ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.122
Committed: Wed Dec 28 20:55:41 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.121: +63 -27 lines
Log Message:
optimize forEachFrom, contains, remove(Object)

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Objects;
17 import java.util.Queue;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.concurrent.locks.LockSupport;
21 import java.util.function.Consumer;
22 import java.util.function.Predicate;
23
24 /**
25 * An unbounded {@link TransferQueue} based on linked nodes.
26 * This queue orders elements FIFO (first-in-first-out) with respect
27 * to any given producer. The <em>head</em> of the queue is that
28 * element that has been on the queue the longest time for some
29 * producer. The <em>tail</em> of the queue is that element that has
30 * been on the queue the shortest time for some producer.
31 *
32 * <p>Beware that, unlike in most collections, the {@code size} method
33 * is <em>NOT</em> a constant-time operation. Because of the
34 * asynchronous nature of these queues, determining the current number
35 * of elements requires a traversal of the elements, and so may report
36 * inaccurate results if this collection is modified during traversal.
37 * Additionally, the bulk operations {@code addAll},
38 * {@code removeAll}, {@code retainAll}, {@code containsAll},
39 * and {@code toArray} are <em>not</em> guaranteed
40 * to be performed atomically. For example, an iterator operating
41 * concurrently with an {@code addAll} operation might view only some
42 * of the added elements.
43 *
44 * <p>This class and its iterator implement all of the
45 * <em>optional</em> methods of the {@link Collection} and {@link
46 * Iterator} interfaces.
47 *
48 * <p>Memory consistency effects: As with other concurrent
49 * collections, actions in a thread prior to placing an object into a
50 * {@code LinkedTransferQueue}
51 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52 * actions subsequent to the access or removal of that element from
53 * the {@code LinkedTransferQueue} in another thread.
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57 * Java Collections Framework</a>.
58 *
59 * @since 1.7
60 * @author Doug Lea
61 * @param <E> the type of elements held in this queue
62 */
63 public class LinkedTransferQueue<E> extends AbstractQueue<E>
64 implements TransferQueue<E>, java.io.Serializable {
65 private static final long serialVersionUID = -3223113410248163686L;
66
67 /*
68 * *** Overview of Dual Queues with Slack ***
69 *
70 * Dual Queues, introduced by Scherer and Scott
71 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
72 * are (linked) queues in which nodes may represent either data or
73 * requests. When a thread tries to enqueue a data node, but
74 * encounters a request node, it instead "matches" and removes it;
75 * and vice versa for enqueuing requests. Blocking Dual Queues
76 * arrange that threads enqueuing unmatched requests block until
77 * other threads provide the match. Dual Synchronous Queues (see
78 * Scherer, Lea, & Scott
79 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
80 * additionally arrange that threads enqueuing unmatched data also
81 * block. Dual Transfer Queues support all of these modes, as
82 * dictated by callers.
83 *
84 * A FIFO dual queue may be implemented using a variation of the
85 * Michael & Scott (M&S) lock-free queue algorithm
86 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
87 * It maintains two pointer fields, "head", pointing to a
88 * (matched) node that in turn points to the first actual
89 * (unmatched) queue node (or null if empty); and "tail" that
90 * points to the last node on the queue (or again null if
91 * empty). For example, here is a possible queue with four data
92 * elements:
93 *
94 * head tail
95 * | |
96 * v v
97 * M -> U -> U -> U -> U
98 *
99 * The M&S queue algorithm is known to be prone to scalability and
100 * overhead limitations when maintaining (via CAS) these head and
101 * tail pointers. This has led to the development of
102 * contention-reducing variants such as elimination arrays (see
103 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
104 * optimistic back pointers (see Ladan-Mozes & Shavit
105 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
106 * However, the nature of dual queues enables a simpler tactic for
107 * improving M&S-style implementations when dual-ness is needed.
108 *
109 * In a dual queue, each node must atomically maintain its match
110 * status. While there are other possible variants, we implement
111 * this here as: for a data-mode node, matching entails CASing an
112 * "item" field from a non-null data value to null upon match, and
113 * vice-versa for request nodes, CASing from null to a data
114 * value. (Note that the linearization properties of this style of
115 * queue are easy to verify -- elements are made available by
116 * linking, and unavailable by matching.) Compared to plain M&S
117 * queues, this property of dual queues requires one additional
118 * successful atomic operation per enq/deq pair. But it also
119 * enables lower cost variants of queue maintenance mechanics. (A
120 * variation of this idea applies even for non-dual queues that
121 * support deletion of interior elements, such as
122 * j.u.c.ConcurrentLinkedQueue.)
123 *
124 * Once a node is matched, its match status can never again
125 * change. We may thus arrange that the linked list of them
126 * contain a prefix of zero or more matched nodes, followed by a
127 * suffix of zero or more unmatched nodes. (Note that we allow
128 * both the prefix and suffix to be zero length, which in turn
129 * means that we do not use a dummy header.) If we were not
130 * concerned with either time or space efficiency, we could
131 * correctly perform enqueue and dequeue operations by traversing
132 * from a pointer to the initial node; CASing the item of the
133 * first unmatched node on match and CASing the next field of the
134 * trailing node on appends. (Plus some special-casing when
135 * initially empty). While this would be a terrible idea in
136 * itself, it does have the benefit of not requiring ANY atomic
137 * updates on head/tail fields.
138 *
139 * We introduce here an approach that lies between the extremes of
140 * never versus always updating queue (head and tail) pointers.
141 * This offers a tradeoff between sometimes requiring extra
142 * traversal steps to locate the first and/or last unmatched
143 * nodes, versus the reduced overhead and contention of fewer
144 * updates to queue pointers. For example, a possible snapshot of
145 * a queue is:
146 *
147 * head tail
148 * | |
149 * v v
150 * M -> M -> U -> U -> U -> U
151 *
152 * The best value for this "slack" (the targeted maximum distance
153 * between the value of "head" and the first unmatched node, and
154 * similarly for "tail") is an empirical matter. We have found
155 * that using very small constants in the range of 1-3 work best
156 * over a range of platforms. Larger values introduce increasing
157 * costs of cache misses and risks of long traversal chains, while
158 * smaller values increase CAS contention and overhead.
159 *
160 * Dual queues with slack differ from plain M&S dual queues by
161 * virtue of only sometimes updating head or tail pointers when
162 * matching, appending, or even traversing nodes; in order to
163 * maintain a targeted slack. The idea of "sometimes" may be
164 * operationalized in several ways. The simplest is to use a
165 * per-operation counter incremented on each traversal step, and
166 * to try (via CAS) to update the associated queue pointer
167 * whenever the count exceeds a threshold. Another, that requires
168 * more overhead, is to use random number generators to update
169 * with a given probability per traversal step.
170 *
171 * In any strategy along these lines, because CASes updating
172 * fields may fail, the actual slack may exceed targeted
173 * slack. However, they may be retried at any time to maintain
174 * targets. Even when using very small slack values, this
175 * approach works well for dual queues because it allows all
176 * operations up to the point of matching or appending an item
177 * (hence potentially allowing progress by another thread) to be
178 * read-only, thus not introducing any further contention. As
179 * described below, we implement this by performing slack
180 * maintenance retries only after these points.
181 *
182 * As an accompaniment to such techniques, traversal overhead can
183 * be further reduced without increasing contention of head
184 * pointer updates: Threads may sometimes shortcut the "next" link
185 * path from the current "head" node to be closer to the currently
186 * known first unmatched node, and similarly for tail. Again, this
187 * may be triggered with using thresholds or randomization.
188 *
189 * These ideas must be further extended to avoid unbounded amounts
190 * of costly-to-reclaim garbage caused by the sequential "next"
191 * links of nodes starting at old forgotten head nodes: As first
192 * described in detail by Boehm
193 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
194 * delays noticing that any arbitrarily old node has become
195 * garbage, all newer dead nodes will also be unreclaimed.
196 * (Similar issues arise in non-GC environments.) To cope with
197 * this in our implementation, upon CASing to advance the head
198 * pointer, we set the "next" link of the previous head to point
199 * only to itself; thus limiting the length of connected dead lists.
200 * (We also take similar care to wipe out possibly garbage
201 * retaining values held in other Node fields.) However, doing so
202 * adds some further complexity to traversal: If any "next"
203 * pointer links to itself, it indicates that the current thread
204 * has lagged behind a head-update, and so the traversal must
205 * continue from the "head". Traversals trying to find the
206 * current tail starting from "tail" may also encounter
207 * self-links, in which case they also continue at "head".
208 *
209 * It is tempting in slack-based scheme to not even use CAS for
210 * updates (similarly to Ladan-Mozes & Shavit). However, this
211 * cannot be done for head updates under the above link-forgetting
212 * mechanics because an update may leave head at a detached node.
213 * And while direct writes are possible for tail updates, they
214 * increase the risk of long retraversals, and hence long garbage
215 * chains, which can be much more costly than is worthwhile
216 * considering that the cost difference of performing a CAS vs
217 * write is smaller when they are not triggered on each operation
218 * (especially considering that writes and CASes equally require
219 * additional GC bookkeeping ("write barriers") that are sometimes
220 * more costly than the writes themselves because of contention).
221 *
222 * *** Overview of implementation ***
223 *
224 * We use a threshold-based approach to updates, with a slack
225 * threshold of two -- that is, we update head/tail when the
226 * current pointer appears to be two or more steps away from the
227 * first/last node. The slack value is hard-wired: a path greater
228 * than one is naturally implemented by checking equality of
229 * traversal pointers except when the list has only one element,
230 * in which case we keep slack threshold at one. Avoiding tracking
231 * explicit counts across method calls slightly simplifies an
232 * already-messy implementation. Using randomization would
233 * probably work better if there were a low-quality dirt-cheap
234 * per-thread one available, but even ThreadLocalRandom is too
235 * heavy for these purposes.
236 *
237 * With such a small slack threshold value, it is not worthwhile
238 * to augment this with path short-circuiting (i.e., unsplicing
239 * interior nodes) except in the case of cancellation/removal (see
240 * below).
241 *
242 * We allow both the head and tail fields to be null before any
243 * nodes are enqueued; initializing upon first append. This
244 * simplifies some other logic, as well as providing more
245 * efficient explicit control paths instead of letting JVMs insert
246 * implicit NullPointerExceptions when they are null. While not
247 * currently fully implemented, we also leave open the possibility
248 * of re-nulling these fields when empty (which is complicated to
249 * arrange, for little benefit.)
250 *
251 * All enqueue/dequeue operations are handled by the single method
252 * "xfer" with parameters indicating whether to act as some form
253 * of offer, put, poll, take, or transfer (each possibly with
254 * timeout). The relative complexity of using one monolithic
255 * method outweighs the code bulk and maintenance problems of
256 * using separate methods for each case.
257 *
258 * Operation consists of up to three phases. The first is
259 * implemented within method xfer, the second in tryAppend, and
260 * the third in method awaitMatch.
261 *
262 * 1. Try to match an existing node
263 *
264 * Starting at head, skip already-matched nodes until finding
265 * an unmatched node of opposite mode, if one exists, in which
266 * case matching it and returning, also if necessary updating
267 * head to one past the matched node (or the node itself if the
268 * list has no other unmatched nodes). If the CAS misses, then
269 * a loop retries advancing head by two steps until either
270 * success or the slack is at most two. By requiring that each
271 * attempt advances head by two (if applicable), we ensure that
272 * the slack does not grow without bound. Traversals also check
273 * if the initial head is now off-list, in which case they
274 * start at the new head.
275 *
276 * If no candidates are found and the call was untimed
277 * poll/offer, (argument "how" is NOW) return.
278 *
279 * 2. Try to append a new node (method tryAppend)
280 *
281 * Starting at current tail pointer, find the actual last node
282 * and try to append a new node (or if head was null, establish
283 * the first node). Nodes can be appended only if their
284 * predecessors are either already matched or are of the same
285 * mode. If we detect otherwise, then a new node with opposite
286 * mode must have been appended during traversal, so we must
287 * restart at phase 1. The traversal and update steps are
288 * otherwise similar to phase 1: Retrying upon CAS misses and
289 * checking for staleness. In particular, if a self-link is
290 * encountered, then we can safely jump to a node on the list
291 * by continuing the traversal at current head.
292 *
293 * On successful append, if the call was ASYNC, return.
294 *
295 * 3. Await match or cancellation (method awaitMatch)
296 *
297 * Wait for another thread to match node; instead cancelling if
298 * the current thread was interrupted or the wait timed out. On
299 * multiprocessors, we use front-of-queue spinning: If a node
300 * appears to be the first unmatched node in the queue, it
301 * spins a bit before blocking. In either case, before blocking
302 * it tries to unsplice any nodes between the current "head"
303 * and the first unmatched node.
304 *
305 * Front-of-queue spinning vastly improves performance of
306 * heavily contended queues. And so long as it is relatively
307 * brief and "quiet", spinning does not much impact performance
308 * of less-contended queues. During spins threads check their
309 * interrupt status and generate a thread-local random number
310 * to decide to occasionally perform a Thread.yield. While
311 * yield has underdefined specs, we assume that it might help,
312 * and will not hurt, in limiting impact of spinning on busy
313 * systems. We also use smaller (1/2) spins for nodes that are
314 * not known to be front but whose predecessors have not
315 * blocked -- these "chained" spins avoid artifacts of
316 * front-of-queue rules which otherwise lead to alternating
317 * nodes spinning vs blocking. Further, front threads that
318 * represent phase changes (from data to request node or vice
319 * versa) compared to their predecessors receive additional
320 * chained spins, reflecting longer paths typically required to
321 * unblock threads during phase changes.
322 *
323 *
324 * ** Unlinking removed interior nodes **
325 *
326 * In addition to minimizing garbage retention via self-linking
327 * described above, we also unlink removed interior nodes. These
328 * may arise due to timed out or interrupted waits, or calls to
329 * remove(x) or Iterator.remove. Normally, given a node that was
330 * at one time known to be the predecessor of some node s that is
331 * to be removed, we can unsplice s by CASing the next field of
332 * its predecessor if it still points to s (otherwise s must
333 * already have been removed or is now offlist). But there are two
334 * situations in which we cannot guarantee to make node s
335 * unreachable in this way: (1) If s is the trailing node of list
336 * (i.e., with null next), then it is pinned as the target node
337 * for appends, so can only be removed later after other nodes are
338 * appended. (2) We cannot necessarily unlink s given a
339 * predecessor node that is matched (including the case of being
340 * cancelled): the predecessor may already be unspliced, in which
341 * case some previous reachable node may still point to s.
342 * (For further explanation see Herlihy & Shavit "The Art of
343 * Multiprocessor Programming" chapter 9). Although, in both
344 * cases, we can rule out the need for further action if either s
345 * or its predecessor are (or can be made to be) at, or fall off
346 * from, the head of list.
347 *
348 * Without taking these into account, it would be possible for an
349 * unbounded number of supposedly removed nodes to remain
350 * reachable. Situations leading to such buildup are uncommon but
351 * can occur in practice; for example when a series of short timed
352 * calls to poll repeatedly time out but never otherwise fall off
353 * the list because of an untimed call to take at the front of the
354 * queue.
355 *
356 * When these cases arise, rather than always retraversing the
357 * entire list to find an actual predecessor to unlink (which
358 * won't help for case (1) anyway), we record a conservative
359 * estimate of possible unsplice failures (in "sweepVotes").
360 * We trigger a full sweep when the estimate exceeds a threshold
361 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
362 * removal failures to tolerate before sweeping through, unlinking
363 * cancelled nodes that were not unlinked upon initial removal.
364 * We perform sweeps by the thread hitting threshold (rather than
365 * background threads or by spreading work to other threads)
366 * because in the main contexts in which removal occurs, the
367 * caller is already timed-out, cancelled, or performing a
368 * potentially O(n) operation (e.g. remove(x)), none of which are
369 * time-critical enough to warrant the overhead that alternatives
370 * would impose on other threads.
371 *
372 * Because the sweepVotes estimate is conservative, and because
373 * nodes become unlinked "naturally" as they fall off the head of
374 * the queue, and because we allow votes to accumulate even while
375 * sweeps are in progress, there are typically significantly fewer
376 * such nodes than estimated. Choice of a threshold value
377 * balances the likelihood of wasted effort and contention, versus
378 * providing a worst-case bound on retention of interior nodes in
379 * quiescent queues. The value defined below was chosen
380 * empirically to balance these under various timeout scenarios.
381 *
382 * Note that we cannot self-link unlinked interior nodes during
383 * sweeps. However, the associated garbage chains terminate when
384 * some successor ultimately falls off the head of the list and is
385 * self-linked.
386 */
387
388 /** True if on multiprocessor */
389 private static final boolean MP =
390 Runtime.getRuntime().availableProcessors() > 1;
391
392 /**
393 * The number of times to spin (with randomly interspersed calls
394 * to Thread.yield) on multiprocessor before blocking when a node
395 * is apparently the first waiter in the queue. See above for
396 * explanation. Must be a power of two. The value is empirically
397 * derived -- it works pretty well across a variety of processors,
398 * numbers of CPUs, and OSes.
399 */
400 private static final int FRONT_SPINS = 1 << 7;
401
402 /**
403 * The number of times to spin before blocking when a node is
404 * preceded by another node that is apparently spinning. Also
405 * serves as an increment to FRONT_SPINS on phase changes, and as
406 * base average frequency for yielding during spins. Must be a
407 * power of two.
408 */
409 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
410
411 /**
412 * The maximum number of estimated removal failures (sweepVotes)
413 * to tolerate before sweeping through the queue unlinking
414 * cancelled nodes that were not unlinked upon initial
415 * removal. See above for explanation. The value must be at least
416 * two to avoid useless sweeps when removing trailing nodes.
417 */
418 static final int SWEEP_THRESHOLD = 32;
419
420 /**
421 * Queue nodes. Uses Object, not E, for items to allow forgetting
422 * them after use. Relies heavily on VarHandles to minimize
423 * unnecessary ordering constraints: Writes that are intrinsically
424 * ordered wrt other accesses or CASes use simple relaxed forms.
425 */
426 static final class Node {
427 final boolean isData; // false if this is a request node
428 volatile Object item; // initially non-null if isData; CASed to match
429 volatile Node next;
430 volatile Thread waiter; // null until waiting
431
432 final boolean casNext(Node cmp, Node val) {
433 return NEXT.compareAndSet(this, cmp, val);
434 }
435
436 final boolean casItem(Object cmp, Object val) {
437 // assert isData == (cmp != null);
438 // assert isData == (val == null);
439 // assert !(cmp instanceof Node);
440 return ITEM.compareAndSet(this, cmp, val);
441 }
442
443 /**
444 * Constructs a new node. Uses relaxed write because item can
445 * only be seen after publication via casNext.
446 */
447 Node(Object item) {
448 ITEM.set(this, item);
449 isData = (item != null);
450 }
451
452 /**
453 * Links node to itself to avoid garbage retention. Called
454 * only after CASing head field, so uses relaxed write.
455 */
456 final void forgetNext() {
457 NEXT.setRelease(this, this);
458 }
459
460 /**
461 * Sets item (of a request node) to self and waiter to null,
462 * to avoid garbage retention after matching or cancelling.
463 * Uses relaxed writes because order is already constrained in
464 * the only calling contexts: item is forgotten only after
465 * volatile/atomic mechanics that extract items, and visitors
466 * of request nodes only ever check whether item is null.
467 * Similarly, clearing waiter follows either CAS or return
468 * from park (if ever parked; else we don't care).
469 */
470 final void forgetContents() {
471 // assert isMatched();
472 if (!isData)
473 ITEM.set(this, this);
474 WAITER.set(this, null);
475 }
476
477 /**
478 * Returns true if this node has been matched, including the
479 * case of artificial matches due to cancellation.
480 */
481 final boolean isMatched() {
482 return isData == (item == null);
483 }
484
485 /**
486 * Returns true if a node with the given mode cannot be
487 * appended to this node because this node is unmatched and
488 * has opposite data mode.
489 */
490 final boolean cannotPrecede(boolean haveData) {
491 boolean d = isData;
492 return d != haveData && d != (item == null);
493 }
494
495 /**
496 * Tries to artificially match a data node -- used by remove.
497 */
498 final boolean tryMatchData() {
499 // assert isData;
500 final Object x;
501 if ((x = item) != null && casItem(x, null)) {
502 LockSupport.unpark(waiter);
503 return true;
504 }
505 return false;
506 }
507
508 private static final long serialVersionUID = -3375979862319811754L;
509
510 // VarHandle mechanics
511 private static final VarHandle ITEM;
512 private static final VarHandle NEXT;
513 private static final VarHandle WAITER;
514 static {
515 try {
516 MethodHandles.Lookup l = MethodHandles.lookup();
517 ITEM = l.findVarHandle(Node.class, "item", Object.class);
518 NEXT = l.findVarHandle(Node.class, "next", Node.class);
519 WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
520 } catch (ReflectiveOperationException e) {
521 throw new Error(e);
522 }
523 }
524 }
525
526 /** head of the queue; null until first enqueue */
527 transient volatile Node head;
528
529 /** tail of the queue; null until first append */
530 private transient volatile Node tail;
531
532 /** The number of apparent failures to unsplice removed nodes */
533 private transient volatile int sweepVotes;
534
535 private boolean casTail(Node cmp, Node val) {
536 return TAIL.compareAndSet(this, cmp, val);
537 }
538
539 private boolean casHead(Node cmp, Node val) {
540 return HEAD.compareAndSet(this, cmp, val);
541 }
542
543 private boolean casSweepVotes(int cmp, int val) {
544 return SWEEPVOTES.compareAndSet(this, cmp, val);
545 }
546
547 /**
548 * Tries to CAS pred.next (or head, if pred is null) from c to p.
549 */
550 private boolean tryCasSuccessor(Node pred, Node c, Node p) {
551 // assert c != p;
552 if (pred != null)
553 return pred.casNext(c, p);
554 if (casHead(c, p)) {
555 c.forgetNext();
556 return true;
557 }
558 return false;
559 }
560
561 /*
562 * Possible values for "how" argument in xfer method.
563 */
564 private static final int NOW = 0; // for untimed poll, tryTransfer
565 private static final int ASYNC = 1; // for offer, put, add
566 private static final int SYNC = 2; // for transfer, take
567 private static final int TIMED = 3; // for timed poll, tryTransfer
568
569 /**
570 * Implements all queuing methods. See above for explanation.
571 *
572 * @param e the item or null for take
573 * @param haveData true if this is a put, else a take
574 * @param how NOW, ASYNC, SYNC, or TIMED
575 * @param nanos timeout in nanosecs, used only if mode is TIMED
576 * @return an item if matched, else e
577 * @throws NullPointerException if haveData mode but e is null
578 */
579 private E xfer(E e, boolean haveData, int how, long nanos) {
580 if (haveData && (e == null))
581 throw new NullPointerException();
582 Node s = null; // the node to append, if needed
583
584 restartFromHead: for (;;) {
585 for (Node h = head, p = h; p != null;) { // find & match first node
586 boolean isData = p.isData;
587 Object item = p.item;
588 if ((item != null) == isData) { // unmatched
589 if (isData == haveData) // can't match
590 break;
591 if (p.casItem(item, e)) { // match
592 for (Node q = p; q != h;) {
593 Node n = q.next; // update by 2 unless singleton
594 if (head == h && casHead(h, n == null ? q : n)) {
595 h.forgetNext();
596 break;
597 } // advance and retry
598 if ((h = head) == null ||
599 (q = h.next) == null || !q.isMatched())
600 break; // unless slack < 2
601 }
602 LockSupport.unpark(p.waiter);
603 @SuppressWarnings("unchecked") E itemE = (E) item;
604 return itemE;
605 }
606 }
607 Node n = p.next;
608 p = (p != n) ? n : (h = head); // Use head if p offlist
609 }
610
611 if (how != NOW) { // No matches available
612 if (s == null)
613 s = new Node(e);
614 Node pred = tryAppend(s, haveData);
615 if (pred == null)
616 continue restartFromHead; // lost race vs opposite mode
617 if (how != ASYNC)
618 return awaitMatch(s, pred, e, (how == TIMED), nanos);
619 }
620 return e; // not waiting
621 }
622 }
623
624 /**
625 * Tries to append node s as tail.
626 *
627 * @param s the node to append
628 * @param haveData true if appending in data mode
629 * @return null on failure due to losing race with append in
630 * different mode, else s's predecessor, or s itself if no
631 * predecessor
632 */
633 private Node tryAppend(Node s, boolean haveData) {
634 for (Node t = tail, p = t;;) { // move p to last node and append
635 Node n, u; // temps for reads of next & tail
636 if (p == null && (p = head) == null) {
637 if (casHead(null, s))
638 return s; // initialize
639 }
640 else if (p.cannotPrecede(haveData))
641 return null; // lost race vs opposite mode
642 else if ((n = p.next) != null) // not last; keep traversing
643 p = p != t && t != (u = tail) ? (t = u) : // stale tail
644 (p != n) ? n : null; // restart if off list
645 else if (!p.casNext(null, s))
646 p = p.next; // re-read on CAS failure
647 else {
648 if (p != t) { // update if slack now >= 2
649 while ((tail != t || !casTail(t, s)) &&
650 (t = tail) != null &&
651 (s = t.next) != null && // advance and retry
652 (s = s.next) != null && s != t);
653 }
654 return p;
655 }
656 }
657 }
658
659 /**
660 * Spins/yields/blocks until node s is matched or caller gives up.
661 *
662 * @param s the waiting node
663 * @param pred the predecessor of s, or s itself if it has no
664 * predecessor, or null if unknown (the null case does not occur
665 * in any current calls but may in possible future extensions)
666 * @param e the comparison value for checking match
667 * @param timed if true, wait only until timeout elapses
668 * @param nanos timeout in nanosecs, used only if timed is true
669 * @return matched item, or e if unmatched on interrupt or timeout
670 */
671 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
672 final long deadline = timed ? System.nanoTime() + nanos : 0L;
673 Thread w = Thread.currentThread();
674 int spins = -1; // initialized after first item and cancel checks
675 ThreadLocalRandom randomYields = null; // bound if needed
676
677 for (;;) {
678 Object item = s.item;
679 if (item != e) { // matched
680 // assert item != s;
681 s.forgetContents(); // avoid garbage
682 @SuppressWarnings("unchecked") E itemE = (E) item;
683 return itemE;
684 }
685 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
686 // try to cancel and unlink
687 if (s.casItem(e, s.isData ? null : s)) {
688 unsplice(pred, s);
689 return e;
690 }
691 // return normally if lost CAS
692 }
693 else if (spins < 0) { // establish spins at/near front
694 if ((spins = spinsFor(pred, s.isData)) > 0)
695 randomYields = ThreadLocalRandom.current();
696 }
697 else if (spins > 0) { // spin
698 --spins;
699 if (randomYields.nextInt(CHAINED_SPINS) == 0)
700 Thread.yield(); // occasionally yield
701 }
702 else if (s.waiter == null) {
703 s.waiter = w; // request unpark then recheck
704 }
705 else if (timed) {
706 nanos = deadline - System.nanoTime();
707 if (nanos > 0L)
708 LockSupport.parkNanos(this, nanos);
709 }
710 else {
711 LockSupport.park(this);
712 }
713 }
714 }
715
716 /**
717 * Returns spin/yield value for a node with given predecessor and
718 * data mode. See above for explanation.
719 */
720 private static int spinsFor(Node pred, boolean haveData) {
721 if (MP && pred != null) {
722 if (pred.isData != haveData) // phase change
723 return FRONT_SPINS + CHAINED_SPINS;
724 if (pred.isMatched()) // probably at front
725 return FRONT_SPINS;
726 if (pred.waiter == null) // pred apparently spinning
727 return CHAINED_SPINS;
728 }
729 return 0;
730 }
731
732 /* -------------- Traversal methods -------------- */
733
734 /**
735 * Returns the first unmatched data node, or null if none.
736 * Callers must recheck if the returned node is unmatched
737 * before using.
738 */
739 final Node firstDataNode() {
740 restartFromHead: for (;;) {
741 for (Node p = head; p != null;) {
742 Object item = p.item;
743 if (p.isData) {
744 if (item != null)
745 return p;
746 }
747 else if (item == null)
748 break;
749 if (p == (p = p.next))
750 continue restartFromHead;
751 }
752 return null;
753 }
754 }
755
756 /**
757 * Traverses and counts unmatched nodes of the given mode.
758 * Used by methods size and getWaitingConsumerCount.
759 */
760 private int countOfMode(boolean data) {
761 restartFromHead: for (;;) {
762 int count = 0;
763 for (Node p = head; p != null;) {
764 if (!p.isMatched()) {
765 if (p.isData != data)
766 return 0;
767 if (++count == Integer.MAX_VALUE)
768 break; // @see Collection.size()
769 }
770 if (p == (p = p.next))
771 continue restartFromHead;
772 }
773 return count;
774 }
775 }
776
777 public String toString() {
778 String[] a = null;
779 restartFromHead: for (;;) {
780 int charLength = 0;
781 int size = 0;
782 for (Node p = head; p != null;) {
783 Object item = p.item;
784 if (p.isData) {
785 if (item != null) {
786 if (a == null)
787 a = new String[4];
788 else if (size == a.length)
789 a = Arrays.copyOf(a, 2 * size);
790 String s = item.toString();
791 a[size++] = s;
792 charLength += s.length();
793 }
794 } else if (item == null)
795 break;
796 if (p == (p = p.next))
797 continue restartFromHead;
798 }
799
800 if (size == 0)
801 return "[]";
802
803 return Helpers.toString(a, size, charLength);
804 }
805 }
806
807 private Object[] toArrayInternal(Object[] a) {
808 Object[] x = a;
809 restartFromHead: for (;;) {
810 int size = 0;
811 for (Node p = head; p != null;) {
812 Object item = p.item;
813 if (p.isData) {
814 if (item != null) {
815 if (x == null)
816 x = new Object[4];
817 else if (size == x.length)
818 x = Arrays.copyOf(x, 2 * (size + 4));
819 x[size++] = item;
820 }
821 } else if (item == null)
822 break;
823 if (p == (p = p.next))
824 continue restartFromHead;
825 }
826 if (x == null)
827 return new Object[0];
828 else if (a != null && size <= a.length) {
829 if (a != x)
830 System.arraycopy(x, 0, a, 0, size);
831 if (size < a.length)
832 a[size] = null;
833 return a;
834 }
835 return (size == x.length) ? x : Arrays.copyOf(x, size);
836 }
837 }
838
839 /**
840 * Returns an array containing all of the elements in this queue, in
841 * proper sequence.
842 *
843 * <p>The returned array will be "safe" in that no references to it are
844 * maintained by this queue. (In other words, this method must allocate
845 * a new array). The caller is thus free to modify the returned array.
846 *
847 * <p>This method acts as bridge between array-based and collection-based
848 * APIs.
849 *
850 * @return an array containing all of the elements in this queue
851 */
852 public Object[] toArray() {
853 return toArrayInternal(null);
854 }
855
856 /**
857 * Returns an array containing all of the elements in this queue, in
858 * proper sequence; the runtime type of the returned array is that of
859 * the specified array. If the queue fits in the specified array, it
860 * is returned therein. Otherwise, a new array is allocated with the
861 * runtime type of the specified array and the size of this queue.
862 *
863 * <p>If this queue fits in the specified array with room to spare
864 * (i.e., the array has more elements than this queue), the element in
865 * the array immediately following the end of the queue is set to
866 * {@code null}.
867 *
868 * <p>Like the {@link #toArray()} method, this method acts as bridge between
869 * array-based and collection-based APIs. Further, this method allows
870 * precise control over the runtime type of the output array, and may,
871 * under certain circumstances, be used to save allocation costs.
872 *
873 * <p>Suppose {@code x} is a queue known to contain only strings.
874 * The following code can be used to dump the queue into a newly
875 * allocated array of {@code String}:
876 *
877 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
878 *
879 * Note that {@code toArray(new Object[0])} is identical in function to
880 * {@code toArray()}.
881 *
882 * @param a the array into which the elements of the queue are to
883 * be stored, if it is big enough; otherwise, a new array of the
884 * same runtime type is allocated for this purpose
885 * @return an array containing all of the elements in this queue
886 * @throws ArrayStoreException if the runtime type of the specified array
887 * is not a supertype of the runtime type of every element in
888 * this queue
889 * @throws NullPointerException if the specified array is null
890 */
891 @SuppressWarnings("unchecked")
892 public <T> T[] toArray(T[] a) {
893 Objects.requireNonNull(a);
894 return (T[]) toArrayInternal(a);
895 }
896
897 final class Itr implements Iterator<E> {
898 private Node nextNode; // next node to return item for
899 private E nextItem; // the corresponding item
900 private Node lastRet; // last returned node, to support remove
901 private Node lastPred; // predecessor to unlink lastRet
902
903 /**
904 * Moves to next node after prev, or first node if prev null.
905 */
906 private void advance(Node prev) {
907 /*
908 * To track and avoid buildup of deleted nodes in the face
909 * of calls to both Queue.remove and Itr.remove, we must
910 * include variants of unsplice and sweep upon each
911 * advance: Upon Itr.remove, we may need to catch up links
912 * from lastPred, and upon other removes, we might need to
913 * skip ahead from stale nodes and unsplice deleted ones
914 * found while advancing.
915 */
916
917 Node r, b; // reset lastPred upon possible deletion of lastRet
918 if ((r = lastRet) != null && !r.isMatched())
919 lastPred = r; // next lastPred is old lastRet
920 else if ((b = lastPred) == null || b.isMatched())
921 lastPred = null; // at start of list
922 else {
923 Node s, n; // help with removal of lastPred.next
924 while ((s = b.next) != null &&
925 s != b && s.isMatched() &&
926 (n = s.next) != null && n != s)
927 b.casNext(s, n);
928 }
929
930 this.lastRet = prev;
931
932 for (Node p = prev, s, n;;) {
933 s = (p == null) ? head : p.next;
934 if (s == null)
935 break;
936 else if (s == p) {
937 p = null;
938 continue;
939 }
940 Object item = s.item;
941 if (s.isData) {
942 if (item != null) {
943 @SuppressWarnings("unchecked") E itemE = (E) item;
944 nextItem = itemE;
945 nextNode = s;
946 return;
947 }
948 }
949 else if (item == null)
950 break;
951 // assert s.isMatched();
952 if (p == null)
953 p = s;
954 else if ((n = s.next) == null)
955 break;
956 else if (s == n)
957 p = null;
958 else
959 p.casNext(s, n);
960 }
961 nextNode = null;
962 nextItem = null;
963 }
964
965 Itr() {
966 advance(null);
967 }
968
969 public final boolean hasNext() {
970 return nextNode != null;
971 }
972
973 public final E next() {
974 Node p = nextNode;
975 if (p == null) throw new NoSuchElementException();
976 E e = nextItem;
977 advance(p);
978 return e;
979 }
980
981 // Default implementation of forEachRemaining is "good enough".
982
983 public final void remove() {
984 final Node lastRet = this.lastRet;
985 if (lastRet == null)
986 throw new IllegalStateException();
987 this.lastRet = null;
988 if (lastRet.tryMatchData())
989 unsplice(lastPred, lastRet);
990 }
991 }
992
993 /** A customized variant of Spliterators.IteratorSpliterator */
994 final class LTQSpliterator implements Spliterator<E> {
995 static final int MAX_BATCH = 1 << 25; // max batch array size;
996 Node current; // current node; null until initialized
997 int batch; // batch size for splits
998 boolean exhausted; // true when no more nodes
999 LTQSpliterator() {}
1000
1001 public Spliterator<E> trySplit() {
1002 Node p, q;
1003 if ((p = current()) == null || (q = p.next) == null)
1004 return null;
1005 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1006 Object[] a = null;
1007 do {
1008 final Object item = p.item;
1009 if (p.isData) {
1010 if (item != null)
1011 ((a != null) ? a : (a = new Object[n]))[i++] = item;
1012 } else if (item == null) {
1013 p = null;
1014 break;
1015 }
1016 if (p == (p = q))
1017 p = firstDataNode();
1018 } while (p != null && (q = p.next) != null && i < n);
1019 setCurrent(p);
1020 return (i == 0) ? null :
1021 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1022 Spliterator.NONNULL |
1023 Spliterator.CONCURRENT));
1024 }
1025
1026 @SuppressWarnings("unchecked")
1027 public void forEachRemaining(Consumer<? super E> action) {
1028 Objects.requireNonNull(action);
1029 final Node p;
1030 if ((p = current()) != null) {
1031 current = null;
1032 exhausted = true;
1033 forEachFrom(action, p);
1034 }
1035 }
1036
1037 @SuppressWarnings("unchecked")
1038 public boolean tryAdvance(Consumer<? super E> action) {
1039 Objects.requireNonNull(action);
1040 Node p;
1041 if ((p = current()) != null) {
1042 E e = null;
1043 do {
1044 final Object item = p.item;
1045 final boolean isData = p.isData;
1046 if (p == (p = p.next))
1047 p = head;
1048 if (isData) {
1049 if (item != null) {
1050 e = (E) item;
1051 break;
1052 }
1053 }
1054 else if (item == null)
1055 p = null;
1056 } while (p != null);
1057 setCurrent(p);
1058 if (e != null) {
1059 action.accept(e);
1060 return true;
1061 }
1062 }
1063 return false;
1064 }
1065
1066 private void setCurrent(Node p) {
1067 if ((current = p) == null)
1068 exhausted = true;
1069 }
1070
1071 private Node current() {
1072 Node p;
1073 if ((p = current) == null && !exhausted)
1074 setCurrent(p = firstDataNode());
1075 return p;
1076 }
1077
1078 public long estimateSize() { return Long.MAX_VALUE; }
1079
1080 public int characteristics() {
1081 return (Spliterator.ORDERED |
1082 Spliterator.NONNULL |
1083 Spliterator.CONCURRENT);
1084 }
1085 }
1086
1087 /**
1088 * Returns a {@link Spliterator} over the elements in this queue.
1089 *
1090 * <p>The returned spliterator is
1091 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1092 *
1093 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1094 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1095 *
1096 * @implNote
1097 * The {@code Spliterator} implements {@code trySplit} to permit limited
1098 * parallelism.
1099 *
1100 * @return a {@code Spliterator} over the elements in this queue
1101 * @since 1.8
1102 */
1103 public Spliterator<E> spliterator() {
1104 return new LTQSpliterator();
1105 }
1106
1107 /* -------------- Removal methods -------------- */
1108
1109 /**
1110 * Unsplices (now or later) the given deleted/cancelled node with
1111 * the given predecessor.
1112 *
1113 * @param pred a node that was at one time known to be the
1114 * predecessor of s, or null or s itself if s is/was at head
1115 * @param s the node to be unspliced
1116 */
1117 final void unsplice(Node pred, Node s) {
1118 s.waiter = null; // disable signals
1119 /*
1120 * See above for rationale. Briefly: if pred still points to
1121 * s, try to unlink s. If s cannot be unlinked, because it is
1122 * trailing node or pred might be unlinked, and neither pred
1123 * nor s are head or offlist, add to sweepVotes, and if enough
1124 * votes have accumulated, sweep.
1125 */
1126 if (pred != null && pred != s && pred.next == s) {
1127 Node n = s.next;
1128 if (n == null ||
1129 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1130 for (;;) { // check if at, or could be, head
1131 Node h = head;
1132 if (h == pred || h == s || h == null)
1133 return; // at head or list empty
1134 if (!h.isMatched())
1135 break;
1136 Node hn = h.next;
1137 if (hn == null)
1138 return; // now empty
1139 if (hn != h && casHead(h, hn))
1140 h.forgetNext(); // advance head
1141 }
1142 if (pred.next != pred && s.next != s) { // recheck if offlist
1143 for (;;) { // sweep now if enough votes
1144 int v = sweepVotes;
1145 if (v < SWEEP_THRESHOLD) {
1146 if (casSweepVotes(v, v + 1))
1147 break;
1148 }
1149 else if (casSweepVotes(v, 0)) {
1150 sweep();
1151 break;
1152 }
1153 }
1154 }
1155 }
1156 }
1157 }
1158
1159 /**
1160 * Unlinks matched (typically cancelled) nodes encountered in a
1161 * traversal from head.
1162 */
1163 private void sweep() {
1164 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1165 if (!s.isMatched())
1166 // Unmatched nodes are never self-linked
1167 p = s;
1168 else if ((n = s.next) == null) // trailing node is pinned
1169 break;
1170 else if (s == n) // stale
1171 // No need to also check for p == s, since that implies s == n
1172 p = head;
1173 else
1174 p.casNext(s, n);
1175 }
1176 }
1177
1178 /**
1179 * Creates an initially empty {@code LinkedTransferQueue}.
1180 */
1181 public LinkedTransferQueue() {
1182 }
1183
1184 /**
1185 * Creates a {@code LinkedTransferQueue}
1186 * initially containing the elements of the given collection,
1187 * added in traversal order of the collection's iterator.
1188 *
1189 * @param c the collection of elements to initially contain
1190 * @throws NullPointerException if the specified collection or any
1191 * of its elements are null
1192 */
1193 public LinkedTransferQueue(Collection<? extends E> c) {
1194 this();
1195 addAll(c);
1196 }
1197
1198 /**
1199 * Inserts the specified element at the tail of this queue.
1200 * As the queue is unbounded, this method will never block.
1201 *
1202 * @throws NullPointerException if the specified element is null
1203 */
1204 public void put(E e) {
1205 xfer(e, true, ASYNC, 0);
1206 }
1207
1208 /**
1209 * Inserts the specified element at the tail of this queue.
1210 * As the queue is unbounded, this method will never block or
1211 * return {@code false}.
1212 *
1213 * @return {@code true} (as specified by
1214 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1215 * BlockingQueue.offer})
1216 * @throws NullPointerException if the specified element is null
1217 */
1218 public boolean offer(E e, long timeout, TimeUnit unit) {
1219 xfer(e, true, ASYNC, 0);
1220 return true;
1221 }
1222
1223 /**
1224 * Inserts the specified element at the tail of this queue.
1225 * As the queue is unbounded, this method will never return {@code false}.
1226 *
1227 * @return {@code true} (as specified by {@link Queue#offer})
1228 * @throws NullPointerException if the specified element is null
1229 */
1230 public boolean offer(E e) {
1231 xfer(e, true, ASYNC, 0);
1232 return true;
1233 }
1234
1235 /**
1236 * Inserts the specified element at the tail of this queue.
1237 * As the queue is unbounded, this method will never throw
1238 * {@link IllegalStateException} or return {@code false}.
1239 *
1240 * @return {@code true} (as specified by {@link Collection#add})
1241 * @throws NullPointerException if the specified element is null
1242 */
1243 public boolean add(E e) {
1244 xfer(e, true, ASYNC, 0);
1245 return true;
1246 }
1247
1248 /**
1249 * Transfers the element to a waiting consumer immediately, if possible.
1250 *
1251 * <p>More precisely, transfers the specified element immediately
1252 * if there exists a consumer already waiting to receive it (in
1253 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1254 * otherwise returning {@code false} without enqueuing the element.
1255 *
1256 * @throws NullPointerException if the specified element is null
1257 */
1258 public boolean tryTransfer(E e) {
1259 return xfer(e, true, NOW, 0) == null;
1260 }
1261
1262 /**
1263 * Transfers the element to a consumer, waiting if necessary to do so.
1264 *
1265 * <p>More precisely, transfers the specified element immediately
1266 * if there exists a consumer already waiting to receive it (in
1267 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1268 * else inserts the specified element at the tail of this queue
1269 * and waits until the element is received by a consumer.
1270 *
1271 * @throws NullPointerException if the specified element is null
1272 */
1273 public void transfer(E e) throws InterruptedException {
1274 if (xfer(e, true, SYNC, 0) != null) {
1275 Thread.interrupted(); // failure possible only due to interrupt
1276 throw new InterruptedException();
1277 }
1278 }
1279
1280 /**
1281 * Transfers the element to a consumer if it is possible to do so
1282 * before the timeout elapses.
1283 *
1284 * <p>More precisely, transfers the specified element immediately
1285 * if there exists a consumer already waiting to receive it (in
1286 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1287 * else inserts the specified element at the tail of this queue
1288 * and waits until the element is received by a consumer,
1289 * returning {@code false} if the specified wait time elapses
1290 * before the element can be transferred.
1291 *
1292 * @throws NullPointerException if the specified element is null
1293 */
1294 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1295 throws InterruptedException {
1296 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1297 return true;
1298 if (!Thread.interrupted())
1299 return false;
1300 throw new InterruptedException();
1301 }
1302
1303 public E take() throws InterruptedException {
1304 E e = xfer(null, false, SYNC, 0);
1305 if (e != null)
1306 return e;
1307 Thread.interrupted();
1308 throw new InterruptedException();
1309 }
1310
1311 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1312 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1313 if (e != null || !Thread.interrupted())
1314 return e;
1315 throw new InterruptedException();
1316 }
1317
1318 public E poll() {
1319 return xfer(null, false, NOW, 0);
1320 }
1321
1322 /**
1323 * @throws NullPointerException {@inheritDoc}
1324 * @throws IllegalArgumentException {@inheritDoc}
1325 */
1326 public int drainTo(Collection<? super E> c) {
1327 Objects.requireNonNull(c);
1328 if (c == this)
1329 throw new IllegalArgumentException();
1330 int n = 0;
1331 for (E e; (e = poll()) != null; n++)
1332 c.add(e);
1333 return n;
1334 }
1335
1336 /**
1337 * @throws NullPointerException {@inheritDoc}
1338 * @throws IllegalArgumentException {@inheritDoc}
1339 */
1340 public int drainTo(Collection<? super E> c, int maxElements) {
1341 Objects.requireNonNull(c);
1342 if (c == this)
1343 throw new IllegalArgumentException();
1344 int n = 0;
1345 for (E e; n < maxElements && (e = poll()) != null; n++)
1346 c.add(e);
1347 return n;
1348 }
1349
1350 /**
1351 * Returns an iterator over the elements in this queue in proper sequence.
1352 * The elements will be returned in order from first (head) to last (tail).
1353 *
1354 * <p>The returned iterator is
1355 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1356 *
1357 * @return an iterator over the elements in this queue in proper sequence
1358 */
1359 public Iterator<E> iterator() {
1360 return new Itr();
1361 }
1362
1363 public E peek() {
1364 restartFromHead: for (;;) {
1365 for (Node p = head; p != null;) {
1366 Object item = p.item;
1367 if (p.isData) {
1368 if (item != null) {
1369 @SuppressWarnings("unchecked") E e = (E) item;
1370 return e;
1371 }
1372 }
1373 else if (item == null)
1374 break;
1375 if (p == (p = p.next))
1376 continue restartFromHead;
1377 }
1378 return null;
1379 }
1380 }
1381
1382 /**
1383 * Returns {@code true} if this queue contains no elements.
1384 *
1385 * @return {@code true} if this queue contains no elements
1386 */
1387 public boolean isEmpty() {
1388 return firstDataNode() == null;
1389 }
1390
1391 public boolean hasWaitingConsumer() {
1392 restartFromHead: for (;;) {
1393 for (Node p = head; p != null;) {
1394 Object item = p.item;
1395 if (p.isData) {
1396 if (item != null)
1397 break;
1398 }
1399 else if (item == null)
1400 return true;
1401 if (p == (p = p.next))
1402 continue restartFromHead;
1403 }
1404 return false;
1405 }
1406 }
1407
1408 /**
1409 * Returns the number of elements in this queue. If this queue
1410 * contains more than {@code Integer.MAX_VALUE} elements, returns
1411 * {@code Integer.MAX_VALUE}.
1412 *
1413 * <p>Beware that, unlike in most collections, this method is
1414 * <em>NOT</em> a constant-time operation. Because of the
1415 * asynchronous nature of these queues, determining the current
1416 * number of elements requires an O(n) traversal.
1417 *
1418 * @return the number of elements in this queue
1419 */
1420 public int size() {
1421 return countOfMode(true);
1422 }
1423
1424 public int getWaitingConsumerCount() {
1425 return countOfMode(false);
1426 }
1427
1428 /**
1429 * Removes a single instance of the specified element from this queue,
1430 * if it is present. More formally, removes an element {@code e} such
1431 * that {@code o.equals(e)}, if this queue contains one or more such
1432 * elements.
1433 * Returns {@code true} if this queue contained the specified element
1434 * (or equivalently, if this queue changed as a result of the call).
1435 *
1436 * @param o element to be removed from this queue, if present
1437 * @return {@code true} if this queue changed as a result of the call
1438 */
1439 public boolean remove(Object o) {
1440 if (o == null)
1441 return false;
1442 restartFromHead: for (;;) {
1443 for (Node p = head, c = p, pred = null, q; p != null; ) {
1444 final Object item; boolean pAlive;
1445 if (pAlive = (((item = p.item) != null) && p.isData)) {
1446 if (o.equals(item) && p.tryMatchData()) {
1447 if ((q = p.next) == null) q = p;
1448 if (c != q) tryCasSuccessor(pred, c, q);
1449 return true;
1450 }
1451 }
1452 else if (!p.isData && item == null)
1453 break;
1454 if (c != p && tryCasSuccessor(pred, c, p))
1455 c = p;
1456 q = p.next;
1457 if (pAlive || c != p) {
1458 pred = p;
1459 p = c = q;
1460 }
1461 else if (p == (p = q))
1462 continue restartFromHead;
1463 }
1464 return false;
1465 }
1466 }
1467
1468 /**
1469 * Returns {@code true} if this queue contains the specified element.
1470 * More formally, returns {@code true} if and only if this queue contains
1471 * at least one element {@code e} such that {@code o.equals(e)}.
1472 *
1473 * @param o object to be checked for containment in this queue
1474 * @return {@code true} if this queue contains the specified element
1475 */
1476 public boolean contains(Object o) {
1477 if (o == null)
1478 return false;
1479 restartFromHead: for (;;) {
1480 for (Node p = head, c = p, pred = null, q; p != null; ) {
1481 final Object item; final boolean pAlive;
1482 if (pAlive = (((item = p.item) != null) && p.isData)) {
1483 if (o.equals(item))
1484 return true;
1485 }
1486 else if (!p.isData && item == null)
1487 break;
1488 if (c != p && tryCasSuccessor(pred, c, p))
1489 c = p;
1490 q = p.next;
1491 if (pAlive || c != p) {
1492 pred = p;
1493 p = c = q;
1494 }
1495 else if (p == (p = q))
1496 continue restartFromHead;
1497 }
1498 return false;
1499 }
1500 }
1501
1502 /**
1503 * Always returns {@code Integer.MAX_VALUE} because a
1504 * {@code LinkedTransferQueue} is not capacity constrained.
1505 *
1506 * @return {@code Integer.MAX_VALUE} (as specified by
1507 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1508 * BlockingQueue.remainingCapacity})
1509 */
1510 public int remainingCapacity() {
1511 return Integer.MAX_VALUE;
1512 }
1513
1514 /**
1515 * Saves this queue to a stream (that is, serializes it).
1516 *
1517 * @param s the stream
1518 * @throws java.io.IOException if an I/O error occurs
1519 * @serialData All of the elements (each an {@code E}) in
1520 * the proper order, followed by a null
1521 */
1522 private void writeObject(java.io.ObjectOutputStream s)
1523 throws java.io.IOException {
1524 s.defaultWriteObject();
1525 for (E e : this)
1526 s.writeObject(e);
1527 // Use trailing null as sentinel
1528 s.writeObject(null);
1529 }
1530
1531 /**
1532 * Reconstitutes this queue from a stream (that is, deserializes it).
1533 * @param s the stream
1534 * @throws ClassNotFoundException if the class of a serialized object
1535 * could not be found
1536 * @throws java.io.IOException if an I/O error occurs
1537 */
1538 private void readObject(java.io.ObjectInputStream s)
1539 throws java.io.IOException, ClassNotFoundException {
1540 s.defaultReadObject();
1541 for (;;) {
1542 @SuppressWarnings("unchecked")
1543 E item = (E) s.readObject();
1544 if (item == null)
1545 break;
1546 else
1547 offer(item);
1548 }
1549 }
1550
1551 /**
1552 * @throws NullPointerException {@inheritDoc}
1553 */
1554 public boolean removeIf(Predicate<? super E> filter) {
1555 Objects.requireNonNull(filter);
1556 return bulkRemove(filter);
1557 }
1558
1559 /**
1560 * @throws NullPointerException {@inheritDoc}
1561 */
1562 public boolean removeAll(Collection<?> c) {
1563 Objects.requireNonNull(c);
1564 return bulkRemove(e -> c.contains(e));
1565 }
1566
1567 /**
1568 * @throws NullPointerException {@inheritDoc}
1569 */
1570 public boolean retainAll(Collection<?> c) {
1571 Objects.requireNonNull(c);
1572 return bulkRemove(e -> !c.contains(e));
1573 }
1574
1575 /** Implementation of bulk remove methods. */
1576 @SuppressWarnings("unchecked")
1577 private boolean bulkRemove(Predicate<? super E> filter) {
1578 boolean removed = false;
1579 restartFromHead: for (;;) {
1580 for (Node pred = null, p = head; p != null; ) {
1581 final Object item = p.item;
1582 if (p.isData) {
1583 if (item != null
1584 && filter.test((E)item)
1585 && p.tryMatchData()) {
1586 removed = true;
1587 unsplice(pred, p);
1588 p = p.next;
1589 continue;
1590 }
1591 }
1592 else if (item == null)
1593 break;
1594 if ((pred = p) == (p = p.next))
1595 continue restartFromHead;
1596 }
1597 return removed;
1598 }
1599 }
1600
1601 /**
1602 * Runs action on each element found during a traversal starting at p.
1603 * If p is null, the action is not run.
1604 */
1605 @SuppressWarnings("unchecked")
1606 void forEachFrom(Consumer<? super E> action, Node p) {
1607 for (Node c = p, pred = null, q; p != null; ) {
1608 final Object item; final boolean pAlive;
1609 if (pAlive = (((item = p.item) != null) && p.isData))
1610 action.accept((E) item);
1611 else if (!p.isData && item == null)
1612 break;
1613 if (c != p && tryCasSuccessor(pred, c, p))
1614 c = p;
1615 q = p.next;
1616 if (pAlive || c != p) {
1617 pred = p;
1618 p = c = q;
1619 }
1620 else if (p == (p = q)) {
1621 pred = null;
1622 c = p = head;
1623 }
1624 }
1625 }
1626
1627 /**
1628 * @throws NullPointerException {@inheritDoc}
1629 */
1630 public void forEach(Consumer<? super E> action) {
1631 Objects.requireNonNull(action);
1632 forEachFrom(action, head);
1633 }
1634
1635 // VarHandle mechanics
1636 private static final VarHandle HEAD;
1637 private static final VarHandle TAIL;
1638 private static final VarHandle SWEEPVOTES;
1639 static {
1640 try {
1641 MethodHandles.Lookup l = MethodHandles.lookup();
1642 HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1643 Node.class);
1644 TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1645 Node.class);
1646 SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1647 int.class);
1648 } catch (ReflectiveOperationException e) {
1649 throw new Error(e);
1650 }
1651
1652 // Reduce the risk of rare disastrous classloading in first call to
1653 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1654 Class<?> ensureLoaded = LockSupport.class;
1655 }
1656 }