ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.142
Committed: Sat Jan 14 23:28:10 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.141: +37 -39 lines
Log Message:
more refactoring of Node maintenance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Objects;
17 import java.util.Queue;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.concurrent.locks.LockSupport;
21 import java.util.function.Consumer;
22 import java.util.function.Predicate;
23
24 /**
25 * An unbounded {@link TransferQueue} based on linked nodes.
26 * This queue orders elements FIFO (first-in-first-out) with respect
27 * to any given producer. The <em>head</em> of the queue is that
28 * element that has been on the queue the longest time for some
29 * producer. The <em>tail</em> of the queue is that element that has
30 * been on the queue the shortest time for some producer.
31 *
32 * <p>Beware that, unlike in most collections, the {@code size} method
33 * is <em>NOT</em> a constant-time operation. Because of the
34 * asynchronous nature of these queues, determining the current number
35 * of elements requires a traversal of the elements, and so may report
36 * inaccurate results if this collection is modified during traversal.
37 *
38 * <p>Bulk operations that add, remove, or examine multiple elements,
39 * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40 * are <em>not</em> guaranteed to be performed atomically.
41 * For example, a {@code forEach} traversal concurrent with an {@code
42 * addAll} operation might observe only some of the added elements.
43 *
44 * <p>This class and its iterator implement all of the <em>optional</em>
45 * methods of the {@link Collection} and {@link Iterator} interfaces.
46 *
47 * <p>Memory consistency effects: As with other concurrent
48 * collections, actions in a thread prior to placing an object into a
49 * {@code LinkedTransferQueue}
50 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51 * actions subsequent to the access or removal of that element from
52 * the {@code LinkedTransferQueue} in another thread.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @since 1.7
59 * @author Doug Lea
60 * @param <E> the type of elements held in this queue
61 */
62 public class LinkedTransferQueue<E> extends AbstractQueue<E>
63 implements TransferQueue<E>, java.io.Serializable {
64 private static final long serialVersionUID = -3223113410248163686L;
65
66 /*
67 * *** Overview of Dual Queues with Slack ***
68 *
69 * Dual Queues, introduced by Scherer and Scott
70 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71 * are (linked) queues in which nodes may represent either data or
72 * requests. When a thread tries to enqueue a data node, but
73 * encounters a request node, it instead "matches" and removes it;
74 * and vice versa for enqueuing requests. Blocking Dual Queues
75 * arrange that threads enqueuing unmatched requests block until
76 * other threads provide the match. Dual Synchronous Queues (see
77 * Scherer, Lea, & Scott
78 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79 * additionally arrange that threads enqueuing unmatched data also
80 * block. Dual Transfer Queues support all of these modes, as
81 * dictated by callers.
82 *
83 * A FIFO dual queue may be implemented using a variation of the
84 * Michael & Scott (M&S) lock-free queue algorithm
85 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 * It maintains two pointer fields, "head", pointing to a
87 * (matched) node that in turn points to the first actual
88 * (unmatched) queue node (or null if empty); and "tail" that
89 * points to the last node on the queue (or again null if
90 * empty). For example, here is a possible queue with four data
91 * elements:
92 *
93 * head tail
94 * | |
95 * v v
96 * M -> U -> U -> U -> U
97 *
98 * The M&S queue algorithm is known to be prone to scalability and
99 * overhead limitations when maintaining (via CAS) these head and
100 * tail pointers. This has led to the development of
101 * contention-reducing variants such as elimination arrays (see
102 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103 * optimistic back pointers (see Ladan-Mozes & Shavit
104 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105 * However, the nature of dual queues enables a simpler tactic for
106 * improving M&S-style implementations when dual-ness is needed.
107 *
108 * In a dual queue, each node must atomically maintain its match
109 * status. While there are other possible variants, we implement
110 * this here as: for a data-mode node, matching entails CASing an
111 * "item" field from a non-null data value to null upon match, and
112 * vice-versa for request nodes, CASing from null to a data
113 * value. (Note that the linearization properties of this style of
114 * queue are easy to verify -- elements are made available by
115 * linking, and unavailable by matching.) Compared to plain M&S
116 * queues, this property of dual queues requires one additional
117 * successful atomic operation per enq/deq pair. But it also
118 * enables lower cost variants of queue maintenance mechanics. (A
119 * variation of this idea applies even for non-dual queues that
120 * support deletion of interior elements, such as
121 * j.u.c.ConcurrentLinkedQueue.)
