ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.13
Committed: Fri Oct 30 18:35:22 2009 UTC (14 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +21 -14 lines
Log Message:
sync with jsr166y package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.ConcurrentModificationException;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15 import java.util.concurrent.locks.LockSupport;
16 /**
17 * An unbounded {@link TransferQueue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out) with respect
19 * to any given producer. The <em>head</em> of the queue is that
20 * element that has been on the queue the longest time for some
21 * producer. The <em>tail</em> of the queue is that element that has
22 * been on the queue the shortest time for some producer.
23 *
24 * <p>Beware that, unlike in most collections, the {@code size}
25 * method is <em>NOT</em> a constant-time operation. Because of the
26 * asynchronous nature of these queues, determining the current number
27 * of elements requires a traversal of the elements.
28 *
29 * <p>This class and its iterator implement all of the
30 * <em>optional</em> methods of the {@link Collection} and {@link
31 * Iterator} interfaces.
32 *
33 * <p>Memory consistency effects: As with other concurrent
34 * collections, actions in a thread prior to placing an object into a
35 * {@code LinkedTransferQueue}
36 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37 * actions subsequent to the access or removal of that element from
38 * the {@code LinkedTransferQueue} in another thread.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.7
45 * @author Doug Lea
46 * @param <E> the type of elements held in this collection
47 */
48 public class LinkedTransferQueue<E> extends AbstractQueue<E>
49 implements TransferQueue<E>, java.io.Serializable {
50 private static final long serialVersionUID = -3223113410248163686L;
51
52 /*
53 * *** Overview of Dual Queues with Slack ***
54 *
55 * Dual Queues, introduced by Scherer and Scott
56 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57 * (linked) queues in which nodes may represent either data or
58 * requests. When a thread tries to enqueue a data node, but
59 * encounters a request node, it instead "matches" and removes it;
60 * and vice versa for enqueuing requests. Blocking Dual Queues
61 * arrange that threads enqueuing unmatched requests block until
62 * other threads provide the match. Dual Synchronous Queues (see
63 * Scherer, Lea, & Scott
64 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65 * additionally arrange that threads enqueuing unmatched data also
66 * block. Dual Transfer Queues support all of these modes, as
67 * dictated by callers.
68 *
69 * A FIFO dual queue may be implemented using a variation of the
70 * Michael & Scott (M&S) lock-free queue algorithm
71 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72 * It maintains two pointer fields, "head", pointing to a
73 * (matched) node that in turn points to the first actual
74 * (unmatched) queue node (or null if empty); and "tail" that
75 * points to the last node on the queue (or again null if
76 * empty). For example, here is a possible queue with four data
77 * elements:
78 *
79 * head tail
80 * | |
81 * v v
82 * M -> U -> U -> U -> U
83 *
84 * The M&S queue algorithm is known to be prone to scalability and
85 * overhead limitations when maintaining (via CAS) these head and
86 * tail pointers. This has led to the development of
87 * contention-reducing variants such as elimination arrays (see
88 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89 * optimistic back pointers (see Ladan-Mozes & Shavit
90 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91 * However, the nature of dual queues enables a simpler tactic for
92 * improving M&S-style implementations when dual-ness is needed.
93 *
94 * In a dual queue, each node must atomically maintain its match
95 * status. While there are other possible variants, we implement
96 * this here as: for a data-mode node, matching entails CASing an
97 * "item" field from a non-null data value to null upon match, and
98 * vice-versa for request nodes, CASing from null to a data
99 * value. (Note that the linearization properties of this style of
100 * queue are easy to verify -- elements are made available by
101 * linking, and unavailable by matching.) Compared to plain M&S
102 * queues, this property of dual queues requires one additional
103 * successful atomic operation per enq/deq pair. But it also
104 * enables lower cost variants of queue maintenance mechanics. (A
105 * variation of this idea applies even for non-dual queues that
106 * support deletion of interior elements, such as
107 * j.u.c.ConcurrentLinkedQueue.)
108 *
109 * Once a node is matched, its match status can never again
110 * change. We may thus arrange that the linked list of them
111 * contain a prefix of zero or more matched nodes, followed by a
112 * suffix of zero or more unmatched nodes. (Note that we allow
113 * both the prefix and suffix to be zero length, which in turn
114 * means that we do not use a dummy header.) If we were not
115 * concerned with either time or space efficiency, we could
116 * correctly perform enqueue and dequeue operations by traversing
117 * from a pointer to the initial node; CASing the item of the
118 * first unmatched node on match and CASing the next field of the
119 * trailing node on appends. (Plus some special-casing when
120 * initially empty). While this would be a terrible idea in
121 * itself, it does have the benefit of not requiring ANY atomic
122 * updates on head/tail fields.
123 *
124 * We introduce here an approach that lies between the extremes of
125 * never versus always updating queue (head and tail) pointers.
126 * This offers a tradeoff between sometimes requiring extra
127 * traversal steps to locate the first and/or last unmatched
128 * nodes, versus the reduced overhead and contention of fewer
129 * updates to queue pointers. For example, a possible snapshot of
130 * a queue is:
131 *
132 * head tail
133 * | |
134 * v v
135 * M -> M -> U -> U -> U -> U
136 *
137 * The best value for this "slack" (the targeted maximum distance
138 * between the value of "head" and the first unmatched node, and
139 * similarly for "tail") is an empirical matter. We have found
140 * that using very small constants in the range of 1-3 work best
141 * over a range of platforms. Larger values introduce increasing
142 * costs of cache misses and risks of long traversal chains, while
143 * smaller values increase CAS contention and overhead.
144 *
145 * Dual queues with slack differ from plain M&S dual queues by
146 * virtue of only sometimes updating head or tail pointers when
147 * matching, appending, or even traversing nodes; in order to
148 * maintain a targeted slack. The idea of "sometimes" may be
149 * operationalized in several ways. The simplest is to use a
150 * per-operation counter incremented on each traversal step, and
151 * to try (via CAS) to update the associated queue pointer
152 * whenever the count exceeds a threshold. Another, that requires
153 * more overhead, is to use random number generators to update
154 * with a given probability per traversal step.
155 *
156 * In any strategy along these lines, because CASes updating
157 * fields may fail, the actual slack may exceed targeted
158 * slack. However, they may be retried at any time to maintain
159 * targets. Even when using very small slack values, this
160 * approach works well for dual queues because it allows all
161 * operations up to the point of matching or appending an item
162 * (hence potentially allowing progress by another thread) to be
163 * read-only, thus not introducing any further contention. As
164 * described below, we implement this by performing slack
165 * maintenance retries only after these points.
166 *
167 * As an accompaniment to such techniques, traversal overhead can
168 * be further reduced without increasing contention of head
169 * pointer updates: Threads may sometimes shortcut the "next" link
170 * path from the current "head" node to be closer to the currently
171 * known first unmatched node, and similarly for tail. Again, this
172 * may be triggered with using thresholds or randomization.
173 *
174 * These ideas must be further extended to avoid unbounded amounts
175 * of costly-to-reclaim garbage caused by the sequential "next"
176 * links of nodes starting at old forgotten head nodes: As first
177 * described in detail by Boehm
178 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179 * delays noticing that any arbitrarily old node has become
180 * garbage, all newer dead nodes will also be unreclaimed.
181 * (Similar issues arise in non-GC environments.) To cope with
182 * this in our implementation, upon CASing to advance the head
183 * pointer, we set the "next" link of the previous head to point
184 * only to itself; thus limiting the length of connected dead lists.
185 * (We also take similar care to wipe out possibly garbage
186 * retaining values held in other Node fields.) However, doing so
187 * adds some further complexity to traversal: If any "next"
188 * pointer links to itself, it indicates that the current thread
189 * has lagged behind a head-update, and so the traversal must
190 * continue from the "head". Traversals trying to find the
191 * current tail starting from "tail" may also encounter
192 * self-links, in which case they also continue at "head".
193 *
194 * It is tempting in slack-based scheme to not even use CAS for
195 * updates (similarly to Ladan-Mozes & Shavit). However, this
196 * cannot be done for head updates under the above link-forgetting
197 * mechanics because an update may leave head at a detached node.
198 * And while direct writes are possible for tail updates, they
199 * increase the risk of long retraversals, and hence long garbage
200 * chains, which can be much more costly than is worthwhile
201 * considering that the cost difference of performing a CAS vs
202 * write is smaller when they are not triggered on each operation
203 * (especially considering that writes and CASes equally require
204 * additional GC bookkeeping ("write barriers") that are sometimes
205 * more costly than the writes themselves because of contention).
206 *
207 * Removal of interior nodes (due to timed out or interrupted
208 * waits, or calls to remove(x) or Iterator.remove) can use a
209 * scheme roughly similar to that described in Scherer, Lea, and
210 * Scott's SynchronousQueue. Given a predecessor, we can unsplice
211 * any node except the (actual) tail of the queue. To avoid
212 * build-up of cancelled trailing nodes, upon a request to remove
213 * a trailing node, it is placed in field "cleanMe" to be
214 * unspliced upon the next call to unsplice any other node.
215 * Situations needing such mechanics are not common but do occur
216 * in practice; for example when an unbounded series of short
217 * timed calls to poll repeatedly time out but never otherwise
218 * fall off the list because of an untimed call to take at the
219 * front of the queue. Note that maintaining field cleanMe does
220 * not otherwise much impact garbage retention even if never
221 * cleared by some other call because the held node will
222 * eventually either directly or indirectly lead to a self-link
223 * once off the list.
224 *
225 * *** Overview of implementation ***
226 *
227 * We use a threshold-based approach to updates, with a slack
228 * threshold of two -- that is, we update head/tail when the
229 * current pointer appears to be two or more steps away from the
230 * first/last node. The slack value is hard-wired: a path greater
231 * than one is naturally implemented by checking equality of
232 * traversal pointers except when the list has only one element,
233 * in which case we keep slack threshold at one. Avoiding tracking
234 * explicit counts across method calls slightly simplifies an
235 * already-messy implementation. Using randomization would
236 * probably work better if there were a low-quality dirt-cheap
237 * per-thread one available, but even ThreadLocalRandom is too
238 * heavy for these purposes.
239 *
240 * With such a small slack threshold value, it is rarely
241 * worthwhile to augment this with path short-circuiting; i.e.,
242 * unsplicing nodes between head and the first unmatched node, or
243 * similarly for tail, rather than advancing head or tail
244 * proper. However, it is used (in awaitMatch) immediately before
245 * a waiting thread starts to block, as a final bit of helping at
246 * a point when contention with others is extremely unlikely
247 * (since if other threads that could release it are operating,
248 * then the current thread wouldn't be blocking).
249 *
250 * We allow both the head and tail fields to be null before any
251 * nodes are enqueued; initializing upon first append. This
252 * simplifies some other logic, as well as providing more
253 * efficient explicit control paths instead of letting JVMs insert
254 * implicit NullPointerExceptions when they are null. While not
255 * currently fully implemented, we also leave open the possibility
256 * of re-nulling these fields when empty (which is complicated to
257 * arrange, for little benefit.)
258 *
259 * All enqueue/dequeue operations are handled by the single method
260 * "xfer" with parameters indicating whether to act as some form
261 * of offer, put, poll, take, or transfer (each possibly with
262 * timeout). The relative complexity of using one monolithic
263 * method outweighs the code bulk and maintenance problems of
264 * using separate methods for each case.
265 *
266 * Operation consists of up to three phases. The first is
267 * implemented within method xfer, the second in tryAppend, and
268 * the third in method awaitMatch.
269 *
270 * 1. Try to match an existing node
271 *
272 * Starting at head, skip already-matched nodes until finding
273 * an unmatched node of opposite mode, if one exists, in which
274 * case matching it and returning, also if necessary updating
275 * head to one past the matched node (or the node itself if the
276 * list has no other unmatched nodes). If the CAS misses, then
277 * a loop retries advancing head by two steps until either
278 * success or the slack is at most two. By requiring that each
279 * attempt advances head by two (if applicable), we ensure that
280 * the slack does not grow without bound. Traversals also check
281 * if the initial head is now off-list, in which case they
282 * start at the new head.
283 *
284 * If no candidates are found and the call was untimed
285 * poll/offer, (argument "how" is NOW) return.
286 *
287 * 2. Try to append a new node (method tryAppend)
288 *
289 * Starting at current tail pointer, find the actual last node
290 * and try to append a new node (or if head was null, establish
291 * the first node). Nodes can be appended only if their
292 * predecessors are either already matched or are of the same
293 * mode. If we detect otherwise, then a new node with opposite
294 * mode must have been appended during traversal, so we must
295 * restart at phase 1. The traversal and update steps are
296 * otherwise similar to phase 1: Retrying upon CAS misses and
297 * checking for staleness. In particular, if a self-link is
298 * encountered, then we can safely jump to a node on the list
299 * by continuing the traversal at current head.
300 *
301 * On successful append, if the call was ASYNC, return.
302 *
303 * 3. Await match or cancellation (method awaitMatch)
304 *
305 * Wait for another thread to match node; instead cancelling if
306 * the current thread was interrupted or the wait timed out. On
307 * multiprocessors, we use front-of-queue spinning: If a node
308 * appears to be the first unmatched node in the queue, it
309 * spins a bit before blocking. In either case, before blocking
310 * it tries to unsplice any nodes between the current "head"
311 * and the first unmatched node.
312 *
313 * Front-of-queue spinning vastly improves performance of
314 * heavily contended queues. And so long as it is relatively
315 * brief and "quiet", spinning does not much impact performance
316 * of less-contended queues. During spins threads check their
317 * interrupt status and generate a thread-local random number
318 * to decide to occasionally perform a Thread.yield. While
319 * yield has underdefined specs, we assume that might it help,
320 * and will not hurt in limiting impact of spinning on busy
321 * systems. We also use smaller (1/2) spins for nodes that are
322 * not known to be front but whose predecessors have not
323 * blocked -- these "chained" spins avoid artifacts of
324 * front-of-queue rules which otherwise lead to alternating
325 * nodes spinning vs blocking. Further, front threads that
326 * represent phase changes (from data to request node or vice
327 * versa) compared to their predecessors receive additional
328 * chained spins, reflecting longer paths typically required to
329 * unblock threads during phase changes.
330 */
331
332 /** True if on multiprocessor */
333 private static final boolean MP =
334 Runtime.getRuntime().availableProcessors() > 1;
335
336 /**
337 * The number of times to spin (with randomly interspersed calls
338 * to Thread.yield) on multiprocessor before blocking when a node
339 * is apparently the first waiter in the queue. See above for
340 * explanation. Must be a power of two. The value is empirically
341 * derived -- it works pretty well across a variety of processors,
342 * numbers of CPUs, and OSes.
343 */
344 private static final int FRONT_SPINS = 1 << 7;
345
346 /**
347 * The number of times to spin before blocking when a node is
348 * preceded by another node that is apparently spinning. Also
349 * serves as an increment to FRONT_SPINS on phase changes, and as
350 * base average frequency for yielding during spins. Must be a
351 * power of two.
352 */
353 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
354
355 /**
356 * Queue nodes. Uses Object, not E, for items to allow forgetting
357 * them after use. Relies heavily on Unsafe mechanics to minimize
358 * unnecessary ordering constraints: Writes that intrinsically
359 * precede or follow CASes use simple relaxed forms. Other
360 * cleanups use releasing/lazy writes.
