ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.12
Committed: Thu Oct 29 00:34:48 2009 UTC (14 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.11: +4 -2 lines
Log Message:
sync with jsr166y package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.ConcurrentModificationException;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15 import java.util.concurrent.locks.LockSupport;
16 /**
17 * An unbounded {@link TransferQueue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out) with respect
19 * to any given producer. The <em>head</em> of the queue is that
20 * element that has been on the queue the longest time for some
21 * producer. The <em>tail</em> of the queue is that element that has
22 * been on the queue the shortest time for some producer.
23 *
24 * <p>Beware that, unlike in most collections, the {@code size}
25 * method is <em>NOT</em> a constant-time operation. Because of the
26 * asynchronous nature of these queues, determining the current number
27 * of elements requires a traversal of the elements.
28 *
29 * <p>This class and its iterator implement all of the
30 * <em>optional</em> methods of the {@link Collection} and {@link
31 * Iterator} interfaces.
32 *
33 * <p>Memory consistency effects: As with other concurrent
34 * collections, actions in a thread prior to placing an object into a
35 * {@code LinkedTransferQueue}
36 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37 * actions subsequent to the access or removal of that element from
38 * the {@code LinkedTransferQueue} in another thread.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.7
45 * @author Doug Lea
46 * @param <E> the type of elements held in this collection
47 */
48 public class LinkedTransferQueue<E> extends AbstractQueue<E>
49 implements TransferQueue<E>, java.io.Serializable {
50 private static final long serialVersionUID = -3223113410248163686L;
51
52 /*
53 * *** Overview of Dual Queues with Slack ***
54 *
55 * Dual Queues, introduced by Scherer and Scott
56 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57 * (linked) queues in which nodes may represent either data or
58 * requests. When a thread tries to enqueue a data node, but
59 * encounters a request node, it instead "matches" and removes it;
60 * and vice versa for enqueuing requests. Blocking Dual Queues
61 * arrange that threads enqueuing unmatched requests block until
62 * other threads provide the match. Dual Synchronous Queues (see
63 * Scherer, Lea, & Scott
64 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65 * additionally arrange that threads enqueuing unmatched data also
66 * block. Dual Transfer Queues support all of these modes, as
67 * dictated by callers.
68 *
69 * A FIFO dual queue may be implemented using a variation of the
70 * Michael & Scott (M&S) lock-free queue algorithm
71 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72 * It maintains two pointer fields, "head", pointing to a
73 * (matched) node that in turn points to the first actual
74 * (unmatched) queue node (or null if empty); and "tail" that
75 * points to the last node on the queue (or again null if
76 * empty). For example, here is a possible queue with four data
77 * elements:
78 *
79 * head tail
80 * | |
81 * v v
82 * M -> U -> U -> U -> U
83 *
84 * The M&S queue algorithm is known to be prone to scalability and
85 * overhead limitations when maintaining (via CAS) these head and
86 * tail pointers. This has led to the development of
87 * contention-reducing variants such as elimination arrays (see
88 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89 * optimistic back pointers (see Ladan-Mozes & Shavit
90 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91 * However, the nature of dual queues enables a simpler tactic for
92 * improving M&S-style implementations when dual-ness is needed.
93 *
94 * In a dual queue, each node must atomically maintain its match
95 * status. While there are other possible variants, we implement
96 * this here as: for a data-mode node, matching entails CASing an
97 * "item" field from a non-null data value to null upon match, and
98 * vice-versa for request nodes, CASing from null to a data
99 * value. (Note that the linearization properties of this style of
100 * queue are easy to verify -- elements are made available by
101 * linking, and unavailable by matching.) Compared to plain M&S
102 * queues, this property of dual queues requires one additional
103 * successful atomic operation per enq/deq pair. But it also
104 * enables lower cost variants of queue maintenance mechanics. (A
105 * variation of this idea applies even for non-dual queues that
106 * support deletion of interior elements, such as
107 * j.u.c.ConcurrentLinkedQueue.)
108 *
109 * Once a node is matched, its match status can never again
110 * change. We may thus arrange that the linked list of them
111 * contain a prefix of zero or more matched nodes, followed by a
112 * suffix of zero or more unmatched nodes. (Note that we allow
113 * both the prefix and suffix to be zero length, which in turn
114 * means that we do not use a dummy header.) If we were not
115 * concerned with either time or space efficiency, we could
116 * correctly perform enqueue and dequeue operations by traversing
117 * from a pointer to the initial node; CASing the item of the
118 * first unmatched node on match and CASing the next field of the
119 * trailing node on appends. (Plus some special-casing when
120 * initially empty). While this would be a terrible idea in
121 * itself, it does have the benefit of not requiring ANY atomic
122 * updates on head/tail fields.
123 *
124 * We introduce here an approach that lies between the extremes of
125 * never versus always updating queue (head and tail) pointers.
126 * This offers a tradeoff between sometimes requiring extra
127 * traversal steps to locate the first and/or last unmatched
128 * nodes, versus the reduced overhead and contention of fewer
129 * updates to queue pointers. For example, a possible snapshot of
130 * a queue is:
131 *
132 * head tail
133 * | |
134 * v v
135 * M -> M -> U -> U -> U -> U
136 *
137 * The best value for this "slack" (the targeted maximum distance
138 * between the value of "head" and the first unmatched node, and
139 * similarly for "tail") is an empirical matter. We have found
140 * that using very small constants in the range of 1-3 work best
141 * over a range of platforms. Larger values introduce increasing
142 * costs of cache misses and risks of long traversal chains, while
143 * smaller values increase CAS contention and overhead.
144 *
145 * Dual queues with slack differ from plain M&S dual queues by
146 * virtue of only sometimes updating head or tail pointers when
147 * matching, appending, or even traversing nodes; in order to
148 * maintain a targeted slack. The idea of "sometimes" may be
149 * operationalized in several ways. The simplest is to use a
150 * per-operation counter incremented on each traversal step, and
151 * to try (via CAS) to update the associated queue pointer
152 * whenever the count exceeds a threshold. Another, that requires
153 * more overhead, is to use random number generators to update
154 * with a given probability per traversal step.
155 *
156 * In any strategy along these lines, because CASes updating
157 * fields may fail, the actual slack may exceed targeted
158 * slack. However, they may be retried at any time to maintain
159 * targets. Even when using very small slack values, this
160 * approach works well for dual queues because it allows all
161 * operations up to the point of matching or appending an item
162 * (hence potentially allowing progress by another thread) to be
163 * read-only, thus not introducing any further contention. As
164 * described below, we implement this by performing slack
165 * maintenance retries only after these points.
166 *
167 * As an accompaniment to such techniques, traversal overhead can
168 * be further reduced without increasing contention of head
169 * pointer updates: Threads may sometimes shortcut the "next" link
170 * path from the current "head" node to be closer to the currently
171 * known first unmatched node, and similarly for tail. Again, this
172 * may be triggered with using thresholds or randomization.
173 *
174 * These ideas must be further extended to avoid unbounded amounts
175 * of costly-to-reclaim garbage caused by the sequential "next"
176 * links of nodes starting at old forgotten head nodes: As first
177 * described in detail by Boehm
178 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179 * delays noticing that any arbitrarily old node has become
180 * garbage, all newer dead nodes will also be unreclaimed.
181 * (Similar issues arise in non-GC environments.) To cope with
182 * this in our implementation, upon CASing to advance the head
183 * pointer, we set the "next" link of the previous head to point
184 * only to itself; thus limiting the length of connected dead lists.
185 * (We also take similar care to wipe out possibly garbage
186 * retaining values held in other Node fields.) However, doing so
187 * adds some further complexity to traversal: If any "next"
188 * pointer links to itself, it indicates that the current thread
189 * has lagged behind a head-update, and so the traversal must
190 * continue from the "head". Traversals trying to find the
191 * current tail starting from "tail" may also encounter
192 * self-links, in which case they also continue at "head".
193 *
194 * It is tempting in slack-based scheme to not even use CAS for
195 * updates (similarly to Ladan-Mozes & Shavit). However, this
196 * cannot be done for head updates under the above link-forgetting
197 * mechanics because an update may leave head at a detached node.
198 * And while direct writes are possible for tail updates, they
199 * increase the risk of long retraversals, and hence long garbage
200 * chains, which can be much more costly than is worthwhile
201 * considering that the cost difference of performing a CAS vs
202 * write is smaller when they are not triggered on each operation
203 * (especially considering that writes and CASes equally require
204 * additional GC bookkeeping ("write barriers") that are sometimes
205 * more costly than the writes themselves because of contention).
206 *
207 * Removal of interior nodes (due to timed out or interrupted
208 * waits, or calls to remove(x) or Iterator.remove) can use a
209 * scheme roughly similar to that described in Scherer, Lea, and
210 * Scott's SynchronousQueue. Given a predecessor, we can unsplice
211 * any node except the (actual) tail of the queue. To avoid
212 * build-up of cancelled trailing nodes, upon a request to remove
213 * a trailing node, it is placed in field "cleanMe" to be
214 * unspliced upon the next call to unsplice any other node.
215 * Situations needing such mechanics are not common but do occur
216 * in practice; for example when an unbounded series of short
217 * timed calls to poll repeatedly time out but never otherwise
218 * fall off the list because of an untimed call to take at the
219 * front of the queue. Note that maintaining field cleanMe does
220 * not otherwise much impact garbage retention even if never
221 * cleared by some other call because the held node will
222 * eventually either directly or indirectly lead to a self-link
223 * once off the list.
224 *
225 * *** Overview of implementation ***
226 *
227 * We use a threshold-based approach to updates, with a slack
228 * threshold of two -- that is, we update head/tail when the
229 * current pointer appears to be two or more steps away from the
230 * first/last node. The slack value is hard-wired: a path greater
231 * than one is naturally implemented by checking equality of
232 * traversal pointers except when the list has only one element,
233 * in which case we keep slack threshold at one. Avoiding tracking
234 * explicit counts across method calls slightly simplifies an
235 * already-messy implementation. Using randomization would
236 * probably work better if there were a low-quality dirt-cheap
237 * per-thread one available, but even ThreadLocalRandom is too
238 * heavy for these purposes.
239 *
240 * With such a small slack threshold value, it is rarely
241 * worthwhile to augment this with path short-circuiting; i.e.,
242 * unsplicing nodes between head and the first unmatched node, or
243 * similarly for tail, rather than advancing head or tail
244 * proper. However, it is used (in awaitMatch) immediately before
245 * a waiting thread starts to block, as a final bit of helping at
246 * a point when contention with others is extremely unlikely
247 * (since if other threads that could release it are operating,
248 * then the current thread wouldn't be blocking).
249 *
250 * We allow both the head and tail fields to be null before any
251 * nodes are enqueued; initializing upon first append. This
252 * simplifies some other logic, as well as providing more
253 * efficient explicit control paths instead of letting JVMs insert
254 * implicit NullPointerExceptions when they are null. While not
255 * currently fully implemented, we also leave open the possibility
256 * of re-nulling these fields when empty (which is complicated to
257 * arrange, for little benefit.)
258 *
259 * All enqueue/dequeue operations are handled by the single method
260 * "xfer" with parameters indicating whether to act as some form
261 * of offer, put, poll, take, or transfer (each possibly with
262 * timeout). The relative complexity of using one monolithic
263 * method outweighs the code bulk and maintenance problems of
264 * using separate methods for each case.
265 *
266 * Operation consists of up to three phases. The first is
267 * implemented within method xfer, the second in tryAppend, and
268 * the third in method awaitMatch.
269 *
270 * 1. Try to match an existing node
271 *
272 * Starting at head, skip already-matched nodes until finding
273 * an unmatched node of opposite mode, if one exists, in which
274 * case matching it and returning, also if necessary updating
275 * head to one past the matched node (or the node itself if the
276 * list has no other unmatched nodes). If the CAS misses, then
277 * a loop retries advancing head by two steps until either
278 * success or the slack is at most two. By requiring that each
279 * attempt advances head by two (if applicable), we ensure that
280 * the slack does not grow without bound. Traversals also check
281 * if the initial head is now off-list, in which case they
282 * start at the new head.
283 *
284 * If no candidates are found and the call was untimed
285 * poll/offer, (argument "how" is NOW) return.
286 *
287 * 2. Try to append a new node (method tryAppend)
288 *
289 * Starting at current tail pointer, find the actual last node
290 * and try to append a new node (or if head was null, establish
291 * the first node). Nodes can be appended only if their
292 * predecessors are either already matched or are of the same
293 * mode. If we detect otherwise, then a new node with opposite
294 * mode must have been appended during traversal, so we must
295 * restart at phase 1. The traversal and update steps are
296 * otherwise similar to phase 1: Retrying upon CAS misses and
297 * checking for staleness. In particular, if a self-link is
298 * encountered, then we can safely jump to a node on the list
299 * by continuing the traversal at current head.
300 *
301 * On successful append, if the call was ASYNC, return.
302 *
303 * 3. Await match or cancellation (method awaitMatch)
304 *
305 * Wait for another thread to match node; instead cancelling if
306 * the current thread was interrupted or the wait timed out. On
307 * multiprocessors, we use front-of-queue spinning: If a node
308 * appears to be the first unmatched node in the queue, it
309 * spins a bit before blocking. In either case, before blocking
310 * it tries to unsplice any nodes between the current "head"
311 * and the first unmatched node.
312 *
313 * Front-of-queue spinning vastly improves performance of
314 * heavily contended queues. And so long as it is relatively
315 * brief and "quiet", spinning does not much impact performance
316 * of less-contended queues. During spins threads check their
317 * interrupt status and generate a thread-local random number
318 * to decide to occasionally perform a Thread.yield. While
319 * yield has underdefined specs, we assume that might it help,
320 * and will not hurt in limiting impact of spinning on busy
321 * systems. We also use smaller (1/2) spins for nodes that are
322 * not known to be front but whose predecessors have not
323 * blocked -- these "chained" spins avoid artifacts of
324 * front-of-queue rules which otherwise lead to alternating
325 * nodes spinning vs blocking. Further, front threads that
326 * represent phase changes (from data to request node or vice
327 * versa) compared to their predecessors receive additional
328 * chained spins, reflecting longer paths typically required to
329 * unblock threads during phase changes.
330 */
331
332 /** True if on multiprocessor */
333 private static final boolean MP =
334 Runtime.getRuntime().availableProcessors() > 1;
335
336 /**
337 * The number of times to spin (with randomly interspersed calls
338 * to Thread.yield) on multiprocessor before blocking when a node
339 * is apparently the first waiter in the queue. See above for
340 * explanation. Must be a power of two. The value is empirically
341 * derived -- it works pretty well across a variety of processors,
342 * numbers of CPUs, and OSes.
343 */
344 private static final int FRONT_SPINS = 1 << 7;
345
346 /**
347 * The number of times to spin before blocking when a node is
348 * preceded by another node that is apparently spinning. Also
349 * serves as an increment to FRONT_SPINS on phase changes, and as
350 * base average frequency for yielding during spins. Must be a
351 * power of two.
352 */
353 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
354
355 /**
356 * Queue nodes. Uses Object, not E, for items to allow forgetting
357 * them after use. Relies heavily on Unsafe mechanics to minimize
358 * unnecessary ordering constraints: Writes that intrinsically
359 * precede or follow CASes use simple relaxed forms. Other
360 * cleanups use releasing/lazy writes.
361 */
362 static final class Node<E> {
363 final boolean isData; // false if this is a request node
364 volatile Object item; // initially non-null if isData; CASed to match
365 volatile Node<E> next;
366 volatile Thread waiter; // null until waiting
367
368 // CAS methods for fields
369 final boolean casNext(Node<E> cmp, Node<E> val) {
370 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
371 }
372
373 final boolean casItem(Object cmp, Object val) {
374 assert cmp == null || cmp.getClass() != Node.class;
375 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
376 }
377
378 /**
379 * Creates a new node. Uses relaxed write because item can only
380 * be seen if followed by CAS.
381 */
382 Node(E item, boolean isData) {
383 UNSAFE.putObject(this, itemOffset, item); // relaxed write
384 this.isData = isData;
385 }
386
387 /**
388 * Links node to itself to avoid garbage retention. Called
389 * only after CASing head field, so uses relaxed write.
390 */
391 final void forgetNext() {
392 UNSAFE.putObject(this, nextOffset, this);
393 }
394
395 /**
396 * Sets item to self (using a releasing/lazy write) and waiter
397 * to null, to avoid garbage retention after extracting or
398 * cancelling.
399 */
400 final void forgetContents() {
401 UNSAFE.putOrderedObject(this, itemOffset, this);
402 UNSAFE.putOrderedObject(this, waiterOffset, null);
403 }
404
405 /**
406 * Returns true if this node has been matched, including the
407 * case of artificial matches due to cancellation.
408 */
409 final boolean isMatched() {
410 Object x = item;
411 return (x == this) || ((x == null) == isData);
412 }
413
414 /**
415 * Returns true if this is an unmatched request node.
416 */
417 final boolean isUnmatchedRequest() {
418 return !isData && item == null;
419 }
420
421 /**
422 * Returns true if a node with the given mode cannot be
423 * appended to this node because this node is unmatched and
424 * has opposite data mode.
425 */
426 final boolean cannotPrecede(boolean haveData) {
427 boolean d = isData;
428 Object x;
429 return d != haveData && (x = item) != this && (x != null) == d;
430 }
431
432 /**
433 * Tries to artificially match a data node -- used by remove.
434 */
435 final boolean tryMatchData() {
436 assert isData;
437 Object x = item;
438 if (x != null && x != this && casItem(x, null)) {
439 LockSupport.unpark(waiter);
440 return true;
441 }
442 return false;
443 }
444
445 // Unsafe mechanics
446 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
447 private static final long nextOffset =
448 objectFieldOffset(UNSAFE, "next", Node.class);
449 private static final long itemOffset =
450 objectFieldOffset(UNSAFE, "item", Node.class);
451 private static final long waiterOffset =
452 objectFieldOffset(UNSAFE, "waiter", Node.class);
453
454 private static final long serialVersionUID = -3375979862319811754L;
455 }
456
457 /** head of the queue; null until first enqueue */
458 transient volatile Node<E> head;
459
460 /** predecessor of dangling unspliceable node */
461 private transient volatile Node<E> cleanMe; // decl here reduces contention
462
463 /** tail of the queue; null until first append */
464 private transient volatile Node<E> tail;
465
466 // CAS methods for fields
467 private boolean casTail(Node<E> cmp, Node<E> val) {
468 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
469 }
470
471 private boolean casHead(Node<E> cmp, Node<E> val) {
472 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
473 }
474
475 private boolean casCleanMe(Node<E> cmp, Node<E> val) {
476 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
477 }
478
479 /*
480 * Possible values for "how" argument in xfer method. Beware that
481 * the order of assigned numerical values matters.
482 */
483 private static final int NOW = 0; // for untimed poll, tryTransfer
484 private static final int ASYNC = 1; // for offer, put, add
485 private static final int SYNC = 2; // for transfer, take
486 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
487
488 @SuppressWarnings("unchecked")
489 static <E> E cast(Object item) {
490 assert item == null || item.getClass() != Node.class;
491 return (E) item;
492 }
493
494 /**
495 * Implements all queuing methods. See above for explanation.
496 *
497 * @param e the item or null for take
498 * @param haveData true if this is a put, else a take
499 * @param how NOW, ASYNC, SYNC, or TIMEOUT
500 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
501 * @return an item if matched, else e
502 * @throws NullPointerException if haveData mode but e is null
503 */
504 private E xfer(E e, boolean haveData, int how, long nanos) {
505 if (haveData && (e == null))
506 throw new NullPointerException();
507 Node<E> s = null; // the node to append, if needed
508
509 retry: for (;;) { // restart on append race
510
511 for (Node<E> h = head, p = h; p != null;) {
512 // find & match first node
513 boolean isData = p.isData;
514 Object item = p.item;
515 if (item != p && (item != null) == isData) { // unmatched
516 if (isData == haveData) // can't match
517 break;
518 if (p.casItem(item, e)) { // match
519 for (Node<E> q = p; q != h;) {
520 Node<E> n = q.next; // update head by 2
521 if (n != null) // unless singleton
522 q = n;
523 if (head == h && casHead(h, q)) {
524 h.forgetNext();
525 break;
526 } // advance and retry
527 if ((h = head) == null ||
528 (q = h.next) == null || !q.isMatched())
529 break; // unless slack < 2
530 }
531 LockSupport.unpark(p.waiter);
532 return this.<E>cast(item);
533 }
534 }
535 Node<E> n = p.next;
536 p = (p != n) ? n : (h = head); // Use head if p offlist
537 }
538
539 if (how >= ASYNC) { // No matches available
540 if (s == null)
541 s = new Node<E>(e, haveData);
542 Node<E> pred = tryAppend(s, haveData);
543 if (pred == null)
544 continue retry; // lost race vs opposite mode
545 if (how >= SYNC)
546 return awaitMatch(s, pred, e, how, nanos);
547 }
548 return e; // not waiting
549 }
550 }
551
552 /**
553 * Tries to append node s as tail.
554 *
555 * @param s the node to append
556 * @param haveData true if appending in data mode
557 * @return null on failure due to losing race with append in
558 * different mode, else s's predecessor, or s itself if no
559 * predecessor
560 */
561 private Node<E> tryAppend(Node<E> s, boolean haveData) {
562 for (Node<E> t = tail, p = t;;) { // move p to last node and append
563 Node<E> n, u; // temps for reads of next & tail
564 if (p == null && (p = head) == null) {
565 if (casHead(null, s))
566 return s; // initialize
567 }
568 else if (p.cannotPrecede(haveData))
569 return null; // lost race vs opposite mode
570 else if ((n = p.next) != null) // not last; keep traversing
571 p = p != t && t != (u = tail) ? (t = u) : // stale tail
572 (p != n) ? n : null; // restart if off list
573 else if (!p.casNext(null, s))
574 p = p.next; // re-read on CAS failure
575 else {
576 if (p != t) { // update if slack now >= 2
577 while ((tail != t || !casTail(t, s)) &&
578 (t = tail) != null &&
579 (s = t.next) != null && // advance and retry
580 (s = s.next) != null && s != t);
581 }
582 return p;
583 }
584 }
585 }
586
587 /**
588 * Spins/yields/blocks until node s is matched or caller gives up.
589 *
590 * @param s the waiting node
591 * @param pred the predecessor of s, or s itself if it has no
592 * predecessor, or null if unknown (the null case does not occur
593 * in any current calls but may in possible future extensions)
594 * @param e the comparison value for checking match
595 * @param how either SYNC or TIMEOUT
596 * @param nanos timeout value
597 * @return matched item, or e if unmatched on interrupt or timeout
598 */
599 private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
600 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
601 Thread w = Thread.currentThread();
602 int spins = -1; // initialized after first item and cancel checks
603 ThreadLocalRandom randomYields = null; // bound if needed
604
605 for (;;) {
606 Object item = s.item;
607 if (item != e) { // matched
608 assert item != s;
609 s.forgetContents(); // avoid garbage
610 return this.<E>cast(item);
611 }
612 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
613 s.casItem(e, s)) { // cancel
614 unsplice(pred, s);
615 return e;
616 }
617
618 if (spins < 0) { // establish spins at/near front
619 if ((spins = spinsFor(pred, s.isData)) > 0)
620 randomYields = ThreadLocalRandom.current();
621 }
622 else if (spins > 0) { // spin
623 if (--spins == 0)
624 shortenHeadPath(); // reduce slack before blocking
625 else if (randomYields.nextInt(CHAINED_SPINS) == 0)
626 Thread.yield(); // occasionally yield
627 }
628 else if (s.waiter == null) {
629 s.waiter = w; // request unpark then recheck
630 }
631 else if (how == TIMEOUT) {
632 long now = System.nanoTime();
633 if ((nanos -= now - lastTime) > 0)
634 LockSupport.parkNanos(this, nanos);
635 lastTime = now;
636 }
637 else {
638 LockSupport.park(this);
639 s.waiter = null;
640 spins = -1; // spin if front upon wakeup
641 }
642 }
643 }
644
645 /**
646 * Returns spin/yield value for a node with given predecessor and
647 * data mode. See above for explanation.
648 */
649 private static int spinsFor(Node<?> pred, boolean haveData) {
650 if (MP && pred != null) {
651 if (pred.isData != haveData) // phase change
652 return FRONT_SPINS + CHAINED_SPINS;
653 if (pred.isMatched()) // probably at front
654 return FRONT_SPINS;
655 if (pred.waiter == null) // pred apparently spinning
656 return CHAINED_SPINS;
657 }
658 return 0;
659 }
660
661 /**
662 * Tries (once) to unsplice nodes between head and first unmatched
663 * or trailing node; failing on contention.
664 */
665 private void shortenHeadPath() {
666 Node<E> h, hn, p, q;
667 if ((p = h = head) != null && h.isMatched() &&
668 (q = hn = h.next) != null) {
669 Node<E> n;
670 while ((n = q.next) != q) {
671 if (n == null || !q.isMatched()) {
672 if (hn != q && h.next == hn)
673 h.casNext(hn, q);
674 break;
675 }
676 p = q;
677 q = n;
678 }
679 }
680 }
681
682 /* -------------- Traversal methods -------------- */
683
684 /**
685 * Returns the first unmatched node of the given mode, or null if
686 * none. Used by methods isEmpty, hasWaitingConsumer.
687 */
688 private Node<E> firstOfMode(boolean data) {
689 for (Node<E> p = head; p != null; ) {
690 if (!p.isMatched())
691 return (p.isData == data) ? p : null;
692 Node<E> n = p.next;
693 p = (n != p) ? n : head;
694 }
695 return null;
696 }
697
698 /**
699 * Returns the item in the first unmatched node with isData; or
700 * null if none. Used by peek.
701 */
702 private E firstDataItem() {
703 for (Node<E> p = head; p != null; ) {
704 boolean isData = p.isData;
705 Object item = p.item;
706 if (item != p && (item != null) == isData)
707 return isData ? this.<E>cast(item) : null;
708 Node<E> n = p.next;
709 p = (n != p) ? n : head;
710 }
711 return null;
712 }
713
714 /**
715 * Traverses and counts unmatched nodes of the given mode.
716 * Used by methods size and getWaitingConsumerCount.
717 */
718 private int countOfMode(boolean data) {
719 int count = 0;
720 for (Node<E> p = head; p != null; ) {
721 if (!p.isMatched()) {
722 if (p.isData != data)
723 return 0;
724 if (++count == Integer.MAX_VALUE) // saturated
725 break;
726 }
727 Node<E> n = p.next;
728 if (n != p)
729 p = n;
730 else {
731 count = 0;
732 p = head;
733 }
734 }
735 return count;
736 }
737
738 final class Itr implements Iterator<E> {
739 private Node<E> nextNode; // next node to return item for
740 private E nextItem; // the corresponding item
741 private Node<E> lastRet; // last returned node, to support remove
742
743 /**
744 * Moves to next node after prev, or first node if prev null.
745 */
746 private void advance(Node<E> prev) {
747 lastRet = prev;
748 Node<E> p;
749 if (prev == null || (p = prev.next) == prev)
750 p = head;
751 while (p != null) {
752 Object item = p.item;
753 if (p.isData) {
754 if (item != null && item != p) {
755 nextItem = LinkedTransferQueue.this.<E>cast(item);
756 nextNode = p;
757 return;
758 }
759 }
760 else if (item == null)
761 break;
762 Node<E> n = p.next;
763 p = (n != p) ? n : head;
764 }
765 nextNode = null;
766 }
767
768 Itr() {
769 advance(null);
770 }
771
772 public final boolean hasNext() {
773 return nextNode != null;
774 }
775
776 public final E next() {
777 Node<E> p = nextNode;
778 if (p == null) throw new NoSuchElementException();
779 E e = nextItem;
780 advance(p);
781 return e;
782 }
783
784 public final void remove() {
785 Node<E> p = lastRet;
786 if (p == null) throw new IllegalStateException();
787 lastRet = null;
788 findAndRemoveDataNode(p);
789 }
790 }
791
792 /* -------------- Removal methods -------------- */
793
794 /**
795 * Unsplices (now or later) the given deleted/cancelled node with
796 * the given predecessor.
797 *
798 * @param pred predecessor of node to be unspliced
799 * @param s the node to be unspliced
800 */
801 private void unsplice(Node<E> pred, Node<E> s) {
802 s.forgetContents(); // clear unneeded fields
803 /*
804 * At any given time, exactly one node on list cannot be
805 * unlinked -- the last inserted node. To accommodate this, if
806 * we cannot unlink s, we save its predecessor as "cleanMe",
807 * processing the previously saved version first. Because only
808 * one node in the list can have a null next, at least one of
809 * node s or the node previously saved can always be
810 * processed, so this always terminates.
811 */
812 if (pred != null && pred != s) {
813 while (pred.next == s) {
814 Node<E> oldpred = (cleanMe == null) ? null : reclean();
815 Node<E> n = s.next;
816 if (n != null) {
817 if (n != s)
818 pred.casNext(s, n);
819 break;
820 }
821 if (oldpred == pred || // Already saved
822 ((oldpred == null || oldpred.next == s) &&
823 casCleanMe(oldpred, pred))) {
824 break;
825 }
826 }
827 }
828 }
829
830 /**
831 * Tries to unsplice the deleted/cancelled node held in cleanMe
832 * that was previously uncleanable because it was at tail.
833 *
834 * @return current cleanMe node (or null)
835 */
836 private Node<E> reclean() {
837 /*
838 * cleanMe is, or at one time was, predecessor of a cancelled
839 * node s that was the tail so could not be unspliced. If it
840 * is no longer the tail, try to unsplice if necessary and
841 * make cleanMe slot available. This differs from similar
842 * code in unsplice() because we must check that pred still
843 * points to a matched node that can be unspliced -- if not,
844 * we can (must) clear cleanMe without unsplicing. This can
845 * loop only due to contention.
846 */
847 Node<E> pred;
848 while ((pred = cleanMe) != null) {
849 Node<E> s = pred.next;
850 Node<E> n;
851 if (s == null || s == pred || !s.isMatched())
852 casCleanMe(pred, null); // already gone
853 else if ((n = s.next) != null) {
854 if (n != s)
855 pred.casNext(s, n);
856 casCleanMe(pred, null);
857 }
858 else
859 break;
860 }
861 return pred;
862 }
863
864 /**
865 * Main implementation of Iterator.remove(). Find
866 * and unsplice the given data node.
867 */
868 final void findAndRemoveDataNode(Node<E> s) {
869 assert s.isData;
870 if (s.tryMatchData()) {
871 for (Node<E> pred = null, p = head; p != null; ) {
872 if (p == s) {
873 unsplice(pred, p);
874 break;
875 }
876 if (p.isUnmatchedRequest())
877 break;
878 pred = p;
879 if ((p = p.next) == pred) { // stale
880 pred = null;
881 p = head;
882 }
883 }
884 }
885 }
886
887 /**
888 * Main implementation of remove(Object)
889 */
890 private boolean findAndRemove(Object e) {
891 if (e != null) {
892 for (Node<E> pred = null, p = head; p != null; ) {
893 Object item = p.item;
894 if (p.isData) {
895 if (item != null && item != p && e.equals(item) &&
896 p.tryMatchData()) {
897 unsplice(pred, p);
898 return true;
899 }
900 }
901 else if (item == null)
902 break;
903 pred = p;
904 if ((p = p.next) == pred) { // stale
905 pred = null;
906 p = head;
907 }
908 }
909 }
910 return false;
911 }
912
913
914 /**
915 * Creates an initially empty {@code LinkedTransferQueue}.
916 */
917 public LinkedTransferQueue() {
918 }
919
920 /**
921 * Creates a {@code LinkedTransferQueue}
922 * initially containing the elements of the given collection,
923 * added in traversal order of the collection's iterator.
924 *
925 * @param c the collection of elements to initially contain
926 * @throws NullPointerException if the specified collection or any
927 * of its elements are null
928 */
929 public LinkedTransferQueue(Collection<? extends E> c) {
930 this();
931 addAll(c);
932 }
933
934 /**
935 * Inserts the specified element at the tail of this queue.
936 * As the queue is unbounded, this method will never block.
937 *
938 * @throws NullPointerException if the specified element is null
939 */
940 public void put(E e) {
941 xfer(e, true, ASYNC, 0);
942 }
943
944 /**
945 * Inserts the specified element at the tail of this queue.
946 * As the queue is unbounded, this method will never block or
947 * return {@code false}.
948 *
949 * @return {@code true} (as specified by
950 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
951 * @throws NullPointerException if the specified element is null
952 */
953 public boolean offer(E e, long timeout, TimeUnit unit) {
954 xfer(e, true, ASYNC, 0);
955 return true;
956 }
957
958 /**
959 * Inserts the specified element at the tail of this queue.
960 * As the queue is unbounded, this method will never return {@code false}.
961 *
962 * @return {@code true} (as specified by
963 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
964 * @throws NullPointerException if the specified element is null
965 */
966 public boolean offer(E e) {
967 xfer(e, true, ASYNC, 0);
968 return true;
969 }
970
971 /**
972 * Inserts the specified element at the tail of this queue.
973 * As the queue is unbounded, this method will never throw
974 * {@link IllegalStateException} or return {@code false}.
975 *
976 * @return {@code true} (as specified by {@link Collection#add})
977 * @throws NullPointerException if the specified element is null
978 */
979 public boolean add(E e) {
980 xfer(e, true, ASYNC, 0);
981 return true;
982 }
983
984 /**
985 * Transfers the element to a waiting consumer immediately, if possible.
986 *
987 * <p>More precisely, transfers the specified element immediately
988 * if there exists a consumer already waiting to receive it (in
989 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
990 * otherwise returning {@code false} without enqueuing the element.
991 *
992 * @throws NullPointerException if the specified element is null
993 */
994 public boolean tryTransfer(E e) {
995 return xfer(e, true, NOW, 0) == null;
996 }
997
998 /**
999 * Transfers the element to a consumer, waiting if necessary to do so.
1000 *
1001 * <p>More precisely, transfers the specified element immediately
1002 * if there exists a consumer already waiting to receive it (in
1003 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1004 * else inserts the specified element at the tail of this queue
1005 * and waits until the element is received by a consumer.
1006 *
1007 * @throws NullPointerException if the specified element is null
1008 */
1009 public void transfer(E e) throws InterruptedException {
1010 if (xfer(e, true, SYNC, 0) != null) {
1011 Thread.interrupted(); // failure possible only due to interrupt
1012 throw new InterruptedException();
1013 }
1014 }
1015
1016 /**
1017 * Transfers the element to a consumer if it is possible to do so
1018 * before the timeout elapses.
1019 *
1020 * <p>More precisely, transfers the specified element immediately
1021 * if there exists a consumer already waiting to receive it (in
1022 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1023 * else inserts the specified element at the tail of this queue
1024 * and waits until the element is received by a consumer,
1025 * returning {@code false} if the specified wait time elapses
1026 * before the element can be transferred.
1027 *
1028 * @throws NullPointerException if the specified element is null
1029 */
1030 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1031 throws InterruptedException {
1032 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1033 return true;
1034 if (!Thread.interrupted())
1035 return false;
1036 throw new InterruptedException();
1037 }
1038
1039 public E take() throws InterruptedException {
1040 E e = xfer(null, false, SYNC, 0);
1041 if (e != null)
1042 return e;
1043 Thread.interrupted();
1044 throw new InterruptedException();
1045 }
1046
1047 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1048 E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1049 if (e != null || !Thread.interrupted())
1050 return e;
1051 throw new InterruptedException();
1052 }
1053
1054 public E poll() {
1055 return xfer(null, false, NOW, 0);
1056 }
1057
1058 /**
1059 * @throws NullPointerException {@inheritDoc}
1060 * @throws IllegalArgumentException {@inheritDoc}
1061 */
1062 public int drainTo(Collection<? super E> c) {
1063 if (c == null)
1064 throw new NullPointerException();
1065 if (c == this)
1066 throw new IllegalArgumentException();
1067 int n = 0;
1068 E e;
1069 while ( (e = poll()) != null) {
1070 c.add(e);
1071 ++n;
1072 }
1073 return n;
1074 }
1075
1076 /**
1077 * @throws NullPointerException {@inheritDoc}
1078 * @throws IllegalArgumentException {@inheritDoc}
1079 */
1080 public int drainTo(Collection<? super E> c, int maxElements) {
1081 if (c == null)
1082 throw new NullPointerException();
1083 if (c == this)
1084 throw new IllegalArgumentException();
1085 int n = 0;
1086 E e;
1087 while (n < maxElements && (e = poll()) != null) {
1088 c.add(e);
1089 ++n;
1090 }
1091 return n;
1092 }
1093
1094 /**
1095 * Returns an iterator over the elements in this queue in proper
1096 * sequence, from head to tail.
1097 *
1098 * <p>The returned iterator is a "weakly consistent" iterator that
1099 * will never throw
1100 * {@link ConcurrentModificationException ConcurrentModificationException},
1101 * and guarantees to traverse elements as they existed upon
1102 * construction of the iterator, and may (but is not guaranteed
1103 * to) reflect any modifications subsequent to construction.
1104 *
1105 * @return an iterator over the elements in this queue in proper sequence
1106 */
1107 public Iterator<E> iterator() {
1108 return new Itr();
1109 }
1110
1111 public E peek() {
1112 return firstDataItem();
1113 }
1114
1115 /**
1116 * Returns {@code true} if this queue contains no elements.
1117 *
1118 * @return {@code true} if this queue contains no elements
1119 */
1120 public boolean isEmpty() {
1121 return firstOfMode(true) == null;
1122 }
1123
1124 public boolean hasWaitingConsumer() {
1125 return firstOfMode(false) != null;
1126 }
1127
1128 /**
1129 * Returns the number of elements in this queue. If this queue
1130 * contains more than {@code Integer.MAX_VALUE} elements, returns
1131 * {@code Integer.MAX_VALUE}.
1132 *
1133 * <p>Beware that, unlike in most collections, this method is
1134 * <em>NOT</em> a constant-time operation. Because of the
1135 * asynchronous nature of these queues, determining the current
1136 * number of elements requires an O(n) traversal.
1137 *
1138 * @return the number of elements in this queue
1139 */
1140 public int size() {
1141 return countOfMode(true);
1142 }
1143
1144 public int getWaitingConsumerCount() {
1145 return countOfMode(false);
1146 }
1147
1148 /**
1149 * Removes a single instance of the specified element from this queue,
1150 * if it is present. More formally, removes an element {@code e} such
1151 * that {@code o.equals(e)}, if this queue contains one or more such
1152 * elements.
1153 * Returns {@code true} if this queue contained the specified element
1154 * (or equivalently, if this queue changed as a result of the call).
1155 *
1156 * @param o element to be removed from this queue, if present
1157 * @return {@code true} if this queue changed as a result of the call
1158 */
1159 public boolean remove(Object o) {
1160 return findAndRemove(o);
1161 }
1162
1163 /**
1164 * Always returns {@code Integer.MAX_VALUE} because a
1165 * {@code LinkedTransferQueue} is not capacity constrained.
1166 *
1167 * @return {@code Integer.MAX_VALUE} (as specified by
1168 * {@link BlockingQueue#remainingCapacity()})
1169 */
1170 public int remainingCapacity() {
1171 return Integer.MAX_VALUE;
1172 }
1173
1174 /**
1175 * Saves the state to a stream (that is, serializes it).
1176 *
1177 * @serialData All of the elements (each an {@code E}) in
1178 * the proper order, followed by a null
1179 * @param s the stream
1180 */
1181 private void writeObject(java.io.ObjectOutputStream s)
1182 throws java.io.IOException {
1183 s.defaultWriteObject();
1184 for (E e : this)
1185 s.writeObject(e);
1186 // Use trailing null as sentinel
1187 s.writeObject(null);
1188 }
1189
1190 /**
1191 * Reconstitutes the Queue instance from a stream (that is,
1192 * deserializes it).
1193 *
1194 * @param s the stream
1195 */
1196 private void readObject(java.io.ObjectInputStream s)
1197 throws java.io.IOException, ClassNotFoundException {
1198 s.defaultReadObject();
1199 for (;;) {
1200 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1201 if (item == null)
1202 break;
1203 else
1204 offer(item);
1205 }
1206 }
1207
1208 // Unsafe mechanics
1209
1210 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1211 private static final long headOffset =
1212 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1213 private static final long tailOffset =
1214 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1215 private static final long cleanMeOffset =
1216 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1217
1218 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1219 String field, Class<?> klazz) {
1220 try {
1221 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1222 } catch (NoSuchFieldException e) {
1223 // Convert Exception to corresponding Error
1224 NoSuchFieldError error = new NoSuchFieldError(field);
1225 error.initCause(e);
1226 throw error;
1227 }
1228 }
1229
1230 }