ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.104
Committed: Sat Dec 24 09:13:10 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.103: +1 -1 lines
Log Message:
remove obvious comment

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.Spliterator;
18 import java.util.Spliterators;
19 import java.util.concurrent.locks.LockSupport;
20 import java.util.function.Consumer;
21
22 /**
23 * An unbounded {@link TransferQueue} based on linked nodes.
24 * This queue orders elements FIFO (first-in-first-out) with respect
25 * to any given producer. The <em>head</em> of the queue is that
26 * element that has been on the queue the longest time for some
27 * producer. The <em>tail</em> of the queue is that element that has
28 * been on the queue the shortest time for some producer.
29 *
30 * <p>Beware that, unlike in most collections, the {@code size} method
31 * is <em>NOT</em> a constant-time operation. Because of the
32 * asynchronous nature of these queues, determining the current number
33 * of elements requires a traversal of the elements, and so may report
34 * inaccurate results if this collection is modified during traversal.
35 * Additionally, the bulk operations {@code addAll},
36 * {@code removeAll}, {@code retainAll}, {@code containsAll},
37 * and {@code toArray} are <em>not</em> guaranteed
38 * to be performed atomically. For example, an iterator operating
39 * concurrently with an {@code addAll} operation might view only some
40 * of the added elements.
41 *
42 * <p>This class and its iterator implement all of the
43 * <em>optional</em> methods of the {@link Collection} and {@link
44 * Iterator} interfaces.
45 *
46 * <p>Memory consistency effects: As with other concurrent
47 * collections, actions in a thread prior to placing an object into a
48 * {@code LinkedTransferQueue}
49 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
50 * actions subsequent to the access or removal of that element from
51 * the {@code LinkedTransferQueue} in another thread.
52 *
53 * <p>This class is a member of the
54 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
55 * Java Collections Framework</a>.
56 *
57 * @since 1.7
58 * @author Doug Lea
59 * @param <E> the type of elements held in this queue
60 */
61 public class LinkedTransferQueue<E> extends AbstractQueue<E>
62 implements TransferQueue<E>, java.io.Serializable {
63 private static final long serialVersionUID = -3223113410248163686L;
64
65 /*
66 * *** Overview of Dual Queues with Slack ***
67 *
68 * Dual Queues, introduced by Scherer and Scott
69 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
70 * are (linked) queues in which nodes may represent either data or
71 * requests. When a thread tries to enqueue a data node, but
72 * encounters a request node, it instead "matches" and removes it;
73 * and vice versa for enqueuing requests. Blocking Dual Queues
74 * arrange that threads enqueuing unmatched requests block until
75 * other threads provide the match. Dual Synchronous Queues (see
76 * Scherer, Lea, & Scott
77 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
78 * additionally arrange that threads enqueuing unmatched data also
79 * block. Dual Transfer Queues support all of these modes, as
80 * dictated by callers.
81 *
82 * A FIFO dual queue may be implemented using a variation of the
83 * Michael & Scott (M&S) lock-free queue algorithm
84 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
85 * It maintains two pointer fields, "head", pointing to a
86 * (matched) node that in turn points to the first actual
87 * (unmatched) queue node (or null if empty); and "tail" that
88 * points to the last node on the queue (or again null if
89 * empty). For example, here is a possible queue with four data
90 * elements:
91 *
92 * head tail
93 * | |
94 * v v
95 * M -> U -> U -> U -> U
96 *
97 * The M&S queue algorithm is known to be prone to scalability and
98 * overhead limitations when maintaining (via CAS) these head and
99 * tail pointers. This has led to the development of
100 * contention-reducing variants such as elimination arrays (see
101 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
102 * optimistic back pointers (see Ladan-Mozes & Shavit
103 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
104 * However, the nature of dual queues enables a simpler tactic for
105 * improving M&S-style implementations when dual-ness is needed.
106 *
107 * In a dual queue, each node must atomically maintain its match
108 * status. While there are other possible variants, we implement
109 * this here as: for a data-mode node, matching entails CASing an
110 * "item" field from a non-null data value to null upon match, and
111 * vice-versa for request nodes, CASing from null to a data
112 * value. (Note that the linearization properties of this style of
113 * queue are easy to verify -- elements are made available by
114 * linking, and unavailable by matching.) Compared to plain M&S
115 * queues, this property of dual queues requires one additional
116 * successful atomic operation per enq/deq pair. But it also
117 * enables lower cost variants of queue maintenance mechanics. (A
118 * variation of this idea applies even for non-dual queues that
119 * support deletion of interior elements, such as
120 * j.u.c.ConcurrentLinkedQueue.)
121 *
122 * Once a node is matched, its match status can never again
123 * change. We may thus arrange that the linked list of them
124 * contain a prefix of zero or more matched nodes, followed by a
125 * suffix of zero or more unmatched nodes. (Note that we allow
126 * both the prefix and suffix to be zero length, which in turn
127 * means that we do not use a dummy header.) If we were not
128 * concerned with either time or space efficiency, we could
129 * correctly perform enqueue and dequeue operations by traversing
130 * from a pointer to the initial node; CASing the item of the
131 * first unmatched node on match and CASing the next field of the
132 * trailing node on appends. (Plus some special-casing when
133 * initially empty). While this would be a terrible idea in
134 * itself, it does have the benefit of not requiring ANY atomic
135 * updates on head/tail fields.
136 *
137 * We introduce here an approach that lies between the extremes of
138 * never versus always updating queue (head and tail) pointers.
139 * This offers a tradeoff between sometimes requiring extra
140 * traversal steps to locate the first and/or last unmatched
141 * nodes, versus the reduced overhead and contention of fewer
142 * updates to queue pointers. For example, a possible snapshot of
143 * a queue is:
144 *
145 * head tail
146 * | |
147 * v v
148 * M -> M -> U -> U -> U -> U
149 *
150 * The best value for this "slack" (the targeted maximum distance
151 * between the value of "head" and the first unmatched node, and
152 * similarly for "tail") is an empirical matter. We have found
153 * that using very small constants in the range of 1-3 work best
154 * over a range of platforms. Larger values introduce increasing
155 * costs of cache misses and risks of long traversal chains, while
156 * smaller values increase CAS contention and overhead.
157 *
158 * Dual queues with slack differ from plain M&S dual queues by
159 * virtue of only sometimes updating head or tail pointers when
160 * matching, appending, or even traversing nodes; in order to
161 * maintain a targeted slack. The idea of "sometimes" may be
162 * operationalized in several ways. The simplest is to use a
163 * per-operation counter incremented on each traversal step, and
164 * to try (via CAS) to update the associated queue pointer
165 * whenever the count exceeds a threshold. Another, that requires
166 * more overhead, is to use random number generators to update
167 * with a given probability per traversal step.
168 *
169 * In any strategy along these lines, because CASes updating
170 * fields may fail, the actual slack may exceed targeted
171 * slack. However, they may be retried at any time to maintain
172 * targets. Even when using very small slack values, this
173 * approach works well for dual queues because it allows all
174 * operations up to the point of matching or appending an item
175 * (hence potentially allowing progress by another thread) to be
176 * read-only, thus not introducing any further contention. As
177 * described below, we implement this by performing slack
178 * maintenance retries only after these points.
179 *
180 * As an accompaniment to such techniques, traversal overhead can
181 * be further reduced without increasing contention of head
182 * pointer updates: Threads may sometimes shortcut the "next" link
183 * path from the current "head" node to be closer to the currently
184 * known first unmatched node, and similarly for tail. Again, this
185 * may be triggered with using thresholds or randomization.
186 *
187 * These ideas must be further extended to avoid unbounded amounts
188 * of costly-to-reclaim garbage caused by the sequential "next"
189 * links of nodes starting at old forgotten head nodes: As first
190 * described in detail by Boehm
191 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 * delays noticing that any arbitrarily old node has become
193 * garbage, all newer dead nodes will also be unreclaimed.
194 * (Similar issues arise in non-GC environments.) To cope with
195 * this in our implementation, upon CASing to advance the head
196 * pointer, we set the "next" link of the previous head to point
197 * only to itself; thus limiting the length of connected dead lists.
198 * (We also take similar care to wipe out possibly garbage
199 * retaining values held in other Node fields.) However, doing so
200 * adds some further complexity to traversal: If any "next"
201 * pointer links to itself, it indicates that the current thread
202 * has lagged behind a head-update, and so the traversal must
203 * continue from the "head". Traversals trying to find the
204 * current tail starting from "tail" may also encounter
205 * self-links, in which case they also continue at "head".
206 *
207 * It is tempting in slack-based scheme to not even use CAS for
208 * updates (similarly to Ladan-Mozes & Shavit). However, this
209 * cannot be done for head updates under the above link-forgetting
210 * mechanics because an update may leave head at a detached node.
211 * And while direct writes are possible for tail updates, they
212 * increase the risk of long retraversals, and hence long garbage
213 * chains, which can be much more costly than is worthwhile
214 * considering that the cost difference of performing a CAS vs
215 * write is smaller when they are not triggered on each operation
216 * (especially considering that writes and CASes equally require
217 * additional GC bookkeeping ("write barriers") that are sometimes
218 * more costly than the writes themselves because of contention).
219 *
220 * *** Overview of implementation ***
221 *
222 * We use a threshold-based approach to updates, with a slack
223 * threshold of two -- that is, we update head/tail when the
224 * current pointer appears to be two or more steps away from the
225 * first/last node. The slack value is hard-wired: a path greater
226 * than one is naturally implemented by checking equality of
227 * traversal pointers except when the list has only one element,
228 * in which case we keep slack threshold at one. Avoiding tracking
229 * explicit counts across method calls slightly simplifies an
230 * already-messy implementation. Using randomization would
231 * probably work better if there were a low-quality dirt-cheap
232 * per-thread one available, but even ThreadLocalRandom is too
233 * heavy for these purposes.
234 *
235 * With such a small slack threshold value, it is not worthwhile
236 * to augment this with path short-circuiting (i.e., unsplicing
237 * interior nodes) except in the case of cancellation/removal (see
238 * below).
239 *
240 * We allow both the head and tail fields to be null before any
241 * nodes are enqueued; initializing upon first append. This
242 * simplifies some other logic, as well as providing more
243 * efficient explicit control paths instead of letting JVMs insert
244 * implicit NullPointerExceptions when they are null. While not
245 * currently fully implemented, we also leave open the possibility
246 * of re-nulling these fields when empty (which is complicated to
247 * arrange, for little benefit.)
248 *
249 * All enqueue/dequeue operations are handled by the single method
250 * "xfer" with parameters indicating whether to act as some form
251 * of offer, put, poll, take, or transfer (each possibly with
252 * timeout). The relative complexity of using one monolithic
253 * method outweighs the code bulk and maintenance problems of
254 * using separate methods for each case.
255 *
256 * Operation consists of up to three phases. The first is
257 * implemented within method xfer, the second in tryAppend, and
258 * the third in method awaitMatch.
259 *
260 * 1. Try to match an existing node
261 *
262 * Starting at head, skip already-matched nodes until finding
263 * an unmatched node of opposite mode, if one exists, in which
264 * case matching it and returning, also if necessary updating
265 * head to one past the matched node (or the node itself if the
266 * list has no other unmatched nodes). If the CAS misses, then
267 * a loop retries advancing head by two steps until either
268 * success or the slack is at most two. By requiring that each
269 * attempt advances head by two (if applicable), we ensure that
270 * the slack does not grow without bound. Traversals also check
271 * if the initial head is now off-list, in which case they
272 * start at the new head.
273 *
274 * If no candidates are found and the call was untimed
275 * poll/offer, (argument "how" is NOW) return.
276 *
277 * 2. Try to append a new node (method tryAppend)
278 *
279 * Starting at current tail pointer, find the actual last node
280 * and try to append a new node (or if head was null, establish
281 * the first node). Nodes can be appended only if their
282 * predecessors are either already matched or are of the same
283 * mode. If we detect otherwise, then a new node with opposite
284 * mode must have been appended during traversal, so we must
285 * restart at phase 1. The traversal and update steps are
286 * otherwise similar to phase 1: Retrying upon CAS misses and
287 * checking for staleness. In particular, if a self-link is
288 * encountered, then we can safely jump to a node on the list
289 * by continuing the traversal at current head.
290 *
291 * On successful append, if the call was ASYNC, return.
292 *
293 * 3. Await match or cancellation (method awaitMatch)
294 *
295 * Wait for another thread to match node; instead cancelling if
296 * the current thread was interrupted or the wait timed out. On
297 * multiprocessors, we use front-of-queue spinning: If a node
298 * appears to be the first unmatched node in the queue, it
299 * spins a bit before blocking. In either case, before blocking
300 * it tries to unsplice any nodes between the current "head"
301 * and the first unmatched node.
302 *
303 * Front-of-queue spinning vastly improves performance of
304 * heavily contended queues. And so long as it is relatively
305 * brief and "quiet", spinning does not much impact performance
306 * of less-contended queues. During spins threads check their
307 * interrupt status and generate a thread-local random number
308 * to decide to occasionally perform a Thread.yield. While
309 * yield has underdefined specs, we assume that it might help,
310 * and will not hurt, in limiting impact of spinning on busy
311 * systems. We also use smaller (1/2) spins for nodes that are
312 * not known to be front but whose predecessors have not
313 * blocked -- these "chained" spins avoid artifacts of
314 * front-of-queue rules which otherwise lead to alternating
315 * nodes spinning vs blocking. Further, front threads that
316 * represent phase changes (from data to request node or vice
317 * versa) compared to their predecessors receive additional
318 * chained spins, reflecting longer paths typically required to
319 * unblock threads during phase changes.
320 *
321 *
322 * ** Unlinking removed interior nodes **
323 *
324 * In addition to minimizing garbage retention via self-linking
325 * described above, we also unlink removed interior nodes. These
326 * may arise due to timed out or interrupted waits, or calls to
327 * remove(x) or Iterator.remove. Normally, given a node that was
328 * at one time known to be the predecessor of some node s that is
329 * to be removed, we can unsplice s by CASing the next field of
330 * its predecessor if it still points to s (otherwise s must
331 * already have been removed or is now offlist). But there are two
332 * situations in which we cannot guarantee to make node s
333 * unreachable in this way: (1) If s is the trailing node of list
334 * (i.e., with null next), then it is pinned as the target node
335 * for appends, so can only be removed later after other nodes are
336 * appended. (2) We cannot necessarily unlink s given a
337 * predecessor node that is matched (including the case of being
338 * cancelled): the predecessor may already be unspliced, in which
339 * case some previous reachable node may still point to s.
340 * (For further explanation see Herlihy & Shavit "The Art of
341 * Multiprocessor Programming" chapter 9). Although, in both
342 * cases, we can rule out the need for further action if either s
343 * or its predecessor are (or can be made to be) at, or fall off
344 * from, the head of list.
345 *
346 * Without taking these into account, it would be possible for an
347 * unbounded number of supposedly removed nodes to remain
348 * reachable. Situations leading to such buildup are uncommon but
349 * can occur in practice; for example when a series of short timed
350 * calls to poll repeatedly time out but never otherwise fall off
351 * the list because of an untimed call to take at the front of the
352 * queue.
353 *
354 * When these cases arise, rather than always retraversing the
355 * entire list to find an actual predecessor to unlink (which
356 * won't help for case (1) anyway), we record a conservative
357 * estimate of possible unsplice failures (in "sweepVotes").
358 * We trigger a full sweep when the estimate exceeds a threshold
359 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
360 * removal failures to tolerate before sweeping through, unlinking
361 * cancelled nodes that were not unlinked upon initial removal.
362 * We perform sweeps by the thread hitting threshold (rather than
363 * background threads or by spreading work to other threads)
364 * because in the main contexts in which removal occurs, the
365 * caller is already timed-out, cancelled, or performing a
366 * potentially O(n) operation (e.g. remove(x)), none of which are
367 * time-critical enough to warrant the overhead that alternatives
368 * would impose on other threads.
369 *
370 * Because the sweepVotes estimate is conservative, and because
371 * nodes become unlinked "naturally" as they fall off the head of
372 * the queue, and because we allow votes to accumulate even while
373 * sweeps are in progress, there are typically significantly fewer
374 * such nodes than estimated. Choice of a threshold value
375 * balances the likelihood of wasted effort and contention, versus
376 * providing a worst-case bound on retention of interior nodes in
377 * quiescent queues. The value defined below was chosen
378 * empirically to balance these under various timeout scenarios.
379 *
380 * Note that we cannot self-link unlinked interior nodes during
381 * sweeps. However, the associated garbage chains terminate when
382 * some successor ultimately falls off the head of the list and is
383 * self-linked.
384 */
385
386 /** True if on multiprocessor */
387 private static final boolean MP =
388 Runtime.getRuntime().availableProcessors() > 1;
389
390 /**
391 * The number of times to spin (with randomly interspersed calls
392 * to Thread.yield) on multiprocessor before blocking when a node
393 * is apparently the first waiter in the queue. See above for
394 * explanation. Must be a power of two. The value is empirically
395 * derived -- it works pretty well across a variety of processors,
396 * numbers of CPUs, and OSes.
397 */
398 private static final int FRONT_SPINS = 1 << 7;
399
400 /**
401 * The number of times to spin before blocking when a node is
402 * preceded by another node that is apparently spinning. Also
403 * serves as an increment to FRONT_SPINS on phase changes, and as
404 * base average frequency for yielding during spins. Must be a
405 * power of two.
406 */
407 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
408
409 /**
410 * The maximum number of estimated removal failures (sweepVotes)
411 * to tolerate before sweeping through the queue unlinking
412 * cancelled nodes that were not unlinked upon initial
413 * removal. See above for explanation. The value must be at least
414 * two to avoid useless sweeps when removing trailing nodes.
415 */
416 static final int SWEEP_THRESHOLD = 32;
417
418 /**
419 * Queue nodes. Uses Object, not E, for items to allow forgetting
420 * them after use. Relies heavily on VarHandles to minimize
421 * unnecessary ordering constraints: Writes that are intrinsically
422 * ordered wrt other accesses or CASes use simple relaxed forms.
423 */
424 static final class Node {
425 final boolean isData; // false if this is a request node
426 volatile Object item; // initially non-null if isData; CASed to match
427 volatile Node next;
428 volatile Thread waiter; // null until waiting
429
430 // CAS methods for fields
431 final boolean casNext(Node cmp, Node val) {
432 return NEXT.compareAndSet(this, cmp, val);
433 }
434
435 final boolean casItem(Object cmp, Object val) {
436 // assert cmp == null || cmp.getClass() != Node.class;
437 return ITEM.compareAndSet(this, cmp, val);
438 }
439
440 /**
441 * Constructs a new node. Uses relaxed write because item can
442 * only be seen after publication via casNext.
443 */
444 Node(Object item) {
445 ITEM.set(this, item);
446 isData = (item != null);
447 }
448
449 /**
450 * Links node to itself to avoid garbage retention. Called
451 * only after CASing head field, so uses relaxed write.
452 */
453 final void forgetNext() {
454 NEXT.set(this, this);
455 }
456
457 /**
458 * Sets item to self and waiter to null, to avoid garbage
459 * retention after matching or cancelling. Uses relaxed writes
460 * because order is already constrained in the only calling
461 * contexts: item is forgotten only after volatile/atomic
462 * mechanics that extract items. Similarly, clearing waiter
463 * follows either CAS or return from park (if ever parked;
464 * else we don't care).
465 */
466 final void forgetContents() {
467 ITEM.set(this, this);
468 WAITER.set(this, null);
469 }
470
471 /**
472 * Returns true if this node has been matched, including the
473 * case of artificial matches due to cancellation.
474 */
475 final boolean isMatched() {
476 Object x = item;
477 return (x == this) || ((x == null) == isData);
478 }
479
480 /**
481 * Returns true if a node with the given mode cannot be
482 * appended to this node because this node is unmatched and
483 * has opposite data mode.
484 */
485 final boolean cannotPrecede(boolean haveData) {
486 boolean d = isData;
487 Object x;
488 return d != haveData && (x = item) != this && (x != null) == d;
489 }
490
491 /**
492 * Tries to artificially match a data node -- used by remove.
493 */
494 final boolean tryMatchData() {
495 // assert isData;
496 Object x = item;
497 if (x != null && x != this && casItem(x, null)) {
498 LockSupport.unpark(waiter);
499 return true;
500 }
501 return false;
502 }
503
504 private static final long serialVersionUID = -3375979862319811754L;
505
506 // VarHandle mechanics
507 private static final VarHandle ITEM;
508 private static final VarHandle NEXT;
509 private static final VarHandle WAITER;
510 static {
511 try {
512 MethodHandles.Lookup l = MethodHandles.lookup();
513 ITEM = l.findVarHandle(Node.class, "item", Object.class);
514 NEXT = l.findVarHandle(Node.class, "next", Node.class);
515 WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
516 } catch (ReflectiveOperationException e) {
517 throw new Error(e);
518 }
519 }
520 }
521
522 /** head of the queue; null until first enqueue */
523 transient volatile Node head;
524
525 /** tail of the queue; null until first append */
526 private transient volatile Node tail;
527
528 /** The number of apparent failures to unsplice removed nodes */
529 private transient volatile int sweepVotes;
530
531 // CAS methods for fields
532 private boolean casTail(Node cmp, Node val) {
533 return TAIL.compareAndSet(this, cmp, val);
534 }
535
536 private boolean casHead(Node cmp, Node val) {
537 return HEAD.compareAndSet(this, cmp, val);
538 }
539
540 private boolean casSweepVotes(int cmp, int val) {
541 return SWEEPVOTES.compareAndSet(this, cmp, val);
542 }
543
544 /*
545 * Possible values for "how" argument in xfer method.
546 */
547 private static final int NOW = 0; // for untimed poll, tryTransfer
548 private static final int ASYNC = 1; // for offer, put, add
549 private static final int SYNC = 2; // for transfer, take
550 private static final int TIMED = 3; // for timed poll, tryTransfer
551
552 /**
553 * Implements all queuing methods. See above for explanation.
554 *
555 * @param e the item or null for take
556 * @param haveData true if this is a put, else a take
557 * @param how NOW, ASYNC, SYNC, or TIMED
558 * @param nanos timeout in nanosecs, used only if mode is TIMED
559 * @return an item if matched, else e
560 * @throws NullPointerException if haveData mode but e is null
561 */
562 private E xfer(E e, boolean haveData, int how, long nanos) {
563 if (haveData && (e == null))
564 throw new NullPointerException();
565 Node s = null; // the node to append, if needed
566
567 retry:
568 for (;;) { // restart on append race
569
570 for (Node h = head, p = h; p != null;) { // find & match first node
571 boolean isData = p.isData;
572 Object item = p.item;
573 if (item != p && (item != null) == isData) { // unmatched
574 if (isData == haveData) // can't match
575 break;
576 if (p.casItem(item, e)) { // match
577 for (Node q = p; q != h;) {
578 Node n = q.next; // update by 2 unless singleton
579 if (head == h && casHead(h, n == null ? q : n)) {
580 h.forgetNext();
581 break;
582 } // advance and retry
583 if ((h = head) == null ||
584 (q = h.next) == null || !q.isMatched())
585 break; // unless slack < 2
586 }
587 LockSupport.unpark(p.waiter);
588 @SuppressWarnings("unchecked") E itemE = (E) item;
589 return itemE;
590 }
591 }
592 Node n = p.next;
593 p = (p != n) ? n : (h = head); // Use head if p offlist
594 }
595
596 if (how != NOW) { // No matches available
597 if (s == null)
598 s = new Node(e);
599 Node pred = tryAppend(s, haveData);
600 if (pred == null)
601 continue retry; // lost race vs opposite mode
602 if (how != ASYNC)
603 return awaitMatch(s, pred, e, (how == TIMED), nanos);
604 }
605 return e; // not waiting
606 }
607 }
608
609 /**
610 * Tries to append node s as tail.
611 *
612 * @param s the node to append
613 * @param haveData true if appending in data mode
614 * @return null on failure due to losing race with append in
615 * different mode, else s's predecessor, or s itself if no
616 * predecessor
617 */
618 private Node tryAppend(Node s, boolean haveData) {
619 for (Node t = tail, p = t;;) { // move p to last node and append
620 Node n, u; // temps for reads of next & tail
621 if (p == null && (p = head) == null) {
622 if (casHead(null, s))
623 return s; // initialize
624 }
625 else if (p.cannotPrecede(haveData))
626 return null; // lost race vs opposite mode
627 else if ((n = p.next) != null) // not last; keep traversing
628 p = p != t && t != (u = tail) ? (t = u) : // stale tail
629 (p != n) ? n : null; // restart if off list
630 else if (!p.casNext(null, s))
631 p = p.next; // re-read on CAS failure
632 else {
633 if (p != t) { // update if slack now >= 2
634 while ((tail != t || !casTail(t, s)) &&
635 (t = tail) != null &&
636 (s = t.next) != null && // advance and retry
637 (s = s.next) != null && s != t);
638 }
639 return p;
640 }
641 }
642 }
643
644 /**
645 * Spins/yields/blocks until node s is matched or caller gives up.
646 *
647 * @param s the waiting node
648 * @param pred the predecessor of s, or s itself if it has no
649 * predecessor, or null if unknown (the null case does not occur
650 * in any current calls but may in possible future extensions)
651 * @param e the comparison value for checking match
652 * @param timed if true, wait only until timeout elapses
653 * @param nanos timeout in nanosecs, used only if timed is true
654 * @return matched item, or e if unmatched on interrupt or timeout
655 */
656 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
657 final long deadline = timed ? System.nanoTime() + nanos : 0L;
658 Thread w = Thread.currentThread();
659 int spins = -1; // initialized after first item and cancel checks
660 ThreadLocalRandom randomYields = null; // bound if needed
661
662 for (;;) {
663 Object item = s.item;
664 if (item != e) { // matched
665 // assert item != s;
666 s.forgetContents(); // avoid garbage
667 @SuppressWarnings("unchecked") E itemE = (E) item;
668 return itemE;
669 }
670 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
671 // try to cancel and unlink
672 if (s.casItem(e, s)) {
673 unsplice(pred, s);
674 return e;
675 }
676 // return normally if lost CAS
677 }
678 else if (spins < 0) { // establish spins at/near front
679 if ((spins = spinsFor(pred, s.isData)) > 0)
680 randomYields = ThreadLocalRandom.current();
681 }
682 else if (spins > 0) { // spin
683 --spins;
684 if (randomYields.nextInt(CHAINED_SPINS) == 0)
685 Thread.yield(); // occasionally yield
686 }
687 else if (s.waiter == null) {
688 s.waiter = w; // request unpark then recheck
689 }
690 else if (timed) {
691 nanos = deadline - System.nanoTime();
692 if (nanos > 0L)
693 LockSupport.parkNanos(this, nanos);
694 }
695 else {
696 LockSupport.park(this);
697 }
698 }
699 }
700
701 /**
702 * Returns spin/yield value for a node with given predecessor and
703 * data mode. See above for explanation.
704 */
705 private static int spinsFor(Node pred, boolean haveData) {
706 if (MP && pred != null) {
707 if (pred.isData != haveData) // phase change
708 return FRONT_SPINS + CHAINED_SPINS;
709 if (pred.isMatched()) // probably at front
710 return FRONT_SPINS;
711 if (pred.waiter == null) // pred apparently spinning
712 return CHAINED_SPINS;
713 }
714 return 0;
715 }
716
717 /* -------------- Traversal methods -------------- */
718
719 /**
720 * Returns the successor of p, or the head node if p.next has been
721 * linked to self, which will only be true if traversing with a
722 * stale pointer that is now off the list.
723 */
724 final Node succ(Node p) {
725 Node next = p.next;
726 return (p == next) ? head : next;
727 }
728
729 /**
730 * Returns the first unmatched data node, or null if none.
731 * Callers must recheck if the returned node's item field is null
732 * or self-linked before using.
733 */
734 final Node firstDataNode() {
735 restartFromHead: for (;;) {
736 for (Node p = head; p != null;) {
737 Object item = p.item;
738 if (p.isData) {
739 if (item != null && item != p)
740 return p;
741 }
742 else if (item == null)
743 break;
744 if (p == (p = p.next))
745 continue restartFromHead;
746 }
747 return null;
748 }
749 }
750
751 /**
752 * Traverses and counts unmatched nodes of the given mode.
753 * Used by methods size and getWaitingConsumerCount.
754 */
755 private int countOfMode(boolean data) {
756 restartFromHead: for (;;) {
757 int count = 0;
758 for (Node p = head; p != null;) {
759 if (!p.isMatched()) {
760 if (p.isData != data)
761 return 0;
762 if (++count == Integer.MAX_VALUE)
763 break; // @see Collection.size()
764 }
765 if (p == (p = p.next))
766 continue restartFromHead;
767 }
768 return count;
769 }
770 }
771
772 public String toString() {
773 String[] a = null;
774 restartFromHead: for (;;) {
775 int charLength = 0;
776 int size = 0;
777 for (Node p = head; p != null;) {
778 Object item = p.item;
779 if (p.isData) {
780 if (item != null && item != p) {
781 if (a == null)
782 a = new String[4];
783 else if (size == a.length)
784 a = Arrays.copyOf(a, 2 * size);
785 String s = item.toString();
786 a[size++] = s;
787 charLength += s.length();
788 }
789 } else if (item == null)
790 break;
791 if (p == (p = p.next))
792 continue restartFromHead;
793 }
794
795 if (size == 0)
796 return "[]";
797
798 return Helpers.toString(a, size, charLength);
799 }
800 }
801
802 private Object[] toArrayInternal(Object[] a) {
803 Object[] x = a;
804 restartFromHead: for (;;) {
805 int size = 0;
806 for (Node p = head; p != null;) {
807 Object item = p.item;
808 if (p.isData) {
809 if (item != null && item != p) {
810 if (x == null)
811 x = new Object[4];
812 else if (size == x.length)
813 x = Arrays.copyOf(x, 2 * (size + 4));
814 x[size++] = item;
815 }
816 } else if (item == null)
817 break;
818 if (p == (p = p.next))
819 continue restartFromHead;
820 }
821 if (x == null)
822 return new Object[0];
823 else if (a != null && size <= a.length) {
824 if (a != x)
825 System.arraycopy(x, 0, a, 0, size);
826 if (size < a.length)
827 a[size] = null;
828 return a;
829 }
830 return (size == x.length) ? x : Arrays.copyOf(x, size);
831 }
832 }
833
834 /**
835 * Returns an array containing all of the elements in this queue, in
836 * proper sequence.
837 *
838 * <p>The returned array will be "safe" in that no references to it are
839 * maintained by this queue. (In other words, this method must allocate
840 * a new array). The caller is thus free to modify the returned array.
841 *
842 * <p>This method acts as bridge between array-based and collection-based
843 * APIs.
844 *
845 * @return an array containing all of the elements in this queue
846 */
847 public Object[] toArray() {
848 return toArrayInternal(null);
849 }
850
851 /**
852 * Returns an array containing all of the elements in this queue, in
853 * proper sequence; the runtime type of the returned array is that of
854 * the specified array. If the queue fits in the specified array, it
855 * is returned therein. Otherwise, a new array is allocated with the
856 * runtime type of the specified array and the size of this queue.
857 *
858 * <p>If this queue fits in the specified array with room to spare
859 * (i.e., the array has more elements than this queue), the element in
860 * the array immediately following the end of the queue is set to
861 * {@code null}.
862 *
863 * <p>Like the {@link #toArray()} method, this method acts as bridge between
864 * array-based and collection-based APIs. Further, this method allows
865 * precise control over the runtime type of the output array, and may,
866 * under certain circumstances, be used to save allocation costs.
867 *
868 * <p>Suppose {@code x} is a queue known to contain only strings.
869 * The following code can be used to dump the queue into a newly
870 * allocated array of {@code String}:
871 *
872 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
873 *
874 * Note that {@code toArray(new Object[0])} is identical in function to
875 * {@code toArray()}.
876 *
877 * @param a the array into which the elements of the queue are to
878 * be stored, if it is big enough; otherwise, a new array of the
879 * same runtime type is allocated for this purpose
880 * @return an array containing all of the elements in this queue
881 * @throws ArrayStoreException if the runtime type of the specified array
882 * is not a supertype of the runtime type of every element in
883 * this queue
884 * @throws NullPointerException if the specified array is null
885 */
886 @SuppressWarnings("unchecked")
887 public <T> T[] toArray(T[] a) {
888 if (a == null) throw new NullPointerException();
889 return (T[]) toArrayInternal(a);
890 }
891
892 final class Itr implements Iterator<E> {
893 private Node nextNode; // next node to return item for
894 private E nextItem; // the corresponding item
895 private Node lastRet; // last returned node, to support remove
896 private Node lastPred; // predecessor to unlink lastRet
897
898 /**
899 * Moves to next node after prev, or first node if prev null.
900 */
901 private void advance(Node prev) {
902 /*
903 * To track and avoid buildup of deleted nodes in the face
904 * of calls to both Queue.remove and Itr.remove, we must
905 * include variants of unsplice and sweep upon each
906 * advance: Upon Itr.remove, we may need to catch up links
907 * from lastPred, and upon other removes, we might need to
908 * skip ahead from stale nodes and unsplice deleted ones
909 * found while advancing.
910 */
911
912 Node r, b; // reset lastPred upon possible deletion of lastRet
913 if ((r = lastRet) != null && !r.isMatched())
914 lastPred = r; // next lastPred is old lastRet
915 else if ((b = lastPred) == null || b.isMatched())
916 lastPred = null; // at start of list
917 else {
918 Node s, n; // help with removal of lastPred.next
919 while ((s = b.next) != null &&
920 s != b && s.isMatched() &&
921 (n = s.next) != null && n != s)
922 b.casNext(s, n);
923 }
924
925 this.lastRet = prev;
926
927 for (Node p = prev, s, n;;) {
928 s = (p == null) ? head : p.next;
929 if (s == null)
930 break;
931 else if (s == p) {
932 p = null;
933 continue;
934 }
935 Object item = s.item;
936 if (s.isData) {
937 if (item != null && item != s) {
938 @SuppressWarnings("unchecked") E itemE = (E) item;
939 nextItem = itemE;
940 nextNode = s;
941 return;
942 }
943 }
944 else if (item == null)
945 break;
946 // assert s.isMatched();
947 if (p == null)
948 p = s;
949 else if ((n = s.next) == null)
950 break;
951 else if (s == n)
952 p = null;
953 else
954 p.casNext(s, n);
955 }
956 nextNode = null;
957 nextItem = null;
958 }
959
960 Itr() {
961 advance(null);
962 }
963
964 public final boolean hasNext() {
965 return nextNode != null;
966 }
967
968 public final E next() {
969 Node p = nextNode;
970 if (p == null) throw new NoSuchElementException();
971 E e = nextItem;
972 advance(p);
973 return e;
974 }
975
976 public final void remove() {
977 final Node lastRet = this.lastRet;
978 if (lastRet == null)
979 throw new IllegalStateException();
980 this.lastRet = null;
981 if (lastRet.tryMatchData())
982 unsplice(lastPred, lastRet);
983 }
984 }
985
986 /** A customized variant of Spliterators.IteratorSpliterator */
987 final class LTQSpliterator<E> implements Spliterator<E> {
988 static final int MAX_BATCH = 1 << 25; // max batch array size;
989 Node current; // current node; null until initialized
990 int batch; // batch size for splits
991 boolean exhausted; // true when no more nodes
992 LTQSpliterator() {}
993
994 public Spliterator<E> trySplit() {
995 Node p;
996 int b = batch;
997 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
998 if (!exhausted &&
999 ((p = current) != null || (p = firstDataNode()) != null) &&
1000 p.next != null) {
1001 Object[] a = new Object[n];
1002 int i = 0;
1003 do {
1004 Object e = p.item;
1005 if (e != p && (a[i] = e) != null)
1006 ++i;
1007 if (p == (p = p.next))
1008 p = firstDataNode();
1009 } while (p != null && i < n && p.isData);
1010 if ((current = p) == null)
1011 exhausted = true;
1012 if (i > 0) {
1013 batch = i;
1014 return Spliterators.spliterator
1015 (a, 0, i, (Spliterator.ORDERED |
1016 Spliterator.NONNULL |
1017 Spliterator.CONCURRENT));
1018 }
1019 }
1020 return null;
1021 }
1022
1023 @SuppressWarnings("unchecked")
1024 public void forEachRemaining(Consumer<? super E> action) {
1025 Node p;
1026 if (action == null) throw new NullPointerException();
1027 if (!exhausted &&
1028 ((p = current) != null || (p = firstDataNode()) != null)) {
1029 exhausted = true;
1030 do {
1031 Object e = p.item;
1032 if (e != null && e != p)
1033 action.accept((E)e);
1034 if (p == (p = p.next))
1035 p = firstDataNode();
1036 } while (p != null && p.isData);
1037 }
1038 }
1039
1040 @SuppressWarnings("unchecked")
1041 public boolean tryAdvance(Consumer<? super E> action) {
1042 Node p;
1043 if (action == null) throw new NullPointerException();
1044 if (!exhausted &&
1045 ((p = current) != null || (p = firstDataNode()) != null)) {
1046 Object e;
1047 do {
1048 if ((e = p.item) == p)
1049 e = null;
1050 if (p == (p = p.next))
1051 p = firstDataNode();
1052 } while (e == null && p != null && p.isData);
1053 if ((current = p) == null)
1054 exhausted = true;
1055 if (e != null) {
1056 action.accept((E)e);
1057 return true;
1058 }
1059 }
1060 return false;
1061 }
1062
1063 public long estimateSize() { return Long.MAX_VALUE; }
1064
1065 public int characteristics() {
1066 return (Spliterator.ORDERED |
1067 Spliterator.NONNULL |
1068 Spliterator.CONCURRENT);
1069 }
1070 }
1071
1072 /**
1073 * Returns a {@link Spliterator} over the elements in this queue.
1074 *
1075 * <p>The returned spliterator is
1076 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1077 *
1078 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1079 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1080 *
1081 * @implNote
1082 * The {@code Spliterator} implements {@code trySplit} to permit limited
1083 * parallelism.
1084 *
1085 * @return a {@code Spliterator} over the elements in this queue
1086 * @since 1.8
1087 */
1088 public Spliterator<E> spliterator() {
1089 return new LTQSpliterator<E>();
1090 }
1091
1092 /* -------------- Removal methods -------------- */
1093
1094 /**
1095 * Unsplices (now or later) the given deleted/cancelled node with
1096 * the given predecessor.
1097 *
1098 * @param pred a node that was at one time known to be the
1099 * predecessor of s, or null or s itself if s is/was at head
1100 * @param s the node to be unspliced
1101 */
1102 final void unsplice(Node pred, Node s) {
1103 s.waiter = null; // disable signals
1104 /*
1105 * See above for rationale. Briefly: if pred still points to
1106 * s, try to unlink s. If s cannot be unlinked, because it is
1107 * trailing node or pred might be unlinked, and neither pred
1108 * nor s are head or offlist, add to sweepVotes, and if enough
1109 * votes have accumulated, sweep.
1110 */
1111 if (pred != null && pred != s && pred.next == s) {
1112 Node n = s.next;
1113 if (n == null ||
1114 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1115 for (;;) { // check if at, or could be, head
1116 Node h = head;
1117 if (h == pred || h == s || h == null)
1118 return; // at head or list empty
1119 if (!h.isMatched())
1120 break;
1121 Node hn = h.next;
1122 if (hn == null)
1123 return; // now empty
1124 if (hn != h && casHead(h, hn))
1125 h.forgetNext(); // advance head
1126 }
1127 if (pred.next != pred && s.next != s) { // recheck if offlist
1128 for (;;) { // sweep now if enough votes
1129 int v = sweepVotes;
1130 if (v < SWEEP_THRESHOLD) {
1131 if (casSweepVotes(v, v + 1))
1132 break;
1133 }
1134 else if (casSweepVotes(v, 0)) {
1135 sweep();
1136 break;
1137 }
1138 }
1139 }
1140 }
1141 }
1142 }
1143
1144 /**
1145 * Unlinks matched (typically cancelled) nodes encountered in a
1146 * traversal from head.
1147 */
1148 private void sweep() {
1149 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1150 if (!s.isMatched())
1151 // Unmatched nodes are never self-linked
1152 p = s;
1153 else if ((n = s.next) == null) // trailing node is pinned
1154 break;
1155 else if (s == n) // stale
1156 // No need to also check for p == s, since that implies s == n
1157 p = head;
1158 else
1159 p.casNext(s, n);
1160 }
1161 }
1162
1163 /**
1164 * Main implementation of remove(Object)
1165 */
1166 private boolean findAndRemove(Object e) {
1167 if (e != null) {
1168 for (Node pred = null, p = head; p != null; ) {
1169 Object item = p.item;
1170 if (p.isData) {
1171 if (item != null && item != p && e.equals(item) &&
1172 p.tryMatchData()) {
1173 unsplice(pred, p);
1174 return true;
1175 }
1176 }
1177 else if (item == null)
1178 break;
1179 pred = p;
1180 if ((p = p.next) == pred) { // stale
1181 pred = null;
1182 p = head;
1183 }
1184 }
1185 }
1186 return false;
1187 }
1188
1189 /**
1190 * Creates an initially empty {@code LinkedTransferQueue}.
1191 */
1192 public LinkedTransferQueue() {
1193 }
1194
1195 /**
1196 * Creates a {@code LinkedTransferQueue}
1197 * initially containing the elements of the given collection,
1198 * added in traversal order of the collection's iterator.
1199 *
1200 * @param c the collection of elements to initially contain
1201 * @throws NullPointerException if the specified collection or any
1202 * of its elements are null
1203 */
1204 public LinkedTransferQueue(Collection<? extends E> c) {
1205 this();
1206 addAll(c);
1207 }
1208
1209 /**
1210 * Inserts the specified element at the tail of this queue.
1211 * As the queue is unbounded, this method will never block.
1212 *
1213 * @throws NullPointerException if the specified element is null
1214 */
1215 public void put(E e) {
1216 xfer(e, true, ASYNC, 0);
1217 }
1218
1219 /**
1220 * Inserts the specified element at the tail of this queue.
1221 * As the queue is unbounded, this method will never block or
1222 * return {@code false}.
1223 *
1224 * @return {@code true} (as specified by
1225 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1226 * BlockingQueue.offer})
1227 * @throws NullPointerException if the specified element is null
1228 */
1229 public boolean offer(E e, long timeout, TimeUnit unit) {
1230 xfer(e, true, ASYNC, 0);
1231 return true;
1232 }
1233
1234 /**
1235 * Inserts the specified element at the tail of this queue.
1236 * As the queue is unbounded, this method will never return {@code false}.
1237 *
1238 * @return {@code true} (as specified by {@link Queue#offer})
1239 * @throws NullPointerException if the specified element is null
1240 */
1241 public boolean offer(E e) {
1242 xfer(e, true, ASYNC, 0);
1243 return true;
1244 }
1245
1246 /**
1247 * Inserts the specified element at the tail of this queue.
1248 * As the queue is unbounded, this method will never throw
1249 * {@link IllegalStateException} or return {@code false}.
1250 *
1251 * @return {@code true} (as specified by {@link Collection#add})
1252 * @throws NullPointerException if the specified element is null
1253 */
1254 public boolean add(E e) {
1255 xfer(e, true, ASYNC, 0);
1256 return true;
1257 }
1258
1259 /**
1260 * Transfers the element to a waiting consumer immediately, if possible.
1261 *
1262 * <p>More precisely, transfers the specified element immediately
1263 * if there exists a consumer already waiting to receive it (in
1264 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1265 * otherwise returning {@code false} without enqueuing the element.
1266 *
1267 * @throws NullPointerException if the specified element is null
1268 */
1269 public boolean tryTransfer(E e) {
1270 return xfer(e, true, NOW, 0) == null;
1271 }
1272
1273 /**
1274 * Transfers the element to a consumer, waiting if necessary to do so.
1275 *
1276 * <p>More precisely, transfers the specified element immediately
1277 * if there exists a consumer already waiting to receive it (in
1278 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1279 * else inserts the specified element at the tail of this queue
1280 * and waits until the element is received by a consumer.
1281 *
1282 * @throws NullPointerException if the specified element is null
1283 */
1284 public void transfer(E e) throws InterruptedException {
1285 if (xfer(e, true, SYNC, 0) != null) {
1286 Thread.interrupted(); // failure possible only due to interrupt
1287 throw new InterruptedException();
1288 }
1289 }
1290
1291 /**
1292 * Transfers the element to a consumer if it is possible to do so
1293 * before the timeout elapses.
1294 *
1295 * <p>More precisely, transfers the specified element immediately
1296 * if there exists a consumer already waiting to receive it (in
1297 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1298 * else inserts the specified element at the tail of this queue
1299 * and waits until the element is received by a consumer,
1300 * returning {@code false} if the specified wait time elapses
1301 * before the element can be transferred.
1302 *
1303 * @throws NullPointerException if the specified element is null
1304 */
1305 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1306 throws InterruptedException {
1307 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1308 return true;
1309 if (!Thread.interrupted())
1310 return false;
1311 throw new InterruptedException();
1312 }
1313
1314 public E take() throws InterruptedException {
1315 E e = xfer(null, false, SYNC, 0);
1316 if (e != null)
1317 return e;
1318 Thread.interrupted();
1319 throw new InterruptedException();
1320 }
1321
1322 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1323 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1324 if (e != null || !Thread.interrupted())
1325 return e;
1326 throw new InterruptedException();
1327 }
1328
1329 public E poll() {
1330 return xfer(null, false, NOW, 0);
1331 }
1332
1333 /**
1334 * @throws NullPointerException {@inheritDoc}
1335 * @throws IllegalArgumentException {@inheritDoc}
1336 */
1337 public int drainTo(Collection<? super E> c) {
1338 if (c == null)
1339 throw new NullPointerException();
1340 if (c == this)
1341 throw new IllegalArgumentException();
1342 int n = 0;
1343 for (E e; (e = poll()) != null;) {
1344 c.add(e);
1345 ++n;
1346 }
1347 return n;
1348 }
1349
1350 /**
1351 * @throws NullPointerException {@inheritDoc}
1352 * @throws IllegalArgumentException {@inheritDoc}
1353 */
1354 public int drainTo(Collection<? super E> c, int maxElements) {
1355 if (c == null)
1356 throw new NullPointerException();
1357 if (c == this)
1358 throw new IllegalArgumentException();
1359 int n = 0;
1360 for (E e; n < maxElements && (e = poll()) != null;) {
1361 c.add(e);
1362 ++n;
1363 }
1364 return n;
1365 }
1366
1367 /**
1368 * Returns an iterator over the elements in this queue in proper sequence.
1369 * The elements will be returned in order from first (head) to last (tail).
1370 *
1371 * <p>The returned iterator is
1372 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1373 *
1374 * @return an iterator over the elements in this queue in proper sequence
1375 */
1376 public Iterator<E> iterator() {
1377 return new Itr();
1378 }
1379
1380 public E peek() {
1381 restartFromHead: for (;;) {
1382 for (Node p = head; p != null;) {
1383 Object item = p.item;
1384 if (p.isData) {
1385 if (item != null && item != p) {
1386 @SuppressWarnings("unchecked") E e = (E) item;
1387 return e;
1388 }
1389 }
1390 else if (item == null)
1391 break;
1392 if (p == (p = p.next))
1393 continue restartFromHead;
1394 }
1395 return null;
1396 }
1397 }
1398
1399 /**
1400 * Returns {@code true} if this queue contains no elements.
1401 *
1402 * @return {@code true} if this queue contains no elements
1403 */
1404 public boolean isEmpty() {
1405 return firstDataNode() == null;
1406 }
1407
1408 public boolean hasWaitingConsumer() {
1409 restartFromHead: for (;;) {
1410 for (Node p = head; p != null;) {
1411 Object item = p.item;
1412 if (p.isData) {
1413 if (item != null && item != p)
1414 break;
1415 }
1416 else if (item == null)
1417 return true;
1418 if (p == (p = p.next))
1419 continue restartFromHead;
1420 }
1421 return false;
1422 }
1423 }
1424
1425 /**
1426 * Returns the number of elements in this queue. If this queue
1427 * contains more than {@code Integer.MAX_VALUE} elements, returns
1428 * {@code Integer.MAX_VALUE}.
1429 *
1430 * <p>Beware that, unlike in most collections, this method is
1431 * <em>NOT</em> a constant-time operation. Because of the
1432 * asynchronous nature of these queues, determining the current
1433 * number of elements requires an O(n) traversal.
1434 *
1435 * @return the number of elements in this queue
1436 */
1437 public int size() {
1438 return countOfMode(true);
1439 }
1440
1441 public int getWaitingConsumerCount() {
1442 return countOfMode(false);
1443 }
1444
1445 /**
1446 * Removes a single instance of the specified element from this queue,
1447 * if it is present. More formally, removes an element {@code e} such
1448 * that {@code o.equals(e)}, if this queue contains one or more such
1449 * elements.
1450 * Returns {@code true} if this queue contained the specified element
1451 * (or equivalently, if this queue changed as a result of the call).
1452 *
1453 * @param o element to be removed from this queue, if present
1454 * @return {@code true} if this queue changed as a result of the call
1455 */
1456 public boolean remove(Object o) {
1457 return findAndRemove(o);
1458 }
1459
1460 /**
1461 * Returns {@code true} if this queue contains the specified element.
1462 * More formally, returns {@code true} if and only if this queue contains
1463 * at least one element {@code e} such that {@code o.equals(e)}.
1464 *
1465 * @param o object to be checked for containment in this queue
1466 * @return {@code true} if this queue contains the specified element
1467 */
1468 public boolean contains(Object o) {
1469 if (o != null) {
1470 for (Node p = head; p != null; p = succ(p)) {
1471 Object item = p.item;
1472 if (p.isData) {
1473 if (item != null && item != p && o.equals(item))
1474 return true;
1475 }
1476 else if (item == null)
1477 break;
1478 }
1479 }
1480 return false;
1481 }
1482
1483 /**
1484 * Always returns {@code Integer.MAX_VALUE} because a
1485 * {@code LinkedTransferQueue} is not capacity constrained.
1486 *
1487 * @return {@code Integer.MAX_VALUE} (as specified by
1488 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1489 * BlockingQueue.remainingCapacity})
1490 */
1491 public int remainingCapacity() {
1492 return Integer.MAX_VALUE;
1493 }
1494
1495 /**
1496 * Saves this queue to a stream (that is, serializes it).
1497 *
1498 * @param s the stream
1499 * @throws java.io.IOException if an I/O error occurs
1500 * @serialData All of the elements (each an {@code E}) in
1501 * the proper order, followed by a null
1502 */
1503 private void writeObject(java.io.ObjectOutputStream s)
1504 throws java.io.IOException {
1505 s.defaultWriteObject();
1506 for (E e : this)
1507 s.writeObject(e);
1508 // Use trailing null as sentinel
1509 s.writeObject(null);
1510 }
1511
1512 /**
1513 * Reconstitutes this queue from a stream (that is, deserializes it).
1514 * @param s the stream
1515 * @throws ClassNotFoundException if the class of a serialized object
1516 * could not be found
1517 * @throws java.io.IOException if an I/O error occurs
1518 */
1519 private void readObject(java.io.ObjectInputStream s)
1520 throws java.io.IOException, ClassNotFoundException {
1521 s.defaultReadObject();
1522 for (;;) {
1523 @SuppressWarnings("unchecked")
1524 E item = (E) s.readObject();
1525 if (item == null)
1526 break;
1527 else
1528 offer(item);
1529 }
1530 }
1531
1532 // VarHandle mechanics
1533 private static final VarHandle HEAD;
1534 private static final VarHandle TAIL;
1535 private static final VarHandle SWEEPVOTES;
1536 static {
1537 try {
1538 MethodHandles.Lookup l = MethodHandles.lookup();
1539 HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1540 Node.class);
1541 TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1542 Node.class);
1543 SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1544 int.class);
1545 } catch (ReflectiveOperationException e) {
1546 throw new Error(e);
1547 }
1548
1549 // Reduce the risk of rare disastrous classloading in first call to
1550 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1551 Class<?> ensureLoaded = LockSupport.class;
1552 }
1553 }