ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.110
Committed: Sat Dec 24 18:37:26 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.109: +3 -11 lines
Log Message:
remove succ(Node) abstraction

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.Spliterator;
18 import java.util.Spliterators;
19 import java.util.concurrent.locks.LockSupport;
20 import java.util.function.Consumer;
21
22 /**
23 * An unbounded {@link TransferQueue} based on linked nodes.
24 * This queue orders elements FIFO (first-in-first-out) with respect
25 * to any given producer. The <em>head</em> of the queue is that
26 * element that has been on the queue the longest time for some
27 * producer. The <em>tail</em> of the queue is that element that has
28 * been on the queue the shortest time for some producer.
29 *
30 * <p>Beware that, unlike in most collections, the {@code size} method
31 * is <em>NOT</em> a constant-time operation. Because of the
32 * asynchronous nature of these queues, determining the current number
33 * of elements requires a traversal of the elements, and so may report
34 * inaccurate results if this collection is modified during traversal.
35 * Additionally, the bulk operations {@code addAll},
36 * {@code removeAll}, {@code retainAll}, {@code containsAll},
37 * and {@code toArray} are <em>not</em> guaranteed
38 * to be performed atomically. For example, an iterator operating
39 * concurrently with an {@code addAll} operation might view only some
40 * of the added elements.
41 *
42 * <p>This class and its iterator implement all of the
43 * <em>optional</em> methods of the {@link Collection} and {@link
44 * Iterator} interfaces.
45 *
46 * <p>Memory consistency effects: As with other concurrent
47 * collections, actions in a thread prior to placing an object into a
48 * {@code LinkedTransferQueue}
49 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
50 * actions subsequent to the access or removal of that element from
51 * the {@code LinkedTransferQueue} in another thread.
52 *
53 * <p>This class is a member of the
54 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
55 * Java Collections Framework</a>.
56 *
57 * @since 1.7
58 * @author Doug Lea
59 * @param <E> the type of elements held in this queue
60 */
61 public class LinkedTransferQueue<E> extends AbstractQueue<E>
62 implements TransferQueue<E>, java.io.Serializable {
63 private static final long serialVersionUID = -3223113410248163686L;
64
65 /*
66 * *** Overview of Dual Queues with Slack ***
67 *
68 * Dual Queues, introduced by Scherer and Scott
69 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
70 * are (linked) queues in which nodes may represent either data or
71 * requests. When a thread tries to enqueue a data node, but
72 * encounters a request node, it instead "matches" and removes it;
73 * and vice versa for enqueuing requests. Blocking Dual Queues
74 * arrange that threads enqueuing unmatched requests block until
75 * other threads provide the match. Dual Synchronous Queues (see
76 * Scherer, Lea, & Scott
77 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
78 * additionally arrange that threads enqueuing unmatched data also
79 * block. Dual Transfer Queues support all of these modes, as
80 * dictated by callers.
81 *
82 * A FIFO dual queue may be implemented using a variation of the
83 * Michael & Scott (M&S) lock-free queue algorithm
84 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
85 * It maintains two pointer fields, "head", pointing to a
86 * (matched) node that in turn points to the first actual
87 * (unmatched) queue node (or null if empty); and "tail" that
88 * points to the last node on the queue (or again null if
89 * empty). For example, here is a possible queue with four data
90 * elements:
91 *
92 * head tail
93 * | |
94 * v v
95 * M -> U -> U -> U -> U
96 *
97 * The M&S queue algorithm is known to be prone to scalability and
98 * overhead limitations when maintaining (via CAS) these head and
99 * tail pointers. This has led to the development of
100 * contention-reducing variants such as elimination arrays (see
101 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
102 * optimistic back pointers (see Ladan-Mozes & Shavit
103 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
104 * However, the nature of dual queues enables a simpler tactic for
105 * improving M&S-style implementations when dual-ness is needed.
106 *
107 * In a dual queue, each node must atomically maintain its match
108 * status. While there are other possible variants, we implement
109 * this here as: for a data-mode node, matching entails CASing an
110 * "item" field from a non-null data value to null upon match, and
111 * vice-versa for request nodes, CASing from null to a data
112 * value. (Note that the linearization properties of this style of
113 * queue are easy to verify -- elements are made available by
114 * linking, and unavailable by matching.) Compared to plain M&S
115 * queues, this property of dual queues requires one additional
116 * successful atomic operation per enq/deq pair. But it also
117 * enables lower cost variants of queue maintenance mechanics. (A
118 * variation of this idea applies even for non-dual queues that
119 * support deletion of interior elements, such as
120 * j.u.c.ConcurrentLinkedQueue.)
121 *
122 * Once a node is matched, its match status can never again
123 * change. We may thus arrange that the linked list of them
124 * contain a prefix of zero or more matched nodes, followed by a
125 * suffix of zero or more unmatched nodes. (Note that we allow
126 * both the prefix and suffix to be zero length, which in turn
127 * means that we do not use a dummy header.) If we were not
128 * concerned with either time or space efficiency, we could
129 * correctly perform enqueue and dequeue operations by traversing
130 * from a pointer to the initial node; CASing the item of the
131 * first unmatched node on match and CASing the next field of the
132 * trailing node on appends. (Plus some special-casing when
133 * initially empty). While this would be a terrible idea in
134 * itself, it does have the benefit of not requiring ANY atomic
135 * updates on head/tail fields.
136 *
137 * We introduce here an approach that lies between the extremes of
138 * never versus always updating queue (head and tail) pointers.
139 * This offers a tradeoff between sometimes requiring extra
140 * traversal steps to locate the first and/or last unmatched
141 * nodes, versus the reduced overhead and contention of fewer
142 * updates to queue pointers. For example, a possible snapshot of
143 * a queue is:
144 *
145 * head tail
146 * | |
147 * v v
148 * M -> M -> U -> U -> U -> U
149 *
150 * The best value for this "slack" (the targeted maximum distance
151 * between the value of "head" and the first unmatched node, and
152 * similarly for "tail") is an empirical matter. We have found
153 * that using very small constants in the range of 1-3 work best
154 * over a range of platforms. Larger values introduce increasing
155 * costs of cache misses and risks of long traversal chains, while
156 * smaller values increase CAS contention and overhead.
157 *
158 * Dual queues with slack differ from plain M&S dual queues by
159 * virtue of only sometimes updating head or tail pointers when
160 * matching, appending, or even traversing nodes; in order to
161 * maintain a targeted slack. The idea of "sometimes" may be
162 * operationalized in several ways. The simplest is to use a
163 * per-operation counter incremented on each traversal step, and
164 * to try (via CAS) to update the associated queue pointer
165 * whenever the count exceeds a threshold. Another, that requires
166 * more overhead, is to use random number generators to update
167 * with a given probability per traversal step.