361 */
362 static final class Node<E> {
363 final boolean isData; // false if this is a request node
364 volatile Object item; // initially non-null if isData; CASed to match
365 volatile Node<E> next;
366 volatile Thread waiter; // null until waiting
367
368 // CAS methods for fields
369 final boolean casNext(Node<E> cmp, Node<E> val) {
370 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
371 }
372
373 final boolean casItem(Object cmp, Object val) {
374 assert cmp == null || cmp.getClass() != Node.class;
375 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
376 }
377
378 /**
379 * Creates a new node. Uses relaxed write because item can only
380 * be seen if followed by CAS.
381 */
382 Node(E item, boolean isData) {
383 UNSAFE.putObject(this, itemOffset, item); // relaxed write
384 this.isData = isData;
385 }
386
387 /**
388 * Links node to itself to avoid garbage retention. Called
389 * only after CASing head field, so uses relaxed write.
390 */
391 final void forgetNext() {
392 UNSAFE.putObject(this, nextOffset, this);
393 }
394
395 /**
396 * Sets item to self (using a releasing/lazy write) and waiter
397 * to null, to avoid garbage retention after extracting or
398 * cancelling.
399 */
400 final void forgetContents() {
401 UNSAFE.putOrderedObject(this, itemOffset, this);
402 UNSAFE.putOrderedObject(this, waiterOffset, null);
403 }
404
405 /**
406 * Returns true if this node has been matched, including the
407 * case of artificial matches due to cancellation.
408 */
409 final boolean isMatched() {
410 Object x = item;
411 return (x == this) || ((x == null) == isData);
412 }
413
414 /**
415 * Returns true if this is an unmatched request node.
416 */
417 final boolean isUnmatchedRequest() {
418 return !isData && item == null;
419 }
420
421 /**
422 * Returns true if a node with the given mode cannot be
423 * appended to this node because this node is unmatched and
424 * has opposite data mode.
425 */
426 final boolean cannotPrecede(boolean haveData) {
427 boolean d = isData;
428 Object x;
429 return d != haveData && (x = item) != this && (x != null) == d;
430 }
431
432 /**
433 * Tries to artificially match a data node -- used by remove.
434 */
435 final boolean tryMatchData() {
436 assert isData;
437 Object x = item;
438 if (x != null && x != this && casItem(x, null)) {
439 LockSupport.unpark(waiter);
440 return true;
441 }
442 return false;
443 }
444
445 // Unsafe mechanics
446 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
447 private static final long nextOffset =
448 objectFieldOffset(UNSAFE, "next", Node.class);
449 private static final long itemOffset =
450 objectFieldOffset(UNSAFE, "item", Node.class);
451 private static final long waiterOffset =
452 objectFieldOffset(UNSAFE, "waiter", Node.class);
453
454 private static final long serialVersionUID = -3375979862319811754L;
455 }
456
457 /** head of the queue; null until first enqueue */
458 transient volatile Node<E> head;
459
460 /** predecessor of dangling unspliceable node */
461 private transient volatile Node<E> cleanMe; // decl here reduces contention
462
463 /** tail of the queue; null until first append */
464 private transient volatile Node<E> tail;
465
466 // CAS methods for fields
467 private boolean casTail(Node<E> cmp, Node<E> val) {
468 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
469 }
470
471 private boolean casHead(Node<E> cmp, Node<E> val) {
472 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
473 }
474
475 private boolean casCleanMe(Node<E> cmp, Node<E> val) {
476 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
477 }
478
479 /*
480 * Possible values for "how" argument in xfer method. Beware that
481 * the order of assigned numerical values matters.
482 */
483 private static final int NOW = 0; // for untimed poll, tryTransfer
484 private static final int ASYNC = 1; // for offer, put, add
485 private static final int SYNC = 2; // for transfer, take
486 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
487
488 @SuppressWarnings("unchecked")
489 static <E> E cast(Object item) {
490 assert item == null || item.getClass() != Node.class;
491 return (E) item;
492 }
493
494 /**
495 * Implements all queuing methods. See above for explanation.
496 *
497 * @param e the item or null for take
498 * @param haveData true if this is a put, else a take
499 * @param how NOW, ASYNC, SYNC, or TIMEOUT
500 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
501 * @return an item if matched, else e
502 * @throws NullPointerException if haveData mode but e is null
503 */
504 private E xfer(E e, boolean haveData, int how, long nanos) {
505 if (haveData && (e == null))
506 throw new NullPointerException();
507 Node<E> s = null; // the node to append, if needed
508
509 retry: for (;;) { // restart on append race
510
511 for (Node<E> h = head, p = h; p != null;) {
512 // find & match first node
513 boolean isData = p.isData;
514 Object item = p.item;
515 if (item != p && (item != null) == isData) { // unmatched
516 if (isData == haveData) // can't match
517 break;
518 if (p.casItem(item, e)) { // match
519 for (Node<E> q = p; q != h;) {
520 Node<E> n = q.next; // update head by 2
521 if (n != null) // unless singleton
522 q = n;
523 if (head == h && casHead(h, q)) {
524 h.forgetNext();
525 break;
526 } // advance and retry
527 if ((h = head) == null ||
528 (q = h.next) == null || !q.isMatched())
529 break; // unless slack < 2
530 }
531 LockSupport.unpark(p.waiter);
532 return this.<E>cast(item);
533 }
534 }
535 Node<E> n = p.next;
536 p = (p != n) ? n : (h = head); // Use head if p offlist
537 }
538
539 if (how >= ASYNC) { // No matches available
540 if (s == null)
541 s = new Node<E>(e, haveData);
542 Node<E> pred = tryAppend(s, haveData);
543 if (pred == null)
544 continue retry; // lost race vs opposite mode
545 if (how >= SYNC)
546 return awaitMatch(s, pred, e, how, nanos);
547 }
548 return e; // not waiting
549 }
550 }
551
552 /**
553 * Tries to append node s as tail.
554 *
555 * @param s the node to append
556 * @param haveData true if appending in data mode
557 * @return null on failure due to losing race with append in
558 * different mode, else s's predecessor, or s itself if no
559 * predecessor
560 */
561 private Node<E> tryAppend(Node<E> s, boolean haveData) {
562 for (Node<E> t = tail, p = t;;) { // move p to last node and append
563 Node<E> n, u; // temps for reads of next & tail
564 if (p == null && (p = head) == null) {
565 if (casHead(null, s))
566 return s; // initialize
567 }
568 else if (p.cannotPrecede(haveData))
569 return null; // lost race vs opposite mode
570 else if ((n = p.next) != null) // not last; keep traversing
571 p = p != t && t != (u = tail) ? (t = u) : // stale tail
572 (p != n) ? n : null; // restart if off list
573 else if (!p.casNext(null, s))
574 p = p.next; // re-read on CAS failure
575 else {
576 if (p != t) { // update if slack now >= 2
577 while ((tail != t || !casTail(t, s)) &&
578 (t = tail) != null &&
579 (s = t.next) != null && // advance and retry
580 (s = s.next) != null && s != t);
581 }
582 return p;
583 }
584 }
585 }
586
587 /**
588 * Spins/yields/blocks until node s is matched or caller gives up.
589 *
590 * @param s the waiting node
591 * @param pred the predecessor of s, or s itself if it has no
592 * predecessor, or null if unknown (the null case does not occur
593 * in any current calls but may in possible future extensions)
594 * @param e the comparison value for checking match
595 * @param how either SYNC or TIMEOUT
596 * @param nanos timeout value
597 * @return matched item, or e if unmatched on interrupt or timeout
598 */
599 private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
600 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
601 Thread w = Thread.currentThread();
602 int spins = -1; // initialized after first item and cancel checks
603 ThreadLocalRandom randomYields = null; // bound if needed
604
605 for (;;) {
606 Object item = s.item;
607 if (item != e) { // matched
608 assert item != s;
609 s.forgetContents(); // avoid garbage
610 return this.<E>cast(item);
611 }
612 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
613 s.casItem(e, s)) { // cancel
614 unsplice(pred, s);
615 return e;
616 }
617
618 if (spins < 0) { // establish spins at/near front
619 if ((spins = spinsFor(pred, s.isData)) > 0)
620 randomYields = ThreadLocalRandom.current();
621 }
622 else if (spins > 0) { // spin
623 if (--spins == 0)
624 shortenHeadPath(); // reduce slack before blocking
625 else if (randomYields.nextInt(CHAINED_SPINS) == 0)
626 Thread.yield(); // occasionally yield
627 }
628 else if (s.waiter == null) {
629 s.waiter = w; // request unpark then recheck
630 }
631 else if (how == TIMEOUT) {
632 long now = System.nanoTime();
633 if ((nanos -= now - lastTime) > 0)
634 LockSupport.parkNanos(this, nanos);
635 lastTime = now;
636 }
637 else {
638 LockSupport.park(this);
639 s.waiter = null;
640 spins = -1; // spin if front upon wakeup
641 }
642 }
643 }
644
645 /**
646 * Returns spin/yield value for a node with given predecessor and
647 * data mode. See above for explanation.
648 */
649 private static int spinsFor(Node<?> pred, boolean haveData) {
650 if (MP && pred != null) {
651 if (pred.isData != haveData) // phase change
652 return FRONT_SPINS + CHAINED_SPINS;
653 if (pred.isMatched()) // probably at front
654 return FRONT_SPINS;
655 if (pred.waiter == null) // pred apparently spinning
656 return CHAINED_SPINS;
657 }
658 return 0;
659 }
660
661 /**
662 * Tries (once) to unsplice nodes between head and first unmatched
663 * or trailing node; failing on contention.
664 */
665 private void shortenHeadPath() {
666 Node<E> h, hn, p, q;
667 if ((p = h = head) != null && h.isMatched() &&
668 (q = hn = h.next) != null) {
669 Node<E> n;
670 while ((n = q.next) != q) {
671 if (n == null || !q.isMatched()) {
672 if (hn != q && h.next == hn)
673 h.casNext(hn, q);
674 break;
675 }
676 p = q;
677 q = n;
678 }
679 }
680 }
681
682 /* -------------- Traversal methods -------------- */
683
684 /**
685 * Returns the first unmatched node of the given mode, or null if
686 * none. Used by methods isEmpty, hasWaitingConsumer.
687 */
688 private Node<E> firstOfMode(boolean data) {
689 for (Node<E> p = head; p != null; ) {
690 if (!p.isMatched())
691 return (p.isData == data) ? p : null;
692 Node<E> n = p.next;
693 p = (n != p) ? n : head;
694 }
695 return null;
696 }
697
698 /**
699 * Returns the item in the first unmatched node with isData; or
700 * null if none. Used by peek.
701 */
702 private E firstDataItem() {
703 for (Node<E> p = head; p != null; ) {
704 boolean isData = p.isData;
705 Object item = p.item;
706 if (item != p && (item != null) == isData)
707 return isData ? this.<E>cast(item) : null;
708 Node<E> n = p.next;
709 p = (n != p) ? n : head;
710 }
711 return null;
712 }
713
714 /**
715 * Traverses and counts unmatched nodes of the given mode.
716 * Used by methods size and getWaitingConsumerCount.
717 */
718 private int countOfMode(boolean data) {
719 int count = 0;
720 for (Node<E> p = head; p != null; ) {
721 if (!p.isMatched()) {
722 if (p.isData != data)
723 return 0;
724 if (++count == Integer.MAX_VALUE) // saturated
725 break;
726 }
727 Node<E> n = p.next;
728 if (n != p)
729 p = n;
730 else {
731 count = 0;
732 p = head;
733 }
734 }
735 return count;
736 }
737
738 final class Itr implements Iterator<E> {
739 private Node<E> nextNode; // next node to return item for
740 private E nextItem; // the corresponding item
741 private Node<E> lastRet; // last returned node, to support remove
742 private Node<E> lastPred; // predecessor to unlink lastRet
743
744 /**
745 * Moves to next node after prev, or first node if prev null.
746 */
747 private void advance(Node<E> prev) {
748 lastPred = lastRet;
749 lastRet = prev;
750 Node<E> p;
751 if (prev == null || (p = prev.next) == prev)
752 p = head;
753 while (p != null) {
754 Object item = p.item;
755 if (p.isData) {
756 if (item != null && item != p) {
757 nextItem = LinkedTransferQueue.this.<E>cast(item);
758 nextNode = p;
759 return;
760 }
761 }
762 else if (item == null)
763 break;
764 Node<E> n = p.next;
765 p = (n != p) ? n : head;
766 }
767 nextNode = null;
768 }
769
770 Itr() {
771 advance(null);
772 }
773
774 public final boolean hasNext() {
775 return nextNode != null;
776 }
777
778 public final E next() {
779 Node<E> p = nextNode;
780 if (p == null) throw new NoSuchElementException();
781 E e = nextItem;
782 advance(p);
783 return e;
784 }
785
786 public final void remove() {
787 Node<E> p = lastRet;
788 if (p == null) throw new IllegalStateException();
789 findAndRemoveDataNode(lastPred, p);
790 }
791 }
792
793 /* -------------- Removal methods -------------- */
794
795 /**
796 * Unsplices (now or later) the given deleted/cancelled node with
797 * the given predecessor.
798 *
799 * @param pred predecessor of node to be unspliced
800 * @param s the node to be unspliced
801 */
802 private void unsplice(Node<E> pred, Node<E> s) {
803 s.forgetContents(); // clear unneeded fields
804 /*
805 * At any given time, exactly one node on list cannot be
806 * unlinked -- the last inserted node. To accommodate this, if
807 * we cannot unlink s, we save its predecessor as "cleanMe",
808 * processing the previously saved version first. Because only
809 * one node in the list can have a null next, at least one of
810 * node s or the node previously saved can always be
811 * processed, so this always terminates.
812 */
813 if (pred != null && pred != s) {
814 while (pred.next == s) {
815 Node<E> oldpred = (cleanMe == null) ? null : reclean();
816 Node<E> n = s.next;
817 if (n != null) {
818 if (n != s)
819 pred.casNext(s, n);
820 break;
821 }
822 if (oldpred == pred || // Already saved
823 ((oldpred == null || oldpred.next == s) &&
824 casCleanMe(oldpred, pred))) {
825 break;
826 }
827 }
828 }
829 }
830
831 /**
832 * Tries to unsplice the deleted/cancelled node held in cleanMe
833 * that was previously uncleanable because it was at tail.
834 *
835 * @return current cleanMe node (or null)
836 */
837 private Node<E> reclean() {
838 /*
839 * cleanMe is, or at one time was, predecessor of a cancelled
840 * node s that was the tail so could not be unspliced. If it
841 * is no longer the tail, try to unsplice if necessary and
842 * make cleanMe slot available. This differs from similar
843 * code in unsplice() because we must check that pred still
844 * points to a matched node that can be unspliced -- if not,
845 * we can (must) clear cleanMe without unsplicing. This can
846 * loop only due to contention.
847 */
848 Node<E> pred;
849 while ((pred = cleanMe) != null) {
850 Node<E> s = pred.next;
851 Node<E> n;
852 if (s == null || s == pred || !s.isMatched())
853 casCleanMe(pred, null); // already gone
854 else if ((n = s.next) != null) {
855 if (n != s)
856 pred.casNext(s, n);
857 casCleanMe(pred, null);
858 }
859 else
860 break;
861 }
862 return pred;
863 }
864
865 /**
866 * Main implementation of Iterator.remove(). Find
867 * and unsplice the given data node.
868 * @param possiblePred possible predecessor of s
869 * @param s the node to remove
870 */
871 final void findAndRemoveDataNode(Node<E> possiblePred, Node<E> s) {
872 assert s.isData;
873 if (s.tryMatchData()) {
874 if (possiblePred != null && possiblePred.next == s)
875 unsplice(possiblePred, s); // was actual predecessor
876 else {
877 for (Node<E> pred = null, p = head; p != null; ) {
878 if (p == s) {
879 unsplice(pred, p);
880 break;
881 }
882 if (p.isUnmatchedRequest())
883 break;
884 pred = p;
885 if ((p = p.next) == pred) { // stale
886 pred = null;
887 p = head;
888 }
889 }
890 }
891 }
892 }
893
894 /**
895 * Main implementation of remove(Object)
896 */
897 private boolean findAndRemove(Object e) {
898 if (e != null) {
899 for (Node<E> pred = null, p = head; p != null; ) {
900 Object item = p.item;
901 if (p.isData) {
902 if (item != null && item != p && e.equals(item) &&
903 p.tryMatchData()) {
904 unsplice(pred, p);
905 return true;
906 }
907 }
908 else if (item == null)
909 break;
910 pred = p;
911 if ((p = p.next) == pred) { // stale
912 pred = null;
913 p = head;
914 }
915 }
916 }
917 return false;
918 }
919
920
921 /**
922 * Creates an initially empty {@code LinkedTransferQueue}.
923 */
924 public LinkedTransferQueue() {
925 }
926
927 /**
928 * Creates a {@code LinkedTransferQueue}
929 * initially containing the elements of the given collection,
930 * added in traversal order of the collection's iterator.
931 *
932 * @param c the collection of elements to initially contain
933 * @throws NullPointerException if the specified collection or any
934 * of its elements are null
935 */
936 public LinkedTransferQueue(Collection<? extends E> c) {
937 this();
938 addAll(c);
939 }
940
941 /**
942 * Inserts the specified element at the tail of this queue.
943 * As the queue is unbounded, this method will never block.
944 *
945 * @throws NullPointerException if the specified element is null
946 */
947 public void put(E e) {
948 xfer(e, true, ASYNC, 0);
949 }
950
951 /**
952 * Inserts the specified element at the tail of this queue.
953 * As the queue is unbounded, this method will never block or
954 * return {@code false}.
955 *
956 * @return {@code true} (as specified by
957 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
958 * @throws NullPointerException if the specified element is null
959 */
960 public boolean offer(E e, long timeout, TimeUnit unit) {
961 xfer(e, true, ASYNC, 0);
962 return true;
963 }
964
965 /**
966 * Inserts the specified element at the tail of this queue.
967 * As the queue is unbounded, this method will never return {@code false}.
968 *
969 * @return {@code true} (as specified by
970 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
971 * @throws NullPointerException if the specified element is null
972 */
973 public boolean offer(E e) {
974 xfer(e, true, ASYNC, 0);
975 return true;
976 }
977
978 /**
979 * Inserts the specified element at the tail of this queue.
980 * As the queue is unbounded, this method will never throw
981 * {@link IllegalStateException} or return {@code false}.
982 *
983 * @return {@code true} (as specified by {@link Collection#add})
984 * @throws NullPointerException if the specified element is null
985 */
986 public boolean add(E e) {
987 xfer(e, true, ASYNC, 0);
988 return true;
989 }
990
991 /**
992 * Transfers the element to a waiting consumer immediately, if possible.
993 *
994 * <p>More precisely, transfers the specified element immediately
995 * if there exists a consumer already waiting to receive it (in
996 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
997 * otherwise returning {@code false} without enqueuing the element.
998 *
999 * @throws NullPointerException if the specified element is null
1000 */
1001 public boolean tryTransfer(E e) {
1002 return xfer(e, true, NOW, 0) == null;
1003 }
1004
1005 /**
1006 * Transfers the element to a consumer, waiting if necessary to do so.
1007 *
1008 * <p>More precisely, transfers the specified element immediately
1009 * if there exists a consumer already waiting to receive it (in
1010 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1011 * else inserts the specified element at the tail of this queue
1012 * and waits until the element is received by a consumer.
1013 *
1014 * @throws NullPointerException if the specified element is null
1015 */
1016 public void transfer(E e) throws InterruptedException {
1017 if (xfer(e, true, SYNC, 0) != null) {
1018 Thread.interrupted(); // failure possible only due to interrupt
1019 throw new InterruptedException();
1020 }
1021 }
1022
1023 /**
1024 * Transfers the element to a consumer if it is possible to do so
1025 * before the timeout elapses.
1026 *
1027 * <p>More precisely, transfers the specified element immediately
1028 * if there exists a consumer already waiting to receive it (in
1029 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1030 * else inserts the specified element at the tail of this queue
1031 * and waits until the element is received by a consumer,
1032 * returning {@code false} if the specified wait time elapses
1033 * before the element can be transferred.
1034 *
1035 * @throws NullPointerException if the specified element is null
1036 */
1037 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1038 throws InterruptedException {
1039 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1040 return true;
1041 if (!Thread.interrupted())
1042 return false;
1043 throw new InterruptedException();
1044 }
1045
1046 public E take() throws InterruptedException {
1047 E e = xfer(null, false, SYNC, 0);
1048 if (e != null)
1049 return e;
1050 Thread.interrupted();
1051 throw new InterruptedException();
1052 }
1053
1054 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1055 E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1056 if (e != null || !Thread.interrupted())
1057 return e;
1058 throw new InterruptedException();
1059 }
1060
1061 public E poll() {
1062 return xfer(null, false, NOW, 0);
1063 }
1064
1065 /**
1066 * @throws NullPointerException {@inheritDoc}
1067 * @throws IllegalArgumentException {@inheritDoc}
1068 */
1069 public int drainTo(Collection<? super E> c) {
1070 if (c == null)
1071 throw new NullPointerException();
1072 if (c == this)
1073 throw new IllegalArgumentException();
1074 int n = 0;
1075 E e;
1076 while ( (e = poll()) != null) {
1077 c.add(e);
1078 ++n;
1079 }
1080 return n;
1081 }
1082
1083 /**
1084 * @throws NullPointerException {@inheritDoc}
1085 * @throws IllegalArgumentException {@inheritDoc}
1086 */
1087 public int drainTo(Collection<? super E> c, int maxElements) {
1088 if (c == null)
1089 throw new NullPointerException();
1090 if (c == this)
1091 throw new IllegalArgumentException();
1092 int n = 0;
1093 E e;
1094 while (n < maxElements && (e = poll()) != null) {
1095 c.add(e);
1096 ++n;
1097 }
1098 return n;
1099 }
1100
1101 /**
1102 * Returns an iterator over the elements in this queue in proper
1103 * sequence, from head to tail.
1104 *
1105 * <p>The returned iterator is a "weakly consistent" iterator that
1106 * will never throw
1107 * {@link ConcurrentModificationException ConcurrentModificationException},
1108 * and guarantees to traverse elements as they existed upon
1109 * construction of the iterator, and may (but is not guaranteed
1110 * to) reflect any modifications subsequent to construction.
1111 *
1112 * @return an iterator over the elements in this queue in proper sequence
1113 */
1114 public Iterator<E> iterator() {
1115 return new Itr();
1116 }
1117
1118 public E peek() {
1119 return firstDataItem();
1120 }
1121
1122 /**
1123 * Returns {@code true} if this queue contains no elements.
1124 *
1125 * @return {@code true} if this queue contains no elements
1126 */
1127 public boolean isEmpty() {
1128 return firstOfMode(true) == null;
1129 }
1130
1131 public boolean hasWaitingConsumer() {
1132 return firstOfMode(false) != null;
1133 }
1134
1135 /**
1136 * Returns the number of elements in this queue. If this queue
1137 * contains more than {@code Integer.MAX_VALUE} elements, returns
1138 * {@code Integer.MAX_VALUE}.
1139 *
1140 * <p>Beware that, unlike in most collections, this method is
1141 * <em>NOT</em> a constant-time operation. Because of the
1142 * asynchronous nature of these queues, determining the current
1143 * number of elements requires an O(n) traversal.
1144 *
1145 * @return the number of elements in this queue
1146 */
1147 public int size() {
1148 return countOfMode(true);
1149 }
1150
1151 public int getWaitingConsumerCount() {
1152 return countOfMode(false);
1153 }
1154
1155 /**
1156 * Removes a single instance of the specified element from this queue,
1157 * if it is present. More formally, removes an element {@code e} such
1158 * that {@code o.equals(e)}, if this queue contains one or more such
1159 * elements.
1160 * Returns {@code true} if this queue contained the specified element
1161 * (or equivalently, if this queue changed as a result of the call).
1162 *
1163 * @param o element to be removed from this queue, if present
1164 * @return {@code true} if this queue changed as a result of the call
1165 */
1166 public boolean remove(Object o) {
1167 return findAndRemove(o);
1168 }
1169
1170 /**
1171 * Always returns {@code Integer.MAX_VALUE} because a
1172 * {@code LinkedTransferQueue} is not capacity constrained.
1173 *
1174 * @return {@code Integer.MAX_VALUE} (as specified by
1175 * {@link BlockingQueue#remainingCapacity()})
1176 */
1177 public int remainingCapacity() {
1178 return Integer.MAX_VALUE;
1179 }
1180
1181 /**
1182 * Saves the state to a stream (that is, serializes it).
1183 *
1184 * @serialData All of the elements (each an {@code E}) in
1185 * the proper order, followed by a null
1186 * @param s the stream
1187 */
1188 private void writeObject(java.io.ObjectOutputStream s)
1189 throws java.io.IOException {
1190 s.defaultWriteObject();
1191 for (E e : this)
1192 s.writeObject(e);
1193 // Use trailing null as sentinel
1194 s.writeObject(null);
1195 }
1196
1197 /**
1198 * Reconstitutes the Queue instance from a stream (that is,
1199 * deserializes it).
1200 *
1201 * @param s the stream
1202 */
1203 private void readObject(java.io.ObjectInputStream s)
1204 throws java.io.IOException, ClassNotFoundException {
1205 s.defaultReadObject();
1206 for (;;) {
1207 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1208 if (item == null)
1209 break;
1210 else
1211 offer(item);
1212 }
1213 }
1214
1215 // Unsafe mechanics
1216
1217 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1218 private static final long headOffset =
1219 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1220 private static final long tailOffset =
1221 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1222 private static final long cleanMeOffset =
1223 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1224
1225 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1226 String field, Class<?> klazz) {
1227 try {
1228 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1229 } catch (NoSuchFieldException e) {
1230 // Convert Exception to corresponding Error
1231 NoSuchFieldError error = new NoSuchFieldError(field);
1232 error.initCause(e);
1233 throw error;
1234 }
1235 }
1236
1237 }