null)
895 +                    break;
896 +                pred = p;
897 +                if ((p = p.next) == pred) {
898 +                    pred = null;
899 +                    p = head;
900 +                }
901 +            }
902 +        }
903 +        return false;
904 +    }
905 +
906 +
907 +    /**
908       * Creates an initially empty {@code LinkedTransferQueue}.
909       */
910      public LinkedTransferQueue() {
422        Node<E> dummy = new Node<E>(null, false);
423        head = new PaddedAtomicReference<Node<E>>(dummy);
424        tail = new PaddedAtomicReference<Node<E>>(dummy);
425        cleanMe = new PaddedAtomicReference<Node<E>>(null);
911      }
912  
913      /**
# Line 446 | Line 931 | public class LinkedTransferQueue<E> exte
931       * @throws NullPointerException if the specified element is null
932       */
933      public void put(E e) {
934 <        offer(e);
934 >        xfer(e, true, ASYNC, 0);
935      }
936  
937      /**
# Line 459 | Line 944 | public class LinkedTransferQueue<E> exte
944       * @throws NullPointerException if the specified element is null
945       */
946      public boolean offer(E e, long timeout, TimeUnit unit) {
947 <        return offer(e);
947 >        xfer(e, true, ASYNC, 0);
948 >        return true;
949      }
950  
951      /**
# Line 471 | Line 957 | public class LinkedTransferQueue<E> exte
957       * @throws NullPointerException if the specified element is null
958       */
959      public boolean offer(E e) {
960 <        if (e == null) throw new NullPointerException();
475 <        xfer(e, NOWAIT, 0);
960 >        xfer(e, true, ASYNC, 0);
961          return true;
962      }
963  
# Line 485 | Line 970 | public class LinkedTransferQueue<E> exte
970       * @throws NullPointerException if the specified element is null
971       */
972      public boolean add(E e) {
973 <        return offer(e);
973 >        xfer(e, true, ASYNC, 0);
974 >        return true;
975      }
976  
977      /**
# Line 499 | Line 985 | public class LinkedTransferQueue<E> exte
985       * @throws NullPointerException if the specified element is null
986       */
987      public boolean tryTransfer(E e) {
988 <        if (e == null) throw new NullPointerException();
503 <        return fulfill(e) != null;
988 >        return xfer(e, true, NOW, 0) == null;
989      }
990  
991      /**
# Line 515 | Line 1000 | public class LinkedTransferQueue<E> exte
1000       * @throws NullPointerException if the specified element is null
1001       */
1002      public void transfer(E e) throws InterruptedException {
1003 <        if (e == null) throw new NullPointerException();
1004 <        if (xfer(e, WAIT, 0) == null) {
520 <            Thread.interrupted();
1003 >        if (xfer(e, true, SYNC, 0) != null) {
1004 >            Thread.interrupted(); // failure possible only due to interrupt
1005              throw new InterruptedException();
1006          }
1007      }
# Line 538 | Line 1022 | public class LinkedTransferQueue<E> exte
1022       */
1023      public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1024          throws InterruptedException {
1025 <        if (e == null) throw new NullPointerException();
542 <        if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
1025 >        if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1026              return true;
1027          if (!Thread.interrupted())
1028              return false;
# Line 547 | Line 1030 | public class LinkedTransferQueue<E> exte
1030      }
1031  
1032      public E take() throws InterruptedException {
1033 <        E e = xfer(null, WAIT, 0);
1033 >        E e = xfer(null, false, SYNC, 0);
1034          if (e != null)
1035              return e;
1036          Thread.interrupted();
# Line 555 | Line 1038 | public class LinkedTransferQueue<E> exte
1038      }
1039  
1040      public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1041 <        E e = xfer(null, TIMEOUT, unit.toNanos(timeout));
1041 >        E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1042          if (e != null || !Thread.interrupted())
1043              return e;
1044          throw new InterruptedException();
1045      }
1046  
1047      public E poll() {
1048 <        return fulfill(null);
1048 >        return xfer(null, false, NOW, 0);
1049      }
1050  
1051      /**
# Line 601 | Line 1084 | public class LinkedTransferQueue<E> exte
1084          return n;
1085      }
1086  
604    // Traversal-based methods
605
606    /**
607     * Returns head after performing any outstanding helping steps.
608     */
609    private Node<E> traversalHead() {
610        for (;;) {
611            Node<E> t = tail.get();
612            Node<E> h = head.get();
613            Node<E> last = t.next;
614            Node<E> first = h.next;
615            if (t == tail.get()) {
616                if (last != null)
617                    tail.compareAndSet(t, last);
618                else if (first != null) {
619                    Object x = first.get();
620                    if (x == first)
621                        advanceHead(h, first);
622                    else
623                        return h;
624                }
625                else
626                    return h;
627            }
628            reclean();
629        }
630    }
631
1087      /**
1088       * Returns an iterator over the elements in this queue in proper
1089       * sequence, from head to tail.
# Line 646 | Line 1101 | public class LinkedTransferQueue<E> exte
1101          return new Itr();
1102      }
1103  
649    /**
650     * Iterators. Basic strategy is to traverse list, treating
651     * non-data (i.e., request) nodes as terminating list.
652     * Once a valid data node is found, the item is cached
653     * so that the next call to next() will return it even
654     * if subsequently removed.
655     */
656    class Itr implements Iterator<E> {
657        Node<E> next;        // node to return next
658        Node<E> pnext;       // predecessor of next
659        Node<E> curr;        // last returned node, for remove()
660        Node<E> pcurr;       // predecessor of curr, for remove()
661        E nextItem;          // Cache of next item, once committed to in next
662
663        Itr() {
664            advance();
665        }
666
667        /**
668         * Moves to next valid node and returns item to return for
669         * next(), or null if no such.
670         */
671        private E advance() {
672            pcurr = pnext;
673            curr = next;
674            E item = nextItem;
675
676            for (;;) {
677                pnext = (next == null) ? traversalHead() : next;
678                next = pnext.next;
679                if (next == pnext) {
680                    next = null;
681                    continue;  // restart
682                }
683                if (next == null)
684                    break;
685                Object x = next.get();
686                if (x != null && x != next) {
687                    nextItem = (E) x;
688                    break;
689                }
690            }
691            return item;
692        }
693
694        public boolean hasNext() {
695            return next != null;
696        }
697
698        public E next() {
699            if (next == null)
700                throw new NoSuchElementException();
701            return advance();
702        }
703
704        public void remove() {
705            Node<E> p = curr;
706            if (p == null)
707                throw new IllegalStateException();
708            Object x = p.get();
709            if (x != null && x != p && p.compareAndSet(x, p))
710                clean(pcurr, p);
711        }
712    }
713
1104      public E peek() {
1105 <        for (;;) {
716 <            Node<E> h = traversalHead();
717 <            Node<E> p = h.next;
718 <            if (p == null)
719 <                return null;
720 <            Object x = p.get();
721 <            if (p != x) {
722 <                if (!p.isData)
723 <                    return null;
724 <                if (x != null)
725 <                    return (E) x;
726 <            }
727 <        }
1105 >        return firstDataItem();
1106      }
1107  
1108      /**
# Line 733 | Line 1111 | public class LinkedTransferQueue<E> exte
1111       * @return {@code true} if this queue contains no elements
1112       */
1113      public boolean isEmpty() {
1114 <        for (;;) {
737 <            Node<E> h = traversalHead();
738 <            Node<E> p = h.next;
739 <            if (p == null)
740 <                return true;
741 <            Object x = p.get();
742 <            if (p != x) {
743 <                if (!p.isData)
744 <                    return true;
745 <                if (x != null)
746 <                    return false;
747 <            }
748 <        }
1114 >        return firstOfMode(true) == null;
1115      }
1116  
1117      public boolean hasWaitingConsumer() {
1118 <        for (;;) {
753 <            Node<E> h = traversalHead();
754 <            Node<E> p = h.next;
755 <            if (p == null)
756 <                return false;
757 <            Object x = p.get();
758 <            if (p != x)
759 <                return !p.isData;
760 <        }
1118 >        return firstOfMode(false) != null;
1119      }
1120  
1121      /**
# Line 773 | Line 1131 | public class LinkedTransferQueue<E> exte
1131       * @return the number of elements in this queue
1132       */
1133      public int size() {
1134 <        for (;;) {
777 <            int count = 0;
778 <            Node<E> pred = traversalHead();
779 <            for (;;) {
780 <                Node<E> q = pred.next;
781 <                if (q == pred) // restart
782 <                    break;
783 <                if (q == null || !q.isData)
784 <                    return count;
785 <                Object x = q.get();
786 <                if (x != null && x != q) {
787 <                    if (++count == Integer.MAX_VALUE) // saturated
788 <                        return count;
789 <                }
790 <                pred = q;
791 <            }
792 <        }
1134 >        return countOfMode(true);
1135      }
1136  
1137      public int getWaitingConsumerCount() {
1138 <        // converse of size -- count valid non-data nodes
797 <        for (;;) {
798 <            int count = 0;
799 <            Node<E> pred = traversalHead();
800 <            for (;;) {
801 <                Node<E> q = pred.next;
802 <                if (q == pred) // restart
803 <                    break;
804 <                if (q == null || q.isData)
805 <                    return count;
806 <                Object x = q.get();
807 <                if (x == null) {
808 <                    if (++count == Integer.MAX_VALUE) // saturated
809 <                        return count;
810 <                }
811 <                pred = q;
812 <            }
813 <        }
1138 >        return countOfMode(false);
1139      }
1140  
1141      /**
# Line 825 | Line 1150 | public class LinkedTransferQueue<E> exte
1150       * @return {@code true} if this queue changed as a result of the call
1151       */
1152      public boolean remove(Object o) {
1153 <        if (o == null)
829 <            return false;
830 <        for (;;) {
831 <            Node<E> pred = traversalHead();
832 <            for (;;) {
833 <                Node<E> q = pred.next;
834 <                if (q == pred) // restart
835 <                    break;
836 <                if (q == null || !q.isData)
837 <                    return false;
838 <                Object x = q.get();
839 <                if (x != null && x != q && o.equals(x) &&
840 <                    q.compareAndSet(x, q)) {
841 <                    clean(pred, q);
842 <                    return true;
843 <                }
844 <                pred = q;
845 <            }
846 <        }
1153 >        return findAndRemove(o);
1154      }
1155  
1156      /**
# Line 858 | Line 1165 | public class LinkedTransferQueue<E> exte
1165      }
1166  
1167      /**
1168 <     * Save the state to a stream (that is, serialize it).
1168 >     * Saves the state to a stream (that is, serializes it).
1169       *
1170       * @serialData All of the elements (each an {@code E}) in
1171       * the proper order, followed by a null
# Line 874 | Line 1181 | public class LinkedTransferQueue<E> exte
1181      }
1182  
1183      /**
1184 <     * Reconstitute the Queue instance from a stream (that is,
1185 <     * deserialize it).
1184 >     * Reconstitutes the Queue instance from a stream (that is,
1185 >     * deserializes it).
1186       *
1187       * @param s the stream
1188       */
1189      private void readObject(java.io.ObjectInputStream s)
1190          throws java.io.IOException, ClassNotFoundException {
1191          s.defaultReadObject();
885        resetHeadAndTail();
1192          for (;;) {
1193              @SuppressWarnings("unchecked") E item = (E) s.readObject();
1194              if (item == null)
# Line 892 | Line 1198 | public class LinkedTransferQueue<E> exte
1198          }
1199      }
1200  
895    // Support for resetting head/tail while deserializing
896    private void resetHeadAndTail() {
897        Node<E> dummy = new Node<E>(null, false);
898        UNSAFE.putObjectVolatile(this, headOffset,
899                                 new PaddedAtomicReference<Node<E>>(dummy));
900        UNSAFE.putObjectVolatile(this, tailOffset,
901                                 new PaddedAtomicReference<Node<E>>(dummy));
902        UNSAFE.putObjectVolatile(this, cleanMeOffset,
903                                 new PaddedAtomicReference<Node<E>>(null));
904    }
905
1201      // Unsafe mechanics
1202  
1203      private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
# Line 913 | Line 1208 | public class LinkedTransferQueue<E> exte
1208      private static final long cleanMeOffset =
1209          objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1210  
916
1211      static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1212                                    String field, Class<?> klazz) {
1213          try {
# Line 925 | Line 1219 | public class LinkedTransferQueue<E> exte
1219              throw error;
1220          }
1221      }
1222 +
1223   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines