ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.129
Committed: Thu Dec 29 07:30:28 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.128: +1 -3 lines
Log Message:
xfer: remove conditional initialization for s

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Objects;
17 import java.util.Queue;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.concurrent.locks.LockSupport;
21 import java.util.function.Consumer;
22 import java.util.function.Predicate;
23
24 /**
25 * An unbounded {@link TransferQueue} based on linked nodes.
26 * This queue orders elements FIFO (first-in-first-out) with respect
27 * to any given producer. The <em>head</em> of the queue is that
28 * element that has been on the queue the longest time for some
29 * producer. The <em>tail</em> of the queue is that element that has
30 * been on the queue the shortest time for some producer.
31 *
32 * <p>Beware that, unlike in most collections, the {@code size} method
33 * is <em>NOT</em> a constant-time operation. Because of the
34 * asynchronous nature of these queues, determining the current number
35 * of elements requires a traversal of the elements, and so may report
36 * inaccurate results if this collection is modified during traversal.
37 * Additionally, the bulk operations {@code addAll},
38 * {@code removeAll}, {@code retainAll}, {@code containsAll},
39 * and {@code toArray} are <em>not</em> guaranteed
40 * to be performed atomically. For example, an iterator operating
41 * concurrently with an {@code addAll} operation might view only some
42 * of the added elements.
43 *
44 * <p>This class and its iterator implement all of the
45 * <em>optional</em> methods of the {@link Collection} and {@link
46 * Iterator} interfaces.
47 *
48 * <p>Memory consistency effects: As with other concurrent
49 * collections, actions in a thread prior to placing an object into a
50 * {@code LinkedTransferQueue}
51 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52 * actions subsequent to the access or removal of that element from
53 * the {@code LinkedTransferQueue} in another thread.
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57 * Java Collections Framework</a>.
58 *
59 * @since 1.7
60 * @author Doug Lea
61 * @param <E> the type of elements held in this queue
62 */
63 public class LinkedTransferQueue<E> extends AbstractQueue<E>
64 implements TransferQueue<E>, java.io.Serializable {
65 private static final long serialVersionUID = -3223113410248163686L;
66
67 /*
68 * *** Overview of Dual Queues with Slack ***
69 *
70 * Dual Queues, introduced by Scherer and Scott
71 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
72 * are (linked) queues in which nodes may represent either data or
73 * requests. When a thread tries to enqueue a data node, but
74 * encounters a request node, it instead "matches" and removes it;
75 * and vice versa for enqueuing requests. Blocking Dual Queues
76 * arrange that threads enqueuing unmatched requests block until
77 * other threads provide the match. Dual Synchronous Queues (see
78 * Scherer, Lea, & Scott
79 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
80 * additionally arrange that threads enqueuing unmatched data also
81 * block. Dual Transfer Queues support all of these modes, as
82 * dictated by callers.
83 *
84 * A FIFO dual queue may be implemented using a variation of the
85 * Michael & Scott (M&S) lock-free queue algorithm
86 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
87 * It maintains two pointer fields, "head", pointing to a
88 * (matched) node that in turn points to the first actual
89 * (unmatched) queue node (or null if empty); and "tail" that
90 * points to the last node on the queue (or again null if
91 * empty). For example, here is a possible queue with four data
92 * elements:
93 *
94 * head tail
95 * | |
96 * v v
97 * M -> U -> U -> U -> U
98 *
99 * The M&S queue algorithm is known to be prone to scalability and
100 * overhead limitations when maintaining (via CAS) these head and
101 * tail pointers. This has led to the development of
102 * contention-reducing variants such as elimination arrays (see
103 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
104 * optimistic back pointers (see Ladan-Mozes & Shavit
105 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
106 * However, the nature of dual queues enables a simpler tactic for
107 * improving M&S-style implementations when dual-ness is needed.
108 *
109 * In a dual queue, each node must atomically maintain its match
110 * status. While there are other possible variants, we implement
111 * this here as: for a data-mode node, matching entails CASing an
112 * "item" field from a non-null data value to null upon match, and
113 * vice-versa for request nodes, CASing from null to a data
114 * value. (Note that the linearization properties of this style of
115 * queue are easy to verify -- elements are made available by
116 * linking, and unavailable by matching.) Compared to plain M&S
117 * queues, this property of dual queues requires one additional
118 * successful atomic operation per enq/deq pair. But it also
119 * enables lower cost variants of queue maintenance mechanics. (A
120 * variation of this idea applies even for non-dual queues that
121 * support deletion of interior elements, such as
122 * j.u.c.ConcurrentLinkedQueue.)
123 *
124 * Once a node is matched, its match status can never again
125 * change. We may thus arrange that the linked list of them
126 * contain a prefix of zero or more matched nodes, followed by a
127 * suffix of zero or more unmatched nodes. (Note that we allow
128 * both the prefix and suffix to be zero length, which in turn
129 * means that we do not use a dummy header.) If we were not
130 * concerned with either time or space efficiency, we could
131 * correctly perform enqueue and dequeue operations by traversing
132 * from a pointer to the initial node; CASing the item of the
133 * first unmatched node on match and CASing the next field of the
134 * trailing node on appends. (Plus some special-casing when
135 * initially empty). While this would be a terrible idea in
136 * itself, it does have the benefit of not requiring ANY atomic
137 * updates on head/tail fields.
138 *
139 * We introduce here an approach that lies between the extremes of
140 * never versus always updating queue (head and tail) pointers.
141 * This offers a tradeoff between sometimes requiring extra
142 * traversal steps to locate the first and/or last unmatched
143 * nodes, versus the reduced overhead and contention of fewer
144 * updates to queue pointers. For example, a possible snapshot of
145 * a queue is:
146 *
147 * head tail
148 * | |
149 * v v
150 * M -> M -> U -> U -> U -> U
151 *
152 * The best value for this "slack" (the targeted maximum distance
153 * between the value of "head" and the first unmatched node, and
154 * similarly for "tail") is an empirical matter. We have found
155 * that using very small constants in the range of 1-3 work best
156 * over a range of platforms. Larger values introduce increasing
157 * costs of cache misses and risks of long traversal chains, while
158 * smaller values increase CAS contention and overhead.
159 *
160 * Dual queues with slack differ from plain M&S dual queues by
161 * virtue of only sometimes updating head or tail pointers when
162 * matching, appending, or even traversing nodes; in order to
163 * maintain a targeted slack. The idea of "sometimes" may be
164 * operationalized in several ways. The simplest is to use a
165 * per-operation counter incremented on each traversal step, and
166 * to try (via CAS) to update the associated queue pointer
167 * whenever the count exceeds a threshold. Another, that requires
168 * more overhead, is to use random number generators to update
169 * with a given probability per traversal step.
170 *
171 * In any strategy along these lines, because CASes updating
172 * fields may fail, the actual slack may exceed targeted slack.
173 * However, they may be retried at any time to maintain targets.
174 * Even when using very small slack values, this approach works
175 * well for dual queues because it allows all operations up to the
176 * point of matching or appending an item (hence potentially
177 * allowing progress by another thread) to be read-only, thus not
178 * introducing any further contention. As described below, we
179 * implement this by performing slack maintenance retries only
180 * after these points.
181 *
182 * As an accompaniment to such techniques, traversal overhead can
183 * be further reduced without increasing contention of head
184 * pointer updates: Threads may sometimes shortcut the "next" link
185 * path from the current "head" node to be closer to the currently
186 * known first unmatched node, and similarly for tail. Again, this
187 * may be triggered with using thresholds or randomization.
188 *
189 * These ideas must be further extended to avoid unbounded amounts
190 * of costly-to-reclaim garbage caused by the sequential "next"
191 * links of nodes starting at old forgotten head nodes: As first
192 * described in detail by Boehm
193 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
194 * delays noticing that any arbitrarily old node has become
195 * garbage, all newer dead nodes will also be unreclaimed.
196 * (Similar issues arise in non-GC environments.) To cope with
197 * this in our implementation, upon CASing to advance the head
198 * pointer, we set the "next" link of the previous head to point
199 * only to itself; thus limiting the length of chains of dead nodes.
200 * (We also take similar care to wipe out possibly garbage
201 * retaining values held in other Node fields.) However, doing so
202 * adds some further complexity to traversal: If any "next"
203 * pointer links to itself, it indicates that the current thread
204 * has lagged behind a head-update, and so the traversal must
205 * continue from the "head". Traversals trying to find the
206 * current tail starting from "tail" may also encounter
207 * self-links, in which case they also continue at "head".
208 *
209 * It is tempting in slack-based scheme to not even use CAS for
210 * updates (similarly to Ladan-Mozes & Shavit). However, this
211 * cannot be done for head updates under the above link-forgetting
212 * mechanics because an update may leave head at a detached node.
213 * And while direct writes are possible for tail updates, they
214 * increase the risk of long retraversals, and hence long garbage
215 * chains, which can be much more costly than is worthwhile
216 * considering that the cost difference of performing a CAS vs
217 * write is smaller when they are not triggered on each operation
218 * (especially considering that writes and CASes equally require
219 * additional GC bookkeeping ("write barriers") that are sometimes
220 * more costly than the writes themselves because of contention).
221 *
222 * *** Overview of implementation ***
223 *
224 * We use a threshold-based approach to updates, with a slack
225 * threshold of two -- that is, we update head/tail when the
226 * current pointer appears to be two or more steps away from the
227 * first/last node. The slack value is hard-wired: a path greater
228 * than one is naturally implemented by checking equality of
229 * traversal pointers except when the list has only one element,
230 * in which case we keep slack threshold at one. Avoiding tracking
231 * explicit counts across method calls slightly simplifies an
232 * already-messy implementation. Using randomization would
233 * probably work better if there were a low-quality dirt-cheap
234 * per-thread one available, but even ThreadLocalRandom is too
235 * heavy for these purposes.
236 *
237 * With such a small slack threshold value, it is not worthwhile
238 * to augment this with path short-circuiting (i.e., unsplicing
239 * interior nodes) except in the case of cancellation/removal (see
240 * below).
241 *
242 * We allow both the head and tail fields to be null before any
243 * nodes are enqueued; initializing upon first append. This
244 * simplifies some other logic, as well as providing more
245 * efficient explicit control paths instead of letting JVMs insert
246 * implicit NullPointerExceptions when they are null. While not
247 * currently fully implemented, we also leave open the possibility
248 * of re-nulling these fields when empty (which is complicated to
249 * arrange, for little benefit.)
250 *
251 * All enqueue/dequeue operations are handled by the single method
252 * "xfer" with parameters indicating whether to act as some form
253 * of offer, put, poll, take, or transfer (each possibly with
254 * timeout). The relative complexity of using one monolithic
255 * method outweighs the code bulk and maintenance problems of
256 * using separate methods for each case.
257 *
258 * Operation consists of up to three phases. The first is
259 * implemented within method xfer, the second in tryAppend, and
260 * the third in method awaitMatch.
261 *
262 * 1. Try to match an existing node
263 *
264 * Starting at head, skip already-matched nodes until finding
265 * an unmatched node of opposite mode, if one exists, in which
266 * case matching it and returning, also if necessary updating
267 * head to one past the matched node (or the node itself if the
268 * list has no other unmatched nodes). If the CAS misses, then
269 * a loop retries advancing head by two steps until either
270 * success or the slack is at most two. By requiring that each
271 * attempt advances head by two (if applicable), we ensure that
272 * the slack does not grow without bound. Traversals also check
273 * if the initial head is now off-list, in which case they
274 * restart at the new head.
275 *
276 * If no candidates are found and the call was untimed
277 * poll/offer (argument "how" is NOW), return.
278 *
279 * 2. Try to append a new node (method tryAppend)
280 *
281 * Starting at current tail pointer, find the actual last node
282 * and try to append a new node (or if head was null, establish
283 * the first node). Nodes can be appended only if their
284 * predecessors are either already matched or are of the same
285 * mode. If we detect otherwise, then a new node with opposite
286 * mode must have been appended during traversal, so we must
287 * restart at phase 1. The traversal and update steps are
288 * otherwise similar to phase 1: Retrying upon CAS misses and
289 * checking for staleness. In particular, if a self-link is
290 * encountered, then we can safely jump to a node on the list
291 * by continuing the traversal at current head.
292 *
293 * On successful append, if the call was ASYNC, return.
294 *
295 * 3. Await match or cancellation (method awaitMatch)
296 *
297 * Wait for another thread to match node; instead cancelling if
298 * the current thread was interrupted or the wait timed out. On
299 * multiprocessors, we use front-of-queue spinning: If a node
300 * appears to be the first unmatched node in the queue, it
301 * spins a bit before blocking. In either case, before blocking
302 * it tries to unsplice any nodes between the current "head"
303 * and the first unmatched node.
304 *
305 * Front-of-queue spinning vastly improves performance of
306 * heavily contended queues. And so long as it is relatively
307 * brief and "quiet", spinning does not much impact performance
308 * of less-contended queues. During spins threads check their
309 * interrupt status and generate a thread-local random number
310 * to decide to occasionally perform a Thread.yield. While
311 * yield has underdefined specs, we assume that it might help,
312 * and will not hurt, in limiting impact of spinning on busy
313 * systems. We also use smaller (1/2) spins for nodes that are
314 * not known to be front but whose predecessors have not
315 * blocked -- these "chained" spins avoid artifacts of
316 * front-of-queue rules which otherwise lead to alternating
317 * nodes spinning vs blocking. Further, front threads that
318 * represent phase changes (from data to request node or vice
319 * versa) compared to their predecessors receive additional
320 * chained spins, reflecting longer paths typically required to
321 * unblock threads during phase changes.
322 *
323 *
324 * ** Unlinking removed interior nodes **
325 *
326 * In addition to minimizing garbage retention via self-linking
327 * described above, we also unlink removed interior nodes. These
328 * may arise due to timed out or interrupted waits, or calls to
329 * remove(x) or Iterator.remove. Normally, given a node that was
330 * at one time known to be the predecessor of some node s that is
331 * to be removed, we can unsplice s by CASing the next field of
332 * its predecessor if it still points to s (otherwise s must
333 * already have been removed or is now offlist). But there are two
334 * situations in which we cannot guarantee to make node s
335 * unreachable in this way: (1) If s is the trailing node of list
336 * (i.e., with null next), then it is pinned as the target node
337 * for appends, so can only be removed later after other nodes are
338 * appended. (2) We cannot necessarily unlink s given a
339 * predecessor node that is matched (including the case of being
340 * cancelled): the predecessor may already be unspliced, in which
341 * case some previous reachable node may still point to s.
342 * (For further explanation see Herlihy & Shavit "The Art of
343 * Multiprocessor Programming" chapter 9). Although, in both
344 * cases, we can rule out the need for further action if either s
345 * or its predecessor are (or can be made to be) at, or fall off
346 * from, the head of list.
347 *
348 * Without taking these into account, it would be possible for an
349 * unbounded number of supposedly removed nodes to remain
350 * reachable. Situations leading to such buildup are uncommon but
351 * can occur in practice; for example when a series of short timed
352 * calls to poll repeatedly time out but never otherwise fall off
353 * the list because of an untimed call to take at the front of the
354 * queue.
355 *
356 * When these cases arise, rather than always retraversing the
357 * entire list to find an actual predecessor to unlink (which
358 * won't help for case (1) anyway), we record a conservative
359 * estimate of possible unsplice failures (in "sweepVotes").
360 * We trigger a full sweep when the estimate exceeds a threshold
361 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
362 * removal failures to tolerate before sweeping through, unlinking
363 * cancelled nodes that were not unlinked upon initial removal.
364 * We perform sweeps by the thread hitting threshold (rather than
365 * background threads or by spreading work to other threads)
366 * because in the main contexts in which removal occurs, the
367 * caller is already timed-out, cancelled, or performing a
368 * potentially O(n) operation (e.g. remove(x)), none of which are
369 * time-critical enough to warrant the overhead that alternatives
370 * would impose on other threads.
371 *
372 * Because the sweepVotes estimate is conservative, and because
373 * nodes become unlinked "naturally" as they fall off the head of
374 * the queue, and because we allow votes to accumulate even while
375 * sweeps are in progress, there are typically significantly fewer
376 * such nodes than estimated. Choice of a threshold value
377 * balances the likelihood of wasted effort and contention, versus
378 * providing a worst-case bound on retention of interior nodes in
379 * quiescent queues. The value defined below was chosen
380 * empirically to balance these under various timeout scenarios.
381 *
382 * Note that we cannot self-link unlinked interior nodes during
383 * sweeps. However, the associated garbage chains terminate when
384 * some successor ultimately falls off the head of the list and is
385 * self-linked.
386 */
387
388 /** True if on multiprocessor */
389 private static final boolean MP =
390 Runtime.getRuntime().availableProcessors() > 1;
391
392 /**
393 * The number of times to spin (with randomly interspersed calls
394 * to Thread.yield) on multiprocessor before blocking when a node
395 * is apparently the first waiter in the queue. See above for
396 * explanation. Must be a power of two. The value is empirically
397 * derived -- it works pretty well across a variety of processors,
398 * numbers of CPUs, and OSes.
399 */
400 private static final int FRONT_SPINS = 1 << 7;
401
402 /**
403 * The number of times to spin before blocking when a node is
404 * preceded by another node that is apparently spinning. Also
405 * serves as an increment to FRONT_SPINS on phase changes, and as
406 * base average frequency for yielding during spins. Must be a
407 * power of two.
408 */
409 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
410
411 /**
412 * The maximum number of estimated removal failures (sweepVotes)
413 * to tolerate before sweeping through the queue unlinking
414 * cancelled nodes that were not unlinked upon initial
415 * removal. See above for explanation. The value must be at least
416 * two to avoid useless sweeps when removing trailing nodes.
417 */
418 static final int SWEEP_THRESHOLD = 32;
419
420 /**
421 * Queue nodes. Uses Object, not E, for items to allow forgetting
422 * them after use. Relies heavily on VarHandles to minimize
423 * unnecessary ordering constraints: Writes that are intrinsically
424 * ordered wrt other accesses or CASes use simple relaxed forms.
425 */
426 static final class Node {
427 final boolean isData; // false if this is a request node
428 volatile Object item; // initially non-null if isData; CASed to match
429 volatile Node next;
430 volatile Thread waiter; // null until waiting
431
432 final boolean casNext(Node cmp, Node val) {
433 return NEXT.compareAndSet(this, cmp, val);
434 }
435
436 final boolean casItem(Object cmp, Object val) {
437 // assert isData == (cmp != null);
438 // assert isData == (val == null);
439 // assert !(cmp instanceof Node);
440 return ITEM.compareAndSet(this, cmp, val);
441 }
442
443 /**
444 * Constructs a new node. Uses relaxed write because item can
445 * only be seen after publication via casNext.
446 */
447 Node(Object item) {
448 ITEM.set(this, item);
449 isData = (item != null);
450 }
451
452 /**
453 * Links node to itself to avoid garbage retention. Called
454 * only after CASing head field, so uses relaxed write.
455 */
456 final void forgetNext() {
457 NEXT.setRelease(this, this);
458 }
459
460 /**
461 * Sets item (of a request node) to self and waiter to null,
462 * to avoid garbage retention after matching or cancelling.
463 * Uses relaxed writes because order is already constrained in
464 * the only calling contexts: item is forgotten only after
465 * volatile/atomic mechanics that extract items, and visitors
466 * of request nodes only ever check whether item is null.
467 * Similarly, clearing waiter follows either CAS or return
468 * from park (if ever parked; else we don't care).
469 */
470 final void forgetContents() {
471 // assert isMatched();
472 if (!isData)
473 ITEM.set(this, this);
474 WAITER.set(this, null);
475 }
476
477 /**
478 * Returns true if this node has been matched, including the
479 * case of artificial matches due to cancellation.
480 */
481 final boolean isMatched() {
482 return isData == (item == null);
483 }
484
485 /**
486 * Returns true if a node with the given mode cannot be
487 * appended to this node because this node is unmatched and
488 * has opposite data mode.
489 */
490 final boolean cannotPrecede(boolean haveData) {
491 boolean d = isData;
492 return d != haveData && d != (item == null);
493 }
494
495 /**
496 * Tries to artificially match a data node -- used by remove.
497 */
498 final boolean tryMatchData() {
499 // assert isData;
500 final Object x;
501 if ((x = item) != null && casItem(x, null)) {
502 LockSupport.unpark(waiter);
503 return true;
504 }
505 return false;
506 }
507
508 private static final long serialVersionUID = -3375979862319811754L;
509
510 // VarHandle mechanics
511 private static final VarHandle ITEM;
512 private static final VarHandle NEXT;
513 private static final VarHandle WAITER;
514 static {
515 try {
516 MethodHandles.Lookup l = MethodHandles.lookup();
517 ITEM = l.findVarHandle(Node.class, "item", Object.class);
518 NEXT = l.findVarHandle(Node.class, "next", Node.class);
519 WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
520 } catch (ReflectiveOperationException e) {
521 throw new Error(e);
522 }
523 }
524 }
525
526 /** head of the queue; null until first enqueue */
527 transient volatile Node head;
528
529 /** tail of the queue; null until first append */
530 private transient volatile Node tail;
531
532 /** The number of apparent failures to unsplice removed nodes */
533 private transient volatile int sweepVotes;
534
535 private boolean casTail(Node cmp, Node val) {
536 return TAIL.compareAndSet(this, cmp, val);
537 }
538
539 private boolean casHead(Node cmp, Node val) {
540 return HEAD.compareAndSet(this, cmp, val);
541 }
542
543 private boolean casSweepVotes(int cmp, int val) {
544 return SWEEPVOTES.compareAndSet(this, cmp, val);
545 }
546
547 /**
548 * Tries to CAS pred.next (or head, if pred is null) from c to p.
549 */
550 private boolean tryCasSuccessor(Node pred, Node c, Node p) {
551 // assert c != p;
552 if (pred != null)
553 return pred.casNext(c, p);
554 if (casHead(c, p)) {
555 c.forgetNext();
556 return true;
557 }
558 return false;
559 }
560
561 /*
562 * Possible values for "how" argument in xfer method.
563 */
564 private static final int NOW = 0; // for untimed poll, tryTransfer
565 private static final int ASYNC = 1; // for offer, put, add
566 private static final int SYNC = 2; // for transfer, take
567 private static final int TIMED = 3; // for timed poll, tryTransfer
568
569 /**
570 * Implements all queuing methods. See above for explanation.
571 *
572 * @param e the item or null for take
573 * @param haveData true if this is a put, else a take
574 * @param how NOW, ASYNC, SYNC, or TIMED
575 * @param nanos timeout in nanosecs, used only if mode is TIMED
576 * @return an item if matched, else e
577 * @throws NullPointerException if haveData mode but e is null
578 */
579 private E xfer(E e, boolean haveData, int how, long nanos) {
580 if (haveData && (e == null))
581 throw new NullPointerException();
582
583 restartFromHead: for (;;) {
584 for (Node h = head, p = h; p != null;) { // find & match first node
585 boolean isData = p.isData;
586 Object item = p.item;
587 if ((item != null) == isData) { // unmatched
588 if (isData == haveData) // can't match
589 break;
590 if (p.casItem(item, e)) { // match
591 for (Node q = p; q != h;) {
592 Node n = q.next; // update by 2 unless singleton
593 if (head == h && casHead(h, n == null ? q : n)) {
594 h.forgetNext();
595 break;
596 } // advance and retry
597 if ((h = head) == null ||
598 (q = h.next) == null || !q.isMatched())
599 break; // unless slack < 2
600 }
601 LockSupport.unpark(p.waiter);
602 @SuppressWarnings("unchecked") E itemE = (E) item;
603 return itemE;
604 }
605 }
606 Node n = p.next;
607 p = (p != n) ? n : (h = head); // Use head if p offlist
608 }
609
610 if (how != NOW) { // No matches available
611 Node s = new Node(e);
612 Node pred = tryAppend(s, haveData);
613 if (pred == null)
614 continue restartFromHead; // lost race vs opposite mode
615 if (how != ASYNC)
616 return awaitMatch(s, pred, e, (how == TIMED), nanos);
617 }
618 return e; // not waiting
619 }
620 }
621
622 /**
623 * Tries to append node s as tail.
624 *
625 * @param s the node to append
626 * @param haveData true if appending in data mode
627 * @return null on failure due to losing race with append in
628 * different mode, else s's predecessor, or s itself if no
629 * predecessor
630 */
631 private Node tryAppend(Node s, boolean haveData) {
632 for (Node t = tail, p = t;;) { // move p to last node and append
633 Node n, u; // temps for reads of next & tail
634 if (p == null && (p = head) == null) {
635 if (casHead(null, s))
636 return s; // initialize
637 }
638 else if (p.cannotPrecede(haveData))
639 return null; // lost race vs opposite mode
640 else if ((n = p.next) != null) // not last; keep traversing
641 p = p != t && t != (u = tail) ? (t = u) : // stale tail
642 (p != n) ? n : null; // restart if off list
643 else if (!p.casNext(null, s))
644 p = p.next; // re-read on CAS failure
645 else {
646 if (p != t) { // update if slack now >= 2
647 while ((tail != t || !casTail(t, s)) &&
648 (t = tail) != null &&
649 (s = t.next) != null && // advance and retry
650 (s = s.next) != null && s != t);
651 }
652 return p;
653 }
654 }
655 }
656
657 /**
658 * Spins/yields/blocks until node s is matched or caller gives up.
659 *
660 * @param s the waiting node
661 * @param pred the predecessor of s, or s itself if it has no
662 * predecessor, or null if unknown (the null case does not occur
663 * in any current calls but may in possible future extensions)
664 * @param e the comparison value for checking match
665 * @param timed if true, wait only until timeout elapses
666 * @param nanos timeout in nanosecs, used only if timed is true
667 * @return matched item, or e if unmatched on interrupt or timeout
668 */
669 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
670 final long deadline = timed ? System.nanoTime() + nanos : 0L;
671 Thread w = Thread.currentThread();
672 int spins = -1; // initialized after first item and cancel checks
673 ThreadLocalRandom randomYields = null; // bound if needed
674
675 for (;;) {
676 Object item = s.item;
677 if (item != e) { // matched
678 // assert item != s;
679 s.forgetContents(); // avoid garbage
680 @SuppressWarnings("unchecked") E itemE = (E) item;
681 return itemE;
682 }
683 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
684 // try to cancel and unlink
685 if (s.casItem(e, s.isData ? null : s)) {
686 unsplice(pred, s);
687 return e;
688 }
689 // return normally if lost CAS
690 }
691 else if (spins < 0) { // establish spins at/near front
692 if ((spins = spinsFor(pred, s.isData)) > 0)
693 randomYields = ThreadLocalRandom.current();
694 }
695 else if (spins > 0) { // spin
696 --spins;
697 if (randomYields.nextInt(CHAINED_SPINS) == 0)
698 Thread.yield(); // occasionally yield
699 }
700 else if (s.waiter == null) {
701 s.waiter = w; // request unpark then recheck
702 }
703 else if (timed) {
704 nanos = deadline - System.nanoTime();
705 if (nanos > 0L)
706 LockSupport.parkNanos(this, nanos);
707 }
708 else {
709 LockSupport.park(this);
710 }
711 }
712 }
713
714 /**
715 * Returns spin/yield value for a node with given predecessor and
716 * data mode. See above for explanation.
717 */
718 private static int spinsFor(Node pred, boolean haveData) {
719 if (MP && pred != null) {
720 if (pred.isData != haveData) // phase change
721 return FRONT_SPINS + CHAINED_SPINS;
722 if (pred.isMatched()) // probably at front
723 return FRONT_SPINS;
724 if (pred.waiter == null) // pred apparently spinning
725 return CHAINED_SPINS;
726 }
727 return 0;
728 }
729
730 /* -------------- Traversal methods -------------- */
731
732 /**
733 * Returns the first unmatched data node, or null if none.
734 * Callers must recheck if the returned node is unmatched
735 * before using.
736 */
737 final Node firstDataNode() {
738 restartFromHead: for (;;) {
739 for (Node p = head; p != null;) {
740 Object item = p.item;
741 if (p.isData) {
742 if (item != null)
743 return p;
744 }
745 else if (item == null)
746 break;
747 if (p == (p = p.next))
748 continue restartFromHead;
749 }
750 return null;
751 }
752 }
753
754 /**
755 * Traverses and counts unmatched nodes of the given mode.
756 * Used by methods size and getWaitingConsumerCount.
757 */
758 private int countOfMode(boolean data) {
759 restartFromHead: for (;;) {
760 int count = 0;
761 for (Node p = head; p != null;) {
762 if (!p.isMatched()) {
763 if (p.isData != data)
764 return 0;
765 if (++count == Integer.MAX_VALUE)
766 break; // @see Collection.size()
767 }
768 if (p == (p = p.next))
769 continue restartFromHead;
770 }
771 return count;
772 }
773 }
774
775 public String toString() {
776 String[] a = null;
777 restartFromHead: for (;;) {
778 int charLength = 0;
779 int size = 0;
780 for (Node p = head; p != null;) {
781 Object item = p.item;
782 if (p.isData) {
783 if (item != null) {
784 if (a == null)
785 a = new String[4];
786 else if (size == a.length)
787 a = Arrays.copyOf(a, 2 * size);
788 String s = item.toString();
789 a[size++] = s;
790 charLength += s.length();
791 }
792 } else if (item == null)
793 break;
794 if (p == (p = p.next))
795 continue restartFromHead;
796 }
797
798 if (size == 0)
799 return "[]";
800
801 return Helpers.toString(a, size, charLength);
802 }
803 }
804
805 private Object[] toArrayInternal(Object[] a) {
806 Object[] x = a;
807 restartFromHead: for (;;) {
808 int size = 0;
809 for (Node p = head; p != null;) {
810 Object item = p.item;
811 if (p.isData) {
812 if (item != null) {
813 if (x == null)
814 x = new Object[4];
815 else if (size == x.length)
816 x = Arrays.copyOf(x, 2 * (size + 4));
817 x[size++] = item;
818 }
819 } else if (item == null)
820 break;
821 if (p == (p = p.next))
822 continue restartFromHead;
823 }
824 if (x == null)
825 return new Object[0];
826 else if (a != null && size <= a.length) {
827 if (a != x)
828 System.arraycopy(x, 0, a, 0, size);
829 if (size < a.length)
830 a[size] = null;
831 return a;
832 }
833 return (size == x.length) ? x : Arrays.copyOf(x, size);
834 }
835 }
836
837 /**
838 * Returns an array containing all of the elements in this queue, in
839 * proper sequence.
840 *
841 * <p>The returned array will be "safe" in that no references to it are
842 * maintained by this queue. (In other words, this method must allocate
843 * a new array). The caller is thus free to modify the returned array.
844 *
845 * <p>This method acts as bridge between array-based and collection-based
846 * APIs.
847 *
848 * @return an array containing all of the elements in this queue
849 */
850 public Object[] toArray() {
851 return toArrayInternal(null);
852 }
853
854 /**
855 * Returns an array containing all of the elements in this queue, in
856 * proper sequence; the runtime type of the returned array is that of
857 * the specified array. If the queue fits in the specified array, it
858 * is returned therein. Otherwise, a new array is allocated with the
859 * runtime type of the specified array and the size of this queue.
860 *
861 * <p>If this queue fits in the specified array with room to spare
862 * (i.e., the array has more elements than this queue), the element in
863 * the array immediately following the end of the queue is set to
864 * {@code null}.
865 *
866 * <p>Like the {@link #toArray()} method, this method acts as bridge between
867 * array-based and collection-based APIs. Further, this method allows
868 * precise control over the runtime type of the output array, and may,
869 * under certain circumstances, be used to save allocation costs.
870 *
871 * <p>Suppose {@code x} is a queue known to contain only strings.
872 * The following code can be used to dump the queue into a newly
873 * allocated array of {@code String}:
874 *
875 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
876 *
877 * Note that {@code toArray(new Object[0])} is identical in function to
878 * {@code toArray()}.
879 *
880 * @param a the array into which the elements of the queue are to
881 * be stored, if it is big enough; otherwise, a new array of the
882 * same runtime type is allocated for this purpose
883 * @return an array containing all of the elements in this queue
884 * @throws ArrayStoreException if the runtime type of the specified array
885 * is not a supertype of the runtime type of every element in
886 * this queue
887 * @throws NullPointerException if the specified array is null
888 */
889 @SuppressWarnings("unchecked")
890 public <T> T[] toArray(T[] a) {
891 Objects.requireNonNull(a);
892 return (T[]) toArrayInternal(a);
893 }
894
895 final class Itr implements Iterator<E> {
896 private Node nextNode; // next node to return item for
897 private E nextItem; // the corresponding item
898 private Node lastRet; // last returned node, to support remove
899 private Node lastPred; // predecessor to unlink lastRet
900
901 /**
902 * Moves to next node after prev, or first node if prev null.
903 */
904 private void advance(Node prev) {
905 /*
906 * To track and avoid buildup of deleted nodes in the face
907 * of calls to both Queue.remove and Itr.remove, we must
908 * include variants of unsplice and sweep upon each
909 * advance: Upon Itr.remove, we may need to catch up links
910 * from lastPred, and upon other removes, we might need to
911 * skip ahead from stale nodes and unsplice deleted ones
912 * found while advancing.
913 */
914
915 Node r, b; // reset lastPred upon possible deletion of lastRet
916 if ((r = lastRet) != null && !r.isMatched())
917 lastPred = r; // next lastPred is old lastRet
918 else if ((b = lastPred) == null || b.isMatched())
919 lastPred = null; // at start of list
920 else {
921 Node s, n; // help with removal of lastPred.next
922 while ((s = b.next) != null &&
923 s != b && s.isMatched() &&
924 (n = s.next) != null && n != s)
925 b.casNext(s, n);
926 }
927
928 this.lastRet = prev;
929
930 for (Node p = prev, s, n;;) {
931 s = (p == null) ? head : p.next;
932 if (s == null)
933 break;
934 else if (s == p) {
935 p = null;
936 continue;
937 }
938 Object item = s.item;
939 if (s.isData) {
940 if (item != null) {
941 @SuppressWarnings("unchecked") E itemE = (E) item;
942 nextItem = itemE;
943 nextNode = s;
944 return;
945 }
946 }
947 else if (item == null)
948 break;
949 // assert s.isMatched();
950 if (p == null)
951 p = s;
952 else if ((n = s.next) == null)
953 break;
954 else if (s == n)
955 p = null;
956 else
957 p.casNext(s, n);
958 }
959 nextNode = null;
960 nextItem = null;
961 }
962
963 Itr() {
964 advance(null);
965 }
966
967 public final boolean hasNext() {
968 return nextNode != null;
969 }
970
971 public final E next() {
972 final Node p;
973 if ((p = nextNode) == null) throw new NoSuchElementException();
974 E e = nextItem;
975 advance(p);
976 return e;
977 }
978
979 // Default implementation of forEachRemaining is "good enough".
980
981 public final void remove() {
982 final Node lastRet = this.lastRet;
983 if (lastRet == null)
984 throw new IllegalStateException();
985 this.lastRet = null;
986 if (lastRet.tryMatchData())
987 unsplice(lastPred, lastRet);
988 }
989 }
990
991 /** A customized variant of Spliterators.IteratorSpliterator */
992 final class LTQSpliterator implements Spliterator<E> {
993 static final int MAX_BATCH = 1 << 25; // max batch array size;
994 Node current; // current node; null until initialized
995 int batch; // batch size for splits
996 boolean exhausted; // true when no more nodes
997 LTQSpliterator() {}
998
999 public Spliterator<E> trySplit() {
1000 Node p, q;
1001 if ((p = current()) == null || (q = p.next) == null)
1002 return null;
1003 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1004 Object[] a = null;
1005 do {
1006 final Object item = p.item;
1007 if (p.isData) {
1008 if (item != null)
1009 ((a != null) ? a : (a = new Object[n]))[i++] = item;
1010 } else if (item == null) {
1011 p = null;
1012 break;
1013 }
1014 if (p == (p = q))
1015 p = firstDataNode();
1016 } while (p != null && (q = p.next) != null && i < n);
1017 setCurrent(p);
1018 return (i == 0) ? null :
1019 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1020 Spliterator.NONNULL |
1021 Spliterator.CONCURRENT));
1022 }
1023
1024 public void forEachRemaining(Consumer<? super E> action) {
1025 Objects.requireNonNull(action);
1026 final Node p;
1027 if ((p = current()) != null) {
1028 current = null;
1029 exhausted = true;
1030 forEachFrom(action, p);
1031 }
1032 }
1033
1034 @SuppressWarnings("unchecked")
1035 public boolean tryAdvance(Consumer<? super E> action) {
1036 Objects.requireNonNull(action);
1037 Node p;
1038 if ((p = current()) != null) {
1039 E e = null;
1040 do {
1041 final Object item = p.item;
1042 final boolean isData = p.isData;
1043 if (p == (p = p.next))
1044 p = head;
1045 if (isData) {
1046 if (item != null) {
1047 e = (E) item;
1048 break;
1049 }
1050 }
1051 else if (item == null)
1052 p = null;
1053 } while (p != null);
1054 setCurrent(p);
1055 if (e != null) {
1056 action.accept(e);
1057 return true;
1058 }
1059 }
1060 return false;
1061 }
1062
1063 private void setCurrent(Node p) {
1064 if ((current = p) == null)
1065 exhausted = true;
1066 }
1067
1068 private Node current() {
1069 Node p;
1070 if ((p = current) == null && !exhausted)
1071 setCurrent(p = firstDataNode());
1072 return p;
1073 }
1074
1075 public long estimateSize() { return Long.MAX_VALUE; }
1076
1077 public int characteristics() {
1078 return (Spliterator.ORDERED |
1079 Spliterator.NONNULL |
1080 Spliterator.CONCURRENT);
1081 }
1082 }
1083
1084 /**
1085 * Returns a {@link Spliterator} over the elements in this queue.
1086 *
1087 * <p>The returned spliterator is
1088 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1089 *
1090 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1091 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1092 *
1093 * @implNote
1094 * The {@code Spliterator} implements {@code trySplit} to permit limited
1095 * parallelism.
1096 *
1097 * @return a {@code Spliterator} over the elements in this queue
1098 * @since 1.8
1099 */
1100 public Spliterator<E> spliterator() {
1101 return new LTQSpliterator();
1102 }
1103
1104 /* -------------- Removal methods -------------- */
1105
1106 /**
1107 * Unsplices (now or later) the given deleted/cancelled node with
1108 * the given predecessor.
1109 *
1110 * @param pred a node that was at one time known to be the
1111 * predecessor of s, or null or s itself if s is/was at head
1112 * @param s the node to be unspliced
1113 */
1114 final void unsplice(Node pred, Node s) {
1115 s.waiter = null; // disable signals
1116 /*
1117 * See above for rationale. Briefly: if pred still points to
1118 * s, try to unlink s. If s cannot be unlinked, because it is
1119 * trailing node or pred might be unlinked, and neither pred
1120 * nor s are head or offlist, add to sweepVotes, and if enough
1121 * votes have accumulated, sweep.
1122 */
1123 if (pred != null && pred != s && pred.next == s) {
1124 Node n = s.next;
1125 if (n == null ||
1126 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1127 for (;;) { // check if at, or could be, head
1128 Node h = head;
1129 if (h == pred || h == s || h == null)
1130 return; // at head or list empty
1131 if (!h.isMatched())
1132 break;
1133 Node hn = h.next;
1134 if (hn == null)
1135 return; // now empty
1136 if (hn != h && casHead(h, hn))
1137 h.forgetNext(); // advance head
1138 }
1139 if (pred.next != pred && s.next != s) { // recheck if offlist
1140 for (;;) { // sweep now if enough votes
1141 int v = sweepVotes;
1142 if (v < SWEEP_THRESHOLD) {
1143 if (casSweepVotes(v, v + 1))
1144 break;
1145 }
1146 else if (casSweepVotes(v, 0)) {
1147 sweep();
1148 break;
1149 }
1150 }
1151 }
1152 }
1153 }
1154 }
1155
1156 /**
1157 * Unlinks matched (typically cancelled) nodes encountered in a
1158 * traversal from head.
1159 */
1160 private void sweep() {
1161 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1162 if (!s.isMatched())
1163 // Unmatched nodes are never self-linked
1164 p = s;
1165 else if ((n = s.next) == null) // trailing node is pinned
1166 break;
1167 else if (s == n) // stale
1168 // No need to also check for p == s, since that implies s == n
1169 p = head;
1170 else
1171 p.casNext(s, n);
1172 }
1173 }
1174
1175 /**
1176 * Creates an initially empty {@code LinkedTransferQueue}.
1177 */
1178 public LinkedTransferQueue() {
1179 }
1180
1181 /**
1182 * Creates a {@code LinkedTransferQueue}
1183 * initially containing the elements of the given collection,
1184 * added in traversal order of the collection's iterator.
1185 *
1186 * @param c the collection of elements to initially contain
1187 * @throws NullPointerException if the specified collection or any
1188 * of its elements are null
1189 */
1190 public LinkedTransferQueue(Collection<? extends E> c) {
1191 this();
1192 addAll(c);
1193 }
1194
1195 /**
1196 * Inserts the specified element at the tail of this queue.
1197 * As the queue is unbounded, this method will never block.
1198 *
1199 * @throws NullPointerException if the specified element is null
1200 */
1201 public void put(E e) {
1202 xfer(e, true, ASYNC, 0);
1203 }
1204
1205 /**
1206 * Inserts the specified element at the tail of this queue.
1207 * As the queue is unbounded, this method will never block or
1208 * return {@code false}.
1209 *
1210 * @return {@code true} (as specified by
1211 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1212 * BlockingQueue.offer})
1213 * @throws NullPointerException if the specified element is null
1214 */
1215 public boolean offer(E e, long timeout, TimeUnit unit) {
1216 xfer(e, true, ASYNC, 0);
1217 return true;
1218 }
1219
1220 /**
1221 * Inserts the specified element at the tail of this queue.
1222 * As the queue is unbounded, this method will never return {@code false}.
1223 *
1224 * @return {@code true} (as specified by {@link Queue#offer})
1225 * @throws NullPointerException if the specified element is null
1226 */
1227 public boolean offer(E e) {
1228 xfer(e, true, ASYNC, 0);
1229 return true;
1230 }
1231
1232 /**
1233 * Inserts the specified element at the tail of this queue.
1234 * As the queue is unbounded, this method will never throw
1235 * {@link IllegalStateException} or return {@code false}.
1236 *
1237 * @return {@code true} (as specified by {@link Collection#add})
1238 * @throws NullPointerException if the specified element is null
1239 */
1240 public boolean add(E e) {
1241 xfer(e, true, ASYNC, 0);
1242 return true;
1243 }
1244
1245 /**
1246 * Transfers the element to a waiting consumer immediately, if possible.
1247 *
1248 * <p>More precisely, transfers the specified element immediately
1249 * if there exists a consumer already waiting to receive it (in
1250 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1251 * otherwise returning {@code false} without enqueuing the element.
1252 *
1253 * @throws NullPointerException if the specified element is null
1254 */
1255 public boolean tryTransfer(E e) {
1256 return xfer(e, true, NOW, 0) == null;
1257 }
1258
1259 /**
1260 * Transfers the element to a consumer, waiting if necessary to do so.
1261 *
1262 * <p>More precisely, transfers the specified element immediately
1263 * if there exists a consumer already waiting to receive it (in
1264 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1265 * else inserts the specified element at the tail of this queue
1266 * and waits until the element is received by a consumer.
1267 *
1268 * @throws NullPointerException if the specified element is null
1269 */
1270 public void transfer(E e) throws InterruptedException {
1271 if (xfer(e, true, SYNC, 0) != null) {
1272 Thread.interrupted(); // failure possible only due to interrupt
1273 throw new InterruptedException();
1274 }
1275 }
1276
1277 /**
1278 * Transfers the element to a consumer if it is possible to do so
1279 * before the timeout elapses.
1280 *
1281 * <p>More precisely, transfers the specified element immediately
1282 * if there exists a consumer already waiting to receive it (in
1283 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1284 * else inserts the specified element at the tail of this queue
1285 * and waits until the element is received by a consumer,
1286 * returning {@code false} if the specified wait time elapses
1287 * before the element can be transferred.
1288 *
1289 * @throws NullPointerException if the specified element is null
1290 */
1291 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1292 throws InterruptedException {
1293 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1294 return true;
1295 if (!Thread.interrupted())
1296 return false;
1297 throw new InterruptedException();
1298 }
1299
1300 public E take() throws InterruptedException {
1301 E e = xfer(null, false, SYNC, 0);
1302 if (e != null)
1303 return e;
1304 Thread.interrupted();
1305 throw new InterruptedException();
1306 }
1307
1308 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1309 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1310 if (e != null || !Thread.interrupted())
1311 return e;
1312 throw new InterruptedException();
1313 }
1314
1315 public E poll() {
1316 return xfer(null, false, NOW, 0);
1317 }
1318
1319 /**
1320 * @throws NullPointerException {@inheritDoc}
1321 * @throws IllegalArgumentException {@inheritDoc}
1322 */
1323 public int drainTo(Collection<? super E> c) {
1324 Objects.requireNonNull(c);
1325 if (c == this)
1326 throw new IllegalArgumentException();
1327 int n = 0;
1328 for (E e; (e = poll()) != null; n++)
1329 c.add(e);
1330 return n;
1331 }
1332
1333 /**
1334 * @throws NullPointerException {@inheritDoc}
1335 * @throws IllegalArgumentException {@inheritDoc}
1336 */
1337 public int drainTo(Collection<? super E> c, int maxElements) {
1338 Objects.requireNonNull(c);
1339 if (c == this)
1340 throw new IllegalArgumentException();
1341 int n = 0;
1342 for (E e; n < maxElements && (e = poll()) != null; n++)
1343 c.add(e);
1344 return n;
1345 }
1346
1347 /**
1348 * Returns an iterator over the elements in this queue in proper sequence.
1349 * The elements will be returned in order from first (head) to last (tail).
1350 *
1351 * <p>The returned iterator is
1352 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1353 *
1354 * @return an iterator over the elements in this queue in proper sequence
1355 */
1356 public Iterator<E> iterator() {
1357 return new Itr();
1358 }
1359
1360 public E peek() {
1361 restartFromHead: for (;;) {
1362 for (Node p = head; p != null;) {
1363 Object item = p.item;
1364 if (p.isData) {
1365 if (item != null) {
1366 @SuppressWarnings("unchecked") E e = (E) item;
1367 return e;
1368 }
1369 }
1370 else if (item == null)
1371 break;
1372 if (p == (p = p.next))
1373 continue restartFromHead;
1374 }
1375 return null;
1376 }
1377 }
1378
1379 /**
1380 * Returns {@code true} if this queue contains no elements.
1381 *
1382 * @return {@code true} if this queue contains no elements
1383 */
1384 public boolean isEmpty() {
1385 return firstDataNode() == null;
1386 }
1387
1388 public boolean hasWaitingConsumer() {
1389 restartFromHead: for (;;) {
1390 for (Node p = head; p != null;) {
1391 Object item = p.item;
1392 if (p.isData) {
1393 if (item != null)
1394 break;
1395 }
1396 else if (item == null)
1397 return true;
1398 if (p == (p = p.next))
1399 continue restartFromHead;
1400 }
1401 return false;
1402 }
1403 }
1404
1405 /**
1406 * Returns the number of elements in this queue. If this queue
1407 * contains more than {@code Integer.MAX_VALUE} elements, returns
1408 * {@code Integer.MAX_VALUE}.
1409 *
1410 * <p>Beware that, unlike in most collections, this method is
1411 * <em>NOT</em> a constant-time operation. Because of the
1412 * asynchronous nature of these queues, determining the current
1413 * number of elements requires an O(n) traversal.
1414 *
1415 * @return the number of elements in this queue
1416 */
1417 public int size() {
1418 return countOfMode(true);
1419 }
1420
1421 public int getWaitingConsumerCount() {
1422 return countOfMode(false);
1423 }
1424
1425 /**
1426 * Removes a single instance of the specified element from this queue,
1427 * if it is present. More formally, removes an element {@code e} such
1428 * that {@code o.equals(e)}, if this queue contains one or more such
1429 * elements.
1430 * Returns {@code true} if this queue contained the specified element
1431 * (or equivalently, if this queue changed as a result of the call).
1432 *
1433 * @param o element to be removed from this queue, if present
1434 * @return {@code true} if this queue changed as a result of the call
1435 */
1436 public boolean remove(Object o) {
1437 if (o == null)
1438 return false;
1439 restartFromHead: for (;;) {
1440 for (Node p = head, c = p, pred = null, q; p != null; ) {
1441 final Object item; boolean pAlive;
1442 if (pAlive = (((item = p.item) != null) && p.isData)) {
1443 if (o.equals(item) && p.tryMatchData()) {
1444 if ((q = p.next) == null) q = p;
1445 if (c != q) tryCasSuccessor(pred, c, q);
1446 return true;
1447 }
1448 }
1449 else if (!p.isData && item == null)
1450 break;
1451 if (c != p && tryCasSuccessor(pred, c, p))
1452 c = p;
1453 q = p.next;
1454 if (pAlive || c != p) {
1455 pred = p;
1456 p = c = q;
1457 }
1458 else if (p == (p = q))
1459 continue restartFromHead;
1460 }
1461 return false;
1462 }
1463 }
1464
1465 /**
1466 * Returns {@code true} if this queue contains the specified element.
1467 * More formally, returns {@code true} if and only if this queue contains
1468 * at least one element {@code e} such that {@code o.equals(e)}.
1469 *
1470 * @param o object to be checked for containment in this queue
1471 * @return {@code true} if this queue contains the specified element
1472 */
1473 public boolean contains(Object o) {
1474 if (o == null)
1475 return false;
1476 restartFromHead: for (;;) {
1477 for (Node p = head, c = p, pred = null, q; p != null; ) {
1478 final Object item; final boolean pAlive;
1479 if (pAlive = (((item = p.item) != null) && p.isData)) {
1480 if (o.equals(item))
1481 return true;
1482 }
1483 else if (!p.isData && item == null)
1484 break;
1485 if (c != p && tryCasSuccessor(pred, c, p))
1486 c = p;
1487 q = p.next;
1488 if (pAlive || c != p) {
1489 pred = p;
1490 p = c = q;
1491 }
1492 else if (p == (p = q))
1493 continue restartFromHead;
1494 }
1495 return false;
1496 }
1497 }
1498
1499 /**
1500 * Always returns {@code Integer.MAX_VALUE} because a
1501 * {@code LinkedTransferQueue} is not capacity constrained.
1502 *
1503 * @return {@code Integer.MAX_VALUE} (as specified by
1504 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1505 * BlockingQueue.remainingCapacity})
1506 */
1507 public int remainingCapacity() {
1508 return Integer.MAX_VALUE;
1509 }
1510
1511 /**
1512 * Saves this queue to a stream (that is, serializes it).
1513 *
1514 * @param s the stream
1515 * @throws java.io.IOException if an I/O error occurs
1516 * @serialData All of the elements (each an {@code E}) in
1517 * the proper order, followed by a null
1518 */
1519 private void writeObject(java.io.ObjectOutputStream s)
1520 throws java.io.IOException {
1521 s.defaultWriteObject();
1522 for (E e : this)
1523 s.writeObject(e);
1524 // Use trailing null as sentinel
1525 s.writeObject(null);
1526 }
1527
1528 /**
1529 * Reconstitutes this queue from a stream (that is, deserializes it).
1530 * @param s the stream
1531 * @throws ClassNotFoundException if the class of a serialized object
1532 * could not be found
1533 * @throws java.io.IOException if an I/O error occurs
1534 */
1535 private void readObject(java.io.ObjectInputStream s)
1536 throws java.io.IOException, ClassNotFoundException {
1537 s.defaultReadObject();
1538 for (;;) {
1539 @SuppressWarnings("unchecked")
1540 E item = (E) s.readObject();
1541 if (item == null)
1542 break;
1543 else
1544 offer(item);
1545 }
1546 }
1547
1548 /**
1549 * @throws NullPointerException {@inheritDoc}
1550 */
1551 public boolean removeIf(Predicate<? super E> filter) {
1552 Objects.requireNonNull(filter);
1553 return bulkRemove(filter);
1554 }
1555
1556 /**
1557 * @throws NullPointerException {@inheritDoc}
1558 */
1559 public boolean removeAll(Collection<?> c) {
1560 Objects.requireNonNull(c);
1561 return bulkRemove(e -> c.contains(e));
1562 }
1563
1564 /**
1565 * @throws NullPointerException {@inheritDoc}
1566 */
1567 public boolean retainAll(Collection<?> c) {
1568 Objects.requireNonNull(c);
1569 return bulkRemove(e -> !c.contains(e));
1570 }
1571
1572 public void clear() {
1573 bulkRemove(e -> true);
1574 }
1575
1576 /**
1577 * Tolerate this many consecutive dead nodes before CAS-collapsing.
1578 * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1579 */
1580 private static final int MAX_HOPS = 8;
1581
1582 /** Implementation of bulk remove methods. */
1583 @SuppressWarnings("unchecked")
1584 private boolean bulkRemove(Predicate<? super E> filter) {
1585 boolean removed = false;
1586 restartFromHead: for (;;) {
1587 int hops = MAX_HOPS;
1588 // c will be CASed to collapse intervening dead nodes between
1589 // pred (or head if null) and p.
1590 for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1591 final Object item; boolean pAlive;
1592 if (pAlive = (((item = p.item) != null) && p.isData)) {
1593 if (filter.test((E) item)) {
1594 if (p.tryMatchData())
1595 removed = true;
1596 pAlive = false;
1597 }
1598 }
1599 else if (!p.isData && item == null)
1600 break;
1601 if ((q = p.next) == null || pAlive || --hops == 0) {
1602 // p might already be self-linked here, but if so:
1603 // - CASing head will surely fail
1604 // - CASing pred's next will be useless but harmless.
1605 if (c != p && tryCasSuccessor(pred, c, p))
1606 c = p;
1607 // if c != p, CAS failed, so abandon old pred
1608 if (pAlive || c != p) {
1609 hops = MAX_HOPS;
1610 pred = p;
1611 c = q;
1612 }
1613 } else if (p == q)
1614 continue restartFromHead;
1615 }
1616 return removed;
1617 }
1618 }
1619
1620 /**
1621 * Runs action on each element found during a traversal starting at p.
1622 * If p is null, the action is not run.
1623 */
1624 @SuppressWarnings("unchecked")
1625 void forEachFrom(Consumer<? super E> action, Node p) {
1626 for (Node c = p, pred = null, q; p != null; ) {
1627 final Object item; final boolean pAlive;
1628 if (pAlive = (((item = p.item) != null) && p.isData))
1629 action.accept((E) item);
1630 else if (!p.isData && item == null)
1631 break;
1632 if (c != p && tryCasSuccessor(pred, c, p))
1633 c = p;
1634 q = p.next;
1635 if (pAlive || c != p) {
1636 pred = p;
1637 p = c = q;
1638 }
1639 else if (p == (p = q)) {
1640 pred = null;
1641 c = p = head;
1642 }
1643 }
1644 }
1645
1646 /**
1647 * @throws NullPointerException {@inheritDoc}
1648 */
1649 public void forEach(Consumer<? super E> action) {
1650 Objects.requireNonNull(action);
1651 forEachFrom(action, head);
1652 }
1653
1654 // VarHandle mechanics
1655 private static final VarHandle HEAD;
1656 private static final VarHandle TAIL;
1657 private static final VarHandle SWEEPVOTES;
1658 static {
1659 try {
1660 MethodHandles.Lookup l = MethodHandles.lookup();
1661 HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1662 Node.class);
1663 TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1664 Node.class);
1665 SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1666 int.class);
1667 } catch (ReflectiveOperationException e) {
1668 throw new Error(e);
1669 }
1670
1671 // Reduce the risk of rare disastrous classloading in first call to
1672 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1673 Class<?> ensureLoaded = LockSupport.class;
1674 }
1675 }