168 *
169 * In any strategy along these lines, because CASes updating
170 * fields may fail, the actual slack may exceed targeted
171 * slack. However, they may be retried at any time to maintain
172 * targets. Even when using very small slack values, this
173 * approach works well for dual queues because it allows all
174 * operations up to the point of matching or appending an item
175 * (hence potentially allowing progress by another thread) to be
176 * read-only, thus not introducing any further contention. As
177 * described below, we implement this by performing slack
178 * maintenance retries only after these points.
179 *
180 * As an accompaniment to such techniques, traversal overhead can
181 * be further reduced without increasing contention of head
182 * pointer updates: Threads may sometimes shortcut the "next" link
183 * path from the current "head" node to be closer to the currently
184 * known first unmatched node, and similarly for tail. Again, this
185 * may be triggered with using thresholds or randomization.
186 *
187 * These ideas must be further extended to avoid unbounded amounts
188 * of costly-to-reclaim garbage caused by the sequential "next"
189 * links of nodes starting at old forgotten head nodes: As first
190 * described in detail by Boehm
191 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 * delays noticing that any arbitrarily old node has become
193 * garbage, all newer dead nodes will also be unreclaimed.
194 * (Similar issues arise in non-GC environments.) To cope with
195 * this in our implementation, upon CASing to advance the head
196 * pointer, we set the "next" link of the previous head to point
197 * only to itself; thus limiting the length of connected dead lists.
198 * (We also take similar care to wipe out possibly garbage
199 * retaining values held in other Node fields.) However, doing so
200 * adds some further complexity to traversal: If any "next"
201 * pointer links to itself, it indicates that the current thread
202 * has lagged behind a head-update, and so the traversal must
203 * continue from the "head". Traversals trying to find the
204 * current tail starting from "tail" may also encounter
205 * self-links, in which case they also continue at "head".
206 *
207 * It is tempting in slack-based scheme to not even use CAS for
208 * updates (similarly to Ladan-Mozes & Shavit). However, this
209 * cannot be done for head updates under the above link-forgetting
210 * mechanics because an update may leave head at a detached node.
211 * And while direct writes are possible for tail updates, they
212 * increase the risk of long retraversals, and hence long garbage
213 * chains, which can be much more costly than is worthwhile
214 * considering that the cost difference of performing a CAS vs
215 * write is smaller when they are not triggered on each operation
216 * (especially considering that writes and CASes equally require
217 * additional GC bookkeeping ("write barriers") that are sometimes
218 * more costly than the writes themselves because of contention).
219 *
220 * *** Overview of implementation ***
221 *
222 * We use a threshold-based approach to updates, with a slack
223 * threshold of two -- that is, we update head/tail when the
224 * current pointer appears to be two or more steps away from the
225 * first/last node. The slack value is hard-wired: a path greater
226 * than one is naturally implemented by checking equality of
227 * traversal pointers except when the list has only one element,
228 * in which case we keep slack threshold at one. Avoiding tracking
229 * explicit counts across method calls slightly simplifies an
230 * already-messy implementation. Using randomization would
231 * probably work better if there were a low-quality dirt-cheap
232 * per-thread one available, but even ThreadLocalRandom is too
233 * heavy for these purposes.
234 *
235 * With such a small slack threshold value, it is not worthwhile
236 * to augment this with path short-circuiting (i.e., unsplicing
237 * interior nodes) except in the case of cancellation/removal (see
238 * below).
239 *
240 * We allow both the head and tail fields to be null before any
241 * nodes are enqueued; initializing upon first append. This
242 * simplifies some other logic, as well as providing more
243 * efficient explicit control paths instead of letting JVMs insert
244 * implicit NullPointerExceptions when they are null. While not
245 * currently fully implemented, we also leave open the possibility
246 * of re-nulling these fields when empty (which is complicated to
247 * arrange, for little benefit.)
248 *
249 * All enqueue/dequeue operations are handled by the single method
250 * "xfer" with parameters indicating whether to act as some form
251 * of offer, put, poll, take, or transfer (each possibly with
252 * timeout). The relative complexity of using one monolithic
253 * method outweighs the code bulk and maintenance problems of
254 * using separate methods for each case.
255 *
256 * Operation consists of up to three phases. The first is
257 * implemented within method xfer, the second in tryAppend, and
258 * the third in method awaitMatch.
259 *
260 * 1. Try to match an existing node
261 *
262 * Starting at head, skip already-matched nodes until finding
263 * an unmatched node of opposite mode, if one exists, in which
264 * case matching it and returning, also if necessary updating
265 * head to one past the matched node (or the node itself if the
266 * list has no other unmatched nodes). If the CAS misses, then
267 * a loop retries advancing head by two steps until either
268 * success or the slack is at most two. By requiring that each
269 * attempt advances head by two (if applicable), we ensure that
270 * the slack does not grow without bound. Traversals also check
271 * if the initial head is now off-list, in which case they
272 * start at the new head.
273 *
274 * If no candidates are found and the call was untimed
275 * poll/offer, (argument "how" is NOW) return.
276 *
277 * 2. Try to append a new node (method tryAppend)
278 *
279 * Starting at current tail pointer, find the actual last node
280 * and try to append a new node (or if head was null, establish
281 * the first node). Nodes can be appended only if their
282 * predecessors are either already matched or are of the same
283 * mode. If we detect otherwise, then a new node with opposite
284 * mode must have been appended during traversal, so we must
285 * restart at phase 1. The traversal and update steps are
286 * otherwise similar to phase 1: Retrying upon CAS misses and
287 * checking for staleness. In particular, if a self-link is
288 * encountered, then we can safely jump to a node on the list
289 * by continuing the traversal at current head.
290 *
291 * On successful append, if the call was ASYNC, return.
292 *
293 * 3. Await match or cancellation (method awaitMatch)
294 *
295 * Wait for another thread to match node; instead cancelling if
296 * the current thread was interrupted or the wait timed out. On
297 * multiprocessors, we use front-of-queue spinning: If a node
298 * appears to be the first unmatched node in the queue, it
299 * spins a bit before blocking. In either case, before blocking
300 * it tries to unsplice any nodes between the current "head"
301 * and the first unmatched node.
302 *
303 * Front-of-queue spinning vastly improves performance of
304 * heavily contended queues. And so long as it is relatively
305 * brief and "quiet", spinning does not much impact performance
306 * of less-contended queues. During spins threads check their
307 * interrupt status and generate a thread-local random number
308 * to decide to occasionally perform a Thread.yield. While
309 * yield has underdefined specs, we assume that it might help,
310 * and will not hurt, in limiting impact of spinning on busy
311 * systems. We also use smaller (1/2) spins for nodes that are
312 * not known to be front but whose predecessors have not
313 * blocked -- these "chained" spins avoid artifacts of
314 * front-of-queue rules which otherwise lead to alternating
315 * nodes spinning vs blocking. Further, front threads that
316 * represent phase changes (from data to request node or vice
317 * versa) compared to their predecessors receive additional
318 * chained spins, reflecting longer paths typically required to
319 * unblock threads during phase changes.
320 *
321 *
322 * ** Unlinking removed interior nodes **
323 *
324 * In addition to minimizing garbage retention via self-linking
325 * described above, we also unlink removed interior nodes. These
326 * may arise due to timed out or interrupted waits, or calls to
327 * remove(x) or Iterator.remove. Normally, given a node that was
328 * at one time known to be the predecessor of some node s that is
329 * to be removed, we can unsplice s by CASing the next field of
330 * its predecessor if it still points to s (otherwise s must
331 * already have been removed or is now offlist). But there are two
332 * situations in which we cannot guarantee to make node s
333 * unreachable in this way: (1) If s is the trailing node of list
334 * (i.e., with null next), then it is pinned as the target node
335 * for appends, so can only be removed later after other nodes are
336 * appended. (2) We cannot necessarily unlink s given a
337 * predecessor node that is matched (including the case of being
338 * cancelled): the predecessor may already be unspliced, in which
339 * case some previous reachable node may still point to s.
340 * (For further explanation see Herlihy & Shavit "The Art of
341 * Multiprocessor Programming" chapter 9). Although, in both
342 * cases, we can rule out the need for further action if either s
343 * or its predecessor are (or can be made to be) at, or fall off
344 * from, the head of list.
345 *
346 * Without taking these into account, it would be possible for an
347 * unbounded number of supposedly removed nodes to remain
348 * reachable. Situations leading to such buildup are uncommon but
349 * can occur in practice; for example when a series of short timed
350 * calls to poll repeatedly time out but never otherwise fall off
351 * the list because of an untimed call to take at the front of the
352 * queue.
353 *
354 * When these cases arise, rather than always retraversing the
355 * entire list to find an actual predecessor to unlink (which
356 * won't help for case (1) anyway), we record a conservative
357 * estimate of possible unsplice failures (in "sweepVotes").
358 * We trigger a full sweep when the estimate exceeds a threshold
359 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
360 * removal failures to tolerate before sweeping through, unlinking
361 * cancelled nodes that were not unlinked upon initial removal.
362 * We perform sweeps by the thread hitting threshold (rather than
363 * background threads or by spreading work to other threads)
364 * because in the main contexts in which removal occurs, the
365 * caller is already timed-out, cancelled, or performing a
366 * potentially O(n) operation (e.g. remove(x)), none of which are
367 * time-critical enough to warrant the overhead that alternatives
368 * would impose on other threads.
369 *
370 * Because the sweepVotes estimate is conservative, and because
371 * nodes become unlinked "naturally" as they fall off the head of
372 * the queue, and because we allow votes to accumulate even while
373 * sweeps are in progress, there are typically significantly fewer
374 * such nodes than estimated. Choice of a threshold value
375 * balances the likelihood of wasted effort and contention, versus
376 * providing a worst-case bound on retention of interior nodes in
377 * quiescent queues. The value defined below was chosen
378 * empirically to balance these under various timeout scenarios.
379 *
380 * Note that we cannot self-link unlinked interior nodes during
381 * sweeps. However, the associated garbage chains terminate when
382 * some successor ultimately falls off the head of the list and is
383 * self-linked.
384 */
385
386 /** True if on multiprocessor */
387 private static final boolean MP =
388 Runtime.getRuntime().availableProcessors() > 1;
389
390 /**
391 * The number of times to spin (with randomly interspersed calls
392 * to Thread.yield) on multiprocessor before blocking when a node
393 * is apparently the first waiter in the queue. See above for
394 * explanation. Must be a power of two. The value is empirically
395 * derived -- it works pretty well across a variety of processors,
396 * numbers of CPUs, and OSes.
397 */
398 private static final int FRONT_SPINS = 1 << 7;
399
400 /**
401 * The number of times to spin before blocking when a node is
402 * preceded by another node that is apparently spinning. Also
403 * serves as an increment to FRONT_SPINS on phase changes, and as
404 * base average frequency for yielding during spins. Must be a
405 * power of two.
406 */
407 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
408
409 /**
410 * The maximum number of estimated removal failures (sweepVotes)
411 * to tolerate before sweeping through the queue unlinking
412 * cancelled nodes that were not unlinked upon initial
413 * removal. See above for explanation. The value must be at least
414 * two to avoid useless sweeps when removing trailing nodes.
415 */
416 static final int SWEEP_THRESHOLD = 32;
417
418 /**
419 * Queue nodes. Uses Object, not E, for items to allow forgetting
420 * them after use. Relies heavily on VarHandles to minimize
421 * unnecessary ordering constraints: Writes that are intrinsically
422 * ordered wrt other accesses or CASes use simple relaxed forms.
423 */
424 static final class Node {
425 final boolean isData; // false if this is a request node
426 volatile Object item; // initially non-null if isData; CASed to match
427 volatile Node next;
428 volatile Thread waiter; // null until waiting
429
430 // CAS methods for fields
431 final boolean casNext(Node cmp, Node val) {
432 return NEXT.compareAndSet(this, cmp, val);
433 }
434
435 final boolean casItem(Object cmp, Object val) {
436 // assert isData == (cmp != null);
437 // assert isData == (val == null);
438 // assert !(cmp instanceof Node);
439 return ITEM.compareAndSet(this, cmp, val);
440 }
441
442 /**
443 * Constructs a new node. Uses relaxed write because item can
444 * only be seen after publication via casNext.
445 */
446 Node(Object item) {
447 ITEM.set(this, item);
448 isData = (item != null);
449 }
450
451 /**
452 * Links node to itself to avoid garbage retention. Called
453 * only after CASing head field, so uses relaxed write.
454 */
455 final void forgetNext() {
456 NEXT.set(this, this);
457 }
458
459 /**
460 * Sets item (of a request node) to self and waiter to null,
461 * to avoid garbage retention after matching or cancelling.
462 * Uses relaxed writes because order is already constrained in
463 * the only calling contexts: item is forgotten only after
464 * volatile/atomic mechanics that extract items. Similarly,
465 * clearing waiter follows either CAS or return from park (if
466 * ever parked; else we don't care).
467 */
468 final void forgetContents() {
469 // assert isMatched();
470 if (!isData)
471 ITEM.set(this, this);
472 WAITER.set(this, null);
473 }
474
475 /**
476 * Returns true if this node has been matched, including the
477 * case of artificial matches due to cancellation.
478 */
479 final boolean isMatched() {
480 return isData == (item == null);
481 }
482
483 /**
484 * Returns true if a node with the given mode cannot be
485 * appended to this node because this node is unmatched and
486 * has opposite data mode.
487 */
488 final boolean cannotPrecede(boolean haveData) {
489 boolean d = isData;
490 return d != haveData && d != (item == null);
491 }
492
493 /**
494 * Tries to artificially match a data node -- used by remove.
495 */
496 final boolean tryMatchData() {
497 // assert isData;
498 final Object x;
499 if ((x = item) != null && casItem(x, null)) {
500 LockSupport.unpark(waiter);
501 return true;
502 }
503 return false;
504 }
505
506 private static final long serialVersionUID = -3375979862319811754L;
507
508 // VarHandle mechanics
509 private static final VarHandle ITEM;
510 private static final VarHandle NEXT;
511 private static final VarHandle WAITER;
512 static {
513 try {
514 MethodHandles.Lookup l = MethodHandles.lookup();
515 ITEM = l.findVarHandle(Node.class, "item", Object.class);
516 NEXT = l.findVarHandle(Node.class, "next", Node.class);
517 WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
518 } catch (ReflectiveOperationException e) {
519 throw new Error(e);
520 }
521 }
522 }
523
524 /** head of the queue; null until first enqueue */
525 transient volatile Node head;
526
527 /** tail of the queue; null until first append */
528 private transient volatile Node tail;
529
530 /** The number of apparent failures to unsplice removed nodes */
531 private transient volatile int sweepVotes;
532
533 // CAS methods for fields
534 private boolean casTail(Node cmp, Node val) {
535 return TAIL.compareAndSet(this, cmp, val);
536 }
537
538 private boolean casHead(Node cmp, Node val) {
539 return HEAD.compareAndSet(this, cmp, val);
540 }
541
542 private boolean casSweepVotes(int cmp, int val) {
543 return SWEEPVOTES.compareAndSet(this, cmp, val);
544 }
545
546 /*
547 * Possible values for "how" argument in xfer method.
548 */
549 private static final int NOW = 0; // for untimed poll, tryTransfer
550 private static final int ASYNC = 1; // for offer, put, add
551 private static final int SYNC = 2; // for transfer, take
552 private static final int TIMED = 3; // for timed poll, tryTransfer
553
554 /**
555 * Implements all queuing methods. See above for explanation.
556 *
557 * @param e the item or null for take
558 * @param haveData true if this is a put, else a take
559 * @param how NOW, ASYNC, SYNC, or TIMED
560 * @param nanos timeout in nanosecs, used only if mode is TIMED
561 * @return an item if matched, else e
562 * @throws NullPointerException if haveData mode but e is null
563 */
564 private E xfer(E e, boolean haveData, int how, long nanos) {
565 if (haveData && (e == null))
566 throw new NullPointerException();
567 Node s = null; // the node to append, if needed
568
569 retry:
570 for (;;) { // restart on append race
571
572 for (Node h = head, p = h; p != null;) { // find & match first node
573 boolean isData = p.isData;
574 Object item = p.item;
575 if ((item != null) == isData) { // unmatched
576 if (isData == haveData) // can't match
577 break;
578 if (p.casItem(item, e)) { // match
579 for (Node q = p; q != h;) {
580 Node n = q.next; // update by 2 unless singleton
581 if (head == h && casHead(h, n == null ? q : n)) {
582 h.forgetNext();
583 break;
584 } // advance and retry
585 if ((h = head) == null ||
586 (q = h.next) == null || !q.isMatched())
587 break; // unless slack < 2
588 }
589 LockSupport.unpark(p.waiter);
590 @SuppressWarnings("unchecked") E itemE = (E) item;
591 return itemE;
592 }
593 }
594 Node n = p.next;
595 p = (p != n) ? n : (h = head); // Use head if p offlist
596 }
597
598 if (how != NOW) { // No matches available
599 if (s == null)
600 s = new Node(e);
601 Node pred = tryAppend(s, haveData);
602 if (pred == null)
603 continue retry; // lost race vs opposite mode
604 if (how != ASYNC)
605 return awaitMatch(s, pred, e, (how == TIMED), nanos);
606 }
607 return e; // not waiting
608 }
609 }
610
611 /**
612 * Tries to append node s as tail.
613 *
614 * @param s the node to append
615 * @param haveData true if appending in data mode
616 * @return null on failure due to losing race with append in
617 * different mode, else s's predecessor, or s itself if no
618 * predecessor
619 */
620 private Node tryAppend(Node s, boolean haveData) {
621 for (Node t = tail, p = t;;) { // move p to last node and append
622 Node n, u; // temps for reads of next & tail
623 if (p == null && (p = head) == null) {
624 if (casHead(null, s))
625 return s; // initialize
626 }
627 else if (p.cannotPrecede(haveData))
628 return null; // lost race vs opposite mode
629 else if ((n = p.next) != null) // not last; keep traversing
630 p = p != t && t != (u = tail) ? (t = u) : // stale tail
631 (p != n) ? n : null; // restart if off list
632 else if (!p.casNext(null, s))
633 p = p.next; // re-read on CAS failure
634 else {
635 if (p != t) { // update if slack now >= 2
636 while ((tail != t || !casTail(t, s)) &&
637 (t = tail) != null &&
638 (s = t.next) != null && // advance and retry
639 (s = s.next) != null && s != t);
640 }
641 return p;
642 }
643 }
644 }
645
646 /**
647 * Spins/yields/blocks until node s is matched or caller gives up.
648 *
649 * @param s the waiting node
650 * @param pred the predecessor of s, or s itself if it has no
651 * predecessor, or null if unknown (the null case does not occur
652 * in any current calls but may in possible future extensions)
653 * @param e the comparison value for checking match
654 * @param timed if true, wait only until timeout elapses
655 * @param nanos timeout in nanosecs, used only if timed is true
656 * @return matched item, or e if unmatched on interrupt or timeout
657 */
658 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
659 final long deadline = timed ? System.nanoTime() + nanos : 0L;
660 Thread w = Thread.currentThread();
661 int spins = -1; // initialized after first item and cancel checks
662 ThreadLocalRandom randomYields = null; // bound if needed
663
664 for (;;) {
665 Object item = s.item;
666 if (item != e) { // matched
667 // assert item != s;
668 s.forgetContents(); // avoid garbage
669 @SuppressWarnings("unchecked") E itemE = (E) item;
670 return itemE;
671 }
672 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
673 // try to cancel and unlink
674 if (s.casItem(e, s.isData ? null : s)) {
675 unsplice(pred, s);
676 return e;
677 }
678 // return normally if lost CAS
679 }
680 else if (spins < 0) { // establish spins at/near front
681 if ((spins = spinsFor(pred, s.isData)) > 0)
682 randomYields = ThreadLocalRandom.current();
683 }
684 else if (spins > 0) { // spin
685 --spins;
686 if (randomYields.nextInt(CHAINED_SPINS) == 0)
687 Thread.yield(); // occasionally yield
688 }
689 else if (s.waiter == null) {
690 s.waiter = w; // request unpark then recheck
691 }
692 else if (timed) {
693 nanos = deadline - System.nanoTime();
694 if (nanos > 0L)
695 LockSupport.parkNanos(this, nanos);
696 }
697 else {
698 LockSupport.park(this);
699 }
700 }
701 }
702
703 /**
704 * Returns spin/yield value for a node with given predecessor and
705 * data mode. See above for explanation.
706 */
707 private static int spinsFor(Node pred, boolean haveData) {
708 if (MP && pred != null) {
709 if (pred.isData != haveData) // phase change
710 return FRONT_SPINS + CHAINED_SPINS;
711 if (pred.isMatched()) // probably at front
712 return FRONT_SPINS;
713 if (pred.waiter == null) // pred apparently spinning
714 return CHAINED_SPINS;
715 }
716 return 0;
717 }
718
719 /* -------------- Traversal methods -------------- */
720
721 /**
722 * Returns the first unmatched data node, or null if none.
723 * Callers must recheck if the returned node is unmatched
724 * before using.
725 */
726 final Node firstDataNode() {
727 restartFromHead: for (;;) {
728 for (Node p = head; p != null;) {
729 Object item = p.item;
730 if (p.isData) {
731 if (item != null)
732 return p;
733 }
734 else if (item == null)
735 break;
736 if (p == (p = p.next))
737 continue restartFromHead;
738 }
739 return null;
740 }
741 }
742
743 /**
744 * Traverses and counts unmatched nodes of the given mode.
745 * Used by methods size and getWaitingConsumerCount.
746 */
747 private int countOfMode(boolean data) {
748 restartFromHead: for (;;) {
749 int count = 0;
750 for (Node p = head; p != null;) {
751 if (!p.isMatched()) {
752 if (p.isData != data)
753 return 0;
754 if (++count == Integer.MAX_VALUE)
755 break; // @see Collection.size()
756 }
757 if (p == (p = p.next))
758 continue restartFromHead;
759 }
760 return count;
761 }
762 }
763
764 public String toString() {
765 String[] a = null;
766 restartFromHead: for (;;) {
767 int charLength = 0;
768 int size = 0;
769 for (Node p = head; p != null;) {
770 Object item = p.item;
771 if (p.isData) {
772 if (item != null) {
773 if (a == null)
774 a = new String[4];
775 else if (size == a.length)
776 a = Arrays.copyOf(a, 2 * size);
777 String s = item.toString();
778 a[size++] = s;
779 charLength += s.length();
780 }
781 } else if (item == null)
782 break;
783 if (p == (p = p.next))
784 continue restartFromHead;
785 }
786
787 if (size == 0)
788 return "[]";
789
790 return Helpers.toString(a, size, charLength);
791 }
792 }
793
794 private Object[] toArrayInternal(Object[] a) {
795 Object[] x = a;
796 restartFromHead: for (;;) {
797 int size = 0;
798 for (Node p = head; p != null;) {
799 Object item = p.item;
800 if (p.isData) {
801 if (item != null) {
802 if (x == null)
803 x = new Object[4];
804 else if (size == x.length)
805 x = Arrays.copyOf(x, 2 * (size + 4));
806 x[size++] = item;
807 }
808 } else if (item == null)
809 break;
810 if (p == (p = p.next))
811 continue restartFromHead;
812 }
813 if (x == null)
814 return new Object[0];
815 else if (a != null && size <= a.length) {
816 if (a != x)
817 System.arraycopy(x, 0, a, 0, size);
818 if (size < a.length)
819 a[size] = null;
820 return a;
821 }
822 return (size == x.length) ? x : Arrays.copyOf(x, size);
823 }
824 }
825
826 /**
827 * Returns an array containing all of the elements in this queue, in
828 * proper sequence.
829 *
830 * <p>The returned array will be "safe" in that no references to it are
831 * maintained by this queue. (In other words, this method must allocate
832 * a new array). The caller is thus free to modify the returned array.
833 *
834 * <p>This method acts as bridge between array-based and collection-based
835 * APIs.
836 *
837 * @return an array containing all of the elements in this queue
838 */
839 public Object[] toArray() {
840 return toArrayInternal(null);
841 }
842
843 /**
844 * Returns an array containing all of the elements in this queue, in
845 * proper sequence; the runtime type of the returned array is that of
846 * the specified array. If the queue fits in the specified array, it
847 * is returned therein. Otherwise, a new array is allocated with the
848 * runtime type of the specified array and the size of this queue.
849 *
850 * <p>If this queue fits in the specified array with room to spare
851 * (i.e., the array has more elements than this queue), the element in
852 * the array immediately following the end of the queue is set to
853 * {@code null}.
854 *
855 * <p>Like the {@link #toArray()} method, this method acts as bridge between
856 * array-based and collection-based APIs. Further, this method allows
857 * precise control over the runtime type of the output array, and may,
858 * under certain circumstances, be used to save allocation costs.
859 *
860 * <p>Suppose {@code x} is a queue known to contain only strings.
861 * The following code can be used to dump the queue into a newly
862 * allocated array of {@code String}:
863 *
864 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
865 *
866 * Note that {@code toArray(new Object[0])} is identical in function to
867 * {@code toArray()}.
868 *
869 * @param a the array into which the elements of the queue are to
870 * be stored, if it is big enough; otherwise, a new array of the
871 * same runtime type is allocated for this purpose
872 * @return an array containing all of the elements in this queue
873 * @throws ArrayStoreException if the runtime type of the specified array
874 * is not a supertype of the runtime type of every element in
875 * this queue
876 * @throws NullPointerException if the specified array is null
877 */
878 @SuppressWarnings("unchecked")
879 public <T> T[] toArray(T[] a) {
880 if (a == null) throw new NullPointerException();
881 return (T[]) toArrayInternal(a);
882 }
883
884 final class Itr implements Iterator<E> {
885 private Node nextNode; // next node to return item for
886 private E nextItem; // the corresponding item
887 private Node lastRet; // last returned node, to support remove
888 private Node lastPred; // predecessor to unlink lastRet
889
890 /**
891 * Moves to next node after prev, or first node if prev null.
892 */
893 private void advance(Node prev) {
894 /*
895 * To track and avoid buildup of deleted nodes in the face
896 * of calls to both Queue.remove and Itr.remove, we must
897 * include variants of unsplice and sweep upon each
898 * advance: Upon Itr.remove, we may need to catch up links
899 * from lastPred, and upon other removes, we might need to
900 * skip ahead from stale nodes and unsplice deleted ones
901 * found while advancing.
902 */
903
904 Node r, b; // reset lastPred upon possible deletion of lastRet
905 if ((r = lastRet) != null && !r.isMatched())
906 lastPred = r; // next lastPred is old lastRet
907 else if ((b = lastPred) == null || b.isMatched())
908 lastPred = null; // at start of list
909 else {
910 Node s, n; // help with removal of lastPred.next
911 while ((s = b.next) != null &&
912 s != b && s.isMatched() &&
913 (n = s.next) != null && n != s)
914 b.casNext(s, n);
915 }
916
917 this.lastRet = prev;
918
919 for (Node p = prev, s, n;;) {
920 s = (p == null) ? head : p.next;
921 if (s == null)
922 break;
923 else if (s == p) {
924 p = null;
925 continue;
926 }
927 Object item = s.item;
928 if (s.isData) {
929 if (item != null) {
930 @SuppressWarnings("unchecked") E itemE = (E) item;
931 nextItem = itemE;
932 nextNode = s;
933 return;
934 }
935 }
936 else if (item == null)
937 break;
938 // assert s.isMatched();
939 if (p == null)
940 p = s;
941 else if ((n = s.next) == null)
942 break;
943 else if (s == n)
944 p = null;
945 else
946 p.casNext(s, n);
947 }
948 nextNode = null;
949 nextItem = null;
950 }
951
952 Itr() {
953 advance(null);
954 }
955
956 public final boolean hasNext() {
957 return nextNode != null;
958 }
959
960 public final E next() {
961 Node p = nextNode;
962 if (p == null) throw new NoSuchElementException();
963 E e = nextItem;
964 advance(p);
965 return e;
966 }
967
968 public final void remove() {
969 final Node lastRet = this.lastRet;
970 if (lastRet == null)
971 throw new IllegalStateException();
972 this.lastRet = null;
973 if (lastRet.tryMatchData())
974 unsplice(lastPred, lastRet);
975 }
976 }
977
978 /** A customized variant of Spliterators.IteratorSpliterator */
979 final class LTQSpliterator implements Spliterator<E> {
980 static final int MAX_BATCH = 1 << 25; // max batch array size;
981 Node current; // current node; null until initialized
982 int batch; // batch size for splits
983 boolean exhausted; // true when no more nodes
984 LTQSpliterator() {}
985
986 public Spliterator<E> trySplit() {
987 Node p;
988 int b = batch;
989 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
990 if (!exhausted &&
991 ((p = current) != null || (p = firstDataNode()) != null) &&
992 p.next != null) {
993 Object[] a = new Object[n];
994 int i = 0;
995 do {
996 final Object item = p.item;
997 if (p.isData) {
998 if (item != null)
999 a[i++] = item;
1000 }
1001 else if (item == null) {
1002 p = null;
1003 break;
1004 }
1005 if (p == (p = p.next))
1006 p = firstDataNode();
1007 } while (p != null && i < n);
1008 exhausted = ((current = p) == null);
1009 if (i > 0) {
1010 batch = i;
1011 return Spliterators.spliterator
1012 (a, 0, i, (Spliterator.ORDERED |
1013 Spliterator.NONNULL |
1014 Spliterator.CONCURRENT));
1015 }
1016 }
1017 return null;
1018 }
1019
1020 @SuppressWarnings("unchecked")
1021 public void forEachRemaining(Consumer<? super E> action) {
1022 Node p;
1023 if (action == null) throw new NullPointerException();
1024 if (!exhausted &&
1025 ((p = current) != null || (p = firstDataNode()) != null)) {
1026 current = null;
1027 exhausted = true;
1028 do {
1029 final Object item = p.item;
1030 if (p.isData) {
1031 if (item != null)
1032 action.accept((E)item);
1033 }
1034 else if (item == null)
1035 break;
1036 if (p == (p = p.next))
1037 p = firstDataNode();
1038 } while (p != null);
1039 }
1040 }
1041
1042 @SuppressWarnings("unchecked")
1043 public boolean tryAdvance(Consumer<? super E> action) {
1044 Node p;
1045 if (action == null) throw new NullPointerException();
1046 if (!exhausted &&
1047 ((p = current) != null || (p = firstDataNode()) != null)) {
1048 Object item;
1049 do {
1050 if (p.isData)
1051 item = p.item;
1052 else {
1053 item = null;
1054 if (p.item == null) {
1055 p = null;
1056 break;
1057 }
1058 }
1059 if (p == (p = p.next))
1060 p = firstDataNode();
1061 } while (item == null && p != null);
1062 exhausted = ((current = p) == null);
1063 if (item != null) {
1064 action.accept((E)item);
1065 return true;
1066 }
1067 }
1068 return false;
1069 }
1070
1071 public long estimateSize() { return Long.MAX_VALUE; }
1072
1073 public int characteristics() {
1074 return (Spliterator.ORDERED |
1075 Spliterator.NONNULL |
1076 Spliterator.CONCURRENT);
1077 }
1078 }
1079
1080 /**
1081 * Returns a {@link Spliterator} over the elements in this queue.
1082 *
1083 * <p>The returned spliterator is
1084 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1085 *
1086 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1087 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1088 *
1089 * @implNote
1090 * The {@code Spliterator} implements {@code trySplit} to permit limited
1091 * parallelism.
1092 *
1093 * @return a {@code Spliterator} over the elements in this queue
1094 * @since 1.8
1095 */
1096 public Spliterator<E> spliterator() {
1097 return new LTQSpliterator();
1098 }
1099
1100 /* -------------- Removal methods -------------- */
1101
1102 /**
1103 * Unsplices (now or later) the given deleted/cancelled node with
1104 * the given predecessor.
1105 *
1106 * @param pred a node that was at one time known to be the
1107 * predecessor of s, or null or s itself if s is/was at head
1108 * @param s the node to be unspliced
1109 */
1110 final void unsplice(Node pred, Node s) {
1111 s.waiter = null; // disable signals
1112 /*
1113 * See above for rationale. Briefly: if pred still points to
1114 * s, try to unlink s. If s cannot be unlinked, because it is
1115 * trailing node or pred might be unlinked, and neither pred
1116 * nor s are head or offlist, add to sweepVotes, and if enough
1117 * votes have accumulated, sweep.
1118 */
1119 if (pred != null && pred != s && pred.next == s) {
1120 Node n = s.next;
1121 if (n == null ||
1122 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1123 for (;;) { // check if at, or could be, head
1124 Node h = head;
1125 if (h == pred || h == s || h == null)
1126 return; // at head or list empty
1127 if (!h.isMatched())
1128 break;
1129 Node hn = h.next;
1130 if (hn == null)
1131 return; // now empty
1132 if (hn != h && casHead(h, hn))
1133 h.forgetNext(); // advance head
1134 }
1135 if (pred.next != pred && s.next != s) { // recheck if offlist
1136 for (;;) { // sweep now if enough votes
1137 int v = sweepVotes;
1138 if (v < SWEEP_THRESHOLD) {
1139 if (casSweepVotes(v, v + 1))
1140 break;
1141 }
1142 else if (casSweepVotes(v, 0)) {
1143 sweep();
1144 break;
1145 }
1146 }
1147 }
1148 }
1149 }
1150 }
1151
1152 /**
1153 * Unlinks matched (typically cancelled) nodes encountered in a
1154 * traversal from head.
1155 */
1156 private void sweep() {
1157 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1158 if (!s.isMatched())
1159 // Unmatched nodes are never self-linked
1160 p = s;
1161 else if ((n = s.next) == null) // trailing node is pinned
1162 break;
1163 else if (s == n) // stale
1164 // No need to also check for p == s, since that implies s == n
1165 p = head;
1166 else
1167 p.casNext(s, n);
1168 }
1169 }
1170
1171 /**
1172 * Creates an initially empty {@code LinkedTransferQueue}.
1173 */
1174 public LinkedTransferQueue() {
1175 }
1176
1177 /**
1178 * Creates a {@code LinkedTransferQueue}
1179 * initially containing the elements of the given collection,
1180 * added in traversal order of the collection's iterator.
1181 *
1182 * @param c the collection of elements to initially contain
1183 * @throws NullPointerException if the specified collection or any
1184 * of its elements are null
1185 */
1186 public LinkedTransferQueue(Collection<? extends E> c) {
1187 this();
1188 addAll(c);
1189 }
1190
1191 /**
1192 * Inserts the specified element at the tail of this queue.
1193 * As the queue is unbounded, this method will never block.
1194 *
1195 * @throws NullPointerException if the specified element is null
1196 */
1197 public void put(E e) {
1198 xfer(e, true, ASYNC, 0);
1199 }
1200
1201 /**
1202 * Inserts the specified element at the tail of this queue.
1203 * As the queue is unbounded, this method will never block or
1204 * return {@code false}.
1205 *
1206 * @return {@code true} (as specified by
1207 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1208 * BlockingQueue.offer})
1209 * @throws NullPointerException if the specified element is null
1210 */
1211 public boolean offer(E e, long timeout, TimeUnit unit) {
1212 xfer(e, true, ASYNC, 0);
1213 return true;
1214 }
1215
1216 /**
1217 * Inserts the specified element at the tail of this queue.
1218 * As the queue is unbounded, this method will never return {@code false}.
1219 *
1220 * @return {@code true} (as specified by {@link Queue#offer})
1221 * @throws NullPointerException if the specified element is null
1222 */
1223 public boolean offer(E e) {
1224 xfer(e, true, ASYNC, 0);
1225 return true;
1226 }
1227
1228 /**
1229 * Inserts the specified element at the tail of this queue.
1230 * As the queue is unbounded, this method will never throw
1231 * {@link IllegalStateException} or return {@code false}.
1232 *
1233 * @return {@code true} (as specified by {@link Collection#add})
1234 * @throws NullPointerException if the specified element is null
1235 */
1236 public boolean add(E e) {
1237 xfer(e, true, ASYNC, 0);
1238 return true;
1239 }
1240
1241 /**
1242 * Transfers the element to a waiting consumer immediately, if possible.
1243 *
1244 * <p>More precisely, transfers the specified element immediately
1245 * if there exists a consumer already waiting to receive it (in
1246 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1247 * otherwise returning {@code false} without enqueuing the element.
1248 *
1249 * @throws NullPointerException if the specified element is null
1250 */
1251 public boolean tryTransfer(E e) {
1252 return xfer(e, true, NOW, 0) == null;
1253 }
1254
1255 /**
1256 * Transfers the element to a consumer, waiting if necessary to do so.
1257 *
1258 * <p>More precisely, transfers the specified element immediately
1259 * if there exists a consumer already waiting to receive it (in
1260 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1261 * else inserts the specified element at the tail of this queue
1262 * and waits until the element is received by a consumer.
1263 *
1264 * @throws NullPointerException if the specified element is null
1265 */
1266 public void transfer(E e) throws InterruptedException {
1267 if (xfer(e, true, SYNC, 0) != null) {
1268 Thread.interrupted(); // failure possible only due to interrupt
1269 throw new InterruptedException();
1270 }
1271 }
1272
1273 /**
1274 * Transfers the element to a consumer if it is possible to do so
1275 * before the timeout elapses.
1276 *
1277 * <p>More precisely, transfers the specified element immediately
1278 * if there exists a consumer already waiting to receive it (in
1279 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1280 * else inserts the specified element at the tail of this queue
1281 * and waits until the element is received by a consumer,
1282 * returning {@code false} if the specified wait time elapses
1283 * before the element can be transferred.
1284 *
1285 * @throws NullPointerException if the specified element is null
1286 */
1287 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1288 throws InterruptedException {
1289 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1290 return true;
1291 if (!Thread.interrupted())
1292 return false;
1293 throw new InterruptedException();
1294 }
1295
1296 public E take() throws InterruptedException {
1297 E e = xfer(null, false, SYNC, 0);
1298 if (e != null)
1299 return e;
1300 Thread.interrupted();
1301 throw new InterruptedException();
1302 }
1303
1304 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1305 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1306 if (e != null || !Thread.interrupted())
1307 return e;
1308 throw new InterruptedException();
1309 }
1310
1311 public E poll() {
1312 return xfer(null, false, NOW, 0);
1313 }
1314
1315 /**
1316 * @throws NullPointerException {@inheritDoc}
1317 * @throws IllegalArgumentException {@inheritDoc}
1318 */
1319 public int drainTo(Collection<? super E> c) {
1320 if (c == null)
1321 throw new NullPointerException();
1322 if (c == this)
1323 throw new IllegalArgumentException();
1324 int n = 0;
1325 for (E e; (e = poll()) != null;) {
1326 c.add(e);
1327 ++n;
1328 }
1329 return n;
1330 }
1331
1332 /**
1333 * @throws NullPointerException {@inheritDoc}
1334 * @throws IllegalArgumentException {@inheritDoc}
1335 */
1336 public int drainTo(Collection<? super E> c, int maxElements) {
1337 if (c == null)
1338 throw new NullPointerException();
1339 if (c == this)
1340 throw new IllegalArgumentException();
1341 int n = 0;
1342 for (E e; n < maxElements && (e = poll()) != null;) {
1343 c.add(e);
1344 ++n;
1345 }
1346 return n;
1347 }
1348
1349 /**
1350 * Returns an iterator over the elements in this queue in proper sequence.
1351 * The elements will be returned in order from first (head) to last (tail).
1352 *
1353 * <p>The returned iterator is
1354 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1355 *
1356 * @return an iterator over the elements in this queue in proper sequence
1357 */
1358 public Iterator<E> iterator() {
1359 return new Itr();
1360 }
1361
1362 public E peek() {
1363 restartFromHead: for (;;) {
1364 for (Node p = head; p != null;) {
1365 Object item = p.item;
1366 if (p.isData) {
1367 if (item != null) {
1368 @SuppressWarnings("unchecked") E e = (E) item;
1369 return e;
1370 }
1371 }
1372 else if (item == null)
1373 break;
1374 if (p == (p = p.next))
1375 continue restartFromHead;
1376 }
1377 return null;
1378 }
1379 }
1380
1381 /**
1382 * Returns {@code true} if this queue contains no elements.
1383 *
1384 * @return {@code true} if this queue contains no elements
1385 */
1386 public boolean isEmpty() {
1387 return firstDataNode() == null;
1388 }
1389
1390 public boolean hasWaitingConsumer() {
1391 restartFromHead: for (;;) {
1392 for (Node p = head; p != null;) {
1393 Object item = p.item;
1394 if (p.isData) {
1395 if (item != null)
1396 break;
1397 }
1398 else if (item == null)
1399 return true;
1400 if (p == (p = p.next))
1401 continue restartFromHead;
1402 }
1403 return false;
1404 }
1405 }
1406
1407 /**
1408 * Returns the number of elements in this queue. If this queue
1409 * contains more than {@code Integer.MAX_VALUE} elements, returns
1410 * {@code Integer.MAX_VALUE}.
1411 *
1412 * <p>Beware that, unlike in most collections, this method is
1413 * <em>NOT</em> a constant-time operation. Because of the
1414 * asynchronous nature of these queues, determining the current
1415 * number of elements requires an O(n) traversal.
1416 *
1417 * @return the number of elements in this queue
1418 */
1419 public int size() {
1420 return countOfMode(true);
1421 }
1422
1423 public int getWaitingConsumerCount() {
1424 return countOfMode(false);
1425 }
1426
1427 /**
1428 * Removes a single instance of the specified element from this queue,
1429 * if it is present. More formally, removes an element {@code e} such
1430 * that {@code o.equals(e)}, if this queue contains one or more such
1431 * elements.
1432 * Returns {@code true} if this queue contained the specified element
1433 * (or equivalently, if this queue changed as a result of the call).
1434 *
1435 * @param o element to be removed from this queue, if present
1436 * @return {@code true} if this queue changed as a result of the call
1437 */
1438 public boolean remove(Object o) {
1439 if (o == null)
1440 return false;
1441 restartFromHead: for (;;) {
1442 for (Node pred = null, p = head; p != null; ) {
1443 Object item = p.item;
1444 if (p.isData) {
1445 if (item != null
1446 && o.equals(item)
1447 && p.tryMatchData()) {
1448 unsplice(pred, p);
1449 return true;
1450 }
1451 }
1452 else if (item == null)
1453 break;
1454 if ((pred = p) == (p = p.next))
1455 continue restartFromHead;
1456 }
1457 return false;
1458 }
1459 }
1460
1461 /**
1462 * Returns {@code true} if this queue contains the specified element.
1463 * More formally, returns {@code true} if and only if this queue contains
1464 * at least one element {@code e} such that {@code o.equals(e)}.
1465 *
1466 * @param o object to be checked for containment in this queue
1467 * @return {@code true} if this queue contains the specified element
1468 */
1469 public boolean contains(Object o) {
1470 if (o != null) {
1471 for (Node p = head; p != null; ) {
1472 Object item = p.item;
1473 if (p.isData) {
1474 if (item != null && o.equals(item))
1475 return true;
1476 }
1477 else if (item == null)
1478 break;
1479 if (p == (p = p.next))
1480 p = head;
1481 }
1482 }
1483 return false;
1484 }
1485
1486 /**
1487 * Always returns {@code Integer.MAX_VALUE} because a
1488 * {@code LinkedTransferQueue} is not capacity constrained.
1489 *
1490 * @return {@code Integer.MAX_VALUE} (as specified by
1491 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1492 * BlockingQueue.remainingCapacity})
1493 */
1494 public int remainingCapacity() {
1495 return Integer.MAX_VALUE;
1496 }
1497
1498 /**
1499 * Saves this queue to a stream (that is, serializes it).
1500 *
1501 * @param s the stream
1502 * @throws java.io.IOException if an I/O error occurs
1503 * @serialData All of the elements (each an {@code E}) in
1504 * the proper order, followed by a null
1505 */
1506 private void writeObject(java.io.ObjectOutputStream s)
1507 throws java.io.IOException {
1508 s.defaultWriteObject();
1509 for (E e : this)
1510 s.writeObject(e);
1511 // Use trailing null as sentinel
1512 s.writeObject(null);
1513 }
1514
1515 /**
1516 * Reconstitutes this queue from a stream (that is, deserializes it).
1517 * @param s the stream
1518 * @throws ClassNotFoundException if the class of a serialized object
1519 * could not be found
1520 * @throws java.io.IOException if an I/O error occurs
1521 */
1522 private void readObject(java.io.ObjectInputStream s)
1523 throws java.io.IOException, ClassNotFoundException {
1524 s.defaultReadObject();
1525 for (;;) {
1526 @SuppressWarnings("unchecked")
1527 E item = (E) s.readObject();
1528 if (item == null)
1529 break;
1530 else
1531 offer(item);
1532 }
1533 }
1534
1535 // VarHandle mechanics
1536 private static final VarHandle HEAD;
1537 private static final VarHandle TAIL;
1538 private static final VarHandle SWEEPVOTES;
1539 static {
1540 try {
1541 MethodHandles.Lookup l = MethodHandles.lookup();
1542 HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1543 Node.class);
1544 TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1545 Node.class);
1546 SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1547 int.class);
1548 } catch (ReflectiveOperationException e) {
1549 throw new Error(e);
1550 }
1551
1552 // Reduce the risk of rare disastrous classloading in first call to
1553 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1554 Class<?> ensureLoaded = LockSupport.class;
1555 }
1556 }