122 *
123 * Once a node is matched, its match status can never again
124 * change. We may thus arrange that the linked list of them
125 * contain a prefix of zero or more matched nodes, followed by a
126 * suffix of zero or more unmatched nodes. (Note that we allow
127 * both the prefix and suffix to be zero length, which in turn
128 * means that we do not use a dummy header.) If we were not
129 * concerned with either time or space efficiency, we could
130 * correctly perform enqueue and dequeue operations by traversing
131 * from a pointer to the initial node; CASing the item of the
132 * first unmatched node on match and CASing the next field of the
133 * trailing node on appends. While this would be a terrible idea
134 * in itself, it does have the benefit of not requiring ANY atomic
135 * updates on head/tail fields.
136 *
137 * We introduce here an approach that lies between the extremes of
138 * never versus always updating queue (head and tail) pointers.
139 * This offers a tradeoff between sometimes requiring extra
140 * traversal steps to locate the first and/or last unmatched
141 * nodes, versus the reduced overhead and contention of fewer
142 * updates to queue pointers. For example, a possible snapshot of
143 * a queue is:
144 *
145 * head tail
146 * | |
147 * v v
148 * M -> M -> U -> U -> U -> U
149 *
150 * The best value for this "slack" (the targeted maximum distance
151 * between the value of "head" and the first unmatched node, and
152 * similarly for "tail") is an empirical matter. We have found
153 * that using very small constants in the range of 1-3 work best
154 * over a range of platforms. Larger values introduce increasing
155 * costs of cache misses and risks of long traversal chains, while
156 * smaller values increase CAS contention and overhead.
157 *
158 * Dual queues with slack differ from plain M&S dual queues by
159 * virtue of only sometimes updating head or tail pointers when
160 * matching, appending, or even traversing nodes; in order to
161 * maintain a targeted slack. The idea of "sometimes" may be
162 * operationalized in several ways. The simplest is to use a
163 * per-operation counter incremented on each traversal step, and
164 * to try (via CAS) to update the associated queue pointer
165 * whenever the count exceeds a threshold. Another, that requires
166 * more overhead, is to use random number generators to update
167 * with a given probability per traversal step.
168 *
169 * In any strategy along these lines, because CASes updating
170 * fields may fail, the actual slack may exceed targeted slack.
171 * However, they may be retried at any time to maintain targets.
172 * Even when using very small slack values, this approach works
173 * well for dual queues because it allows all operations up to the
174 * point of matching or appending an item (hence potentially
175 * allowing progress by another thread) to be read-only, thus not
176 * introducing any further contention. As described below, we
177 * implement this by performing slack maintenance retries only
178 * after these points.
179 *
180 * As an accompaniment to such techniques, traversal overhead can
181 * be further reduced without increasing contention of head
182 * pointer updates: Threads may sometimes shortcut the "next" link
183 * path from the current "head" node to be closer to the currently
184 * known first unmatched node, and similarly for tail. Again, this
185 * may be triggered with using thresholds or randomization.
186 *
187 * These ideas must be further extended to avoid unbounded amounts
188 * of costly-to-reclaim garbage caused by the sequential "next"
189 * links of nodes starting at old forgotten head nodes: As first
190 * described in detail by Boehm
191 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 * delays noticing that any arbitrarily old node has become
193 * garbage, all newer dead nodes will also be unreclaimed.
194 * (Similar issues arise in non-GC environments.) To cope with
195 * this in our implementation, upon CASing to advance the head
196 * pointer, we set the "next" link of the previous head to point
197 * only to itself; thus limiting the length of chains of dead nodes.
198 * (We also take similar care to wipe out possibly garbage
199 * retaining values held in other Node fields.) However, doing so
200 * adds some further complexity to traversal: If any "next"
201 * pointer links to itself, it indicates that the current thread
202 * has lagged behind a head-update, and so the traversal must
203 * continue from the "head". Traversals trying to find the
204 * current tail starting from "tail" may also encounter
205 * self-links, in which case they also continue at "head".
206 *
207 * It is tempting in slack-based scheme to not even use CAS for
208 * updates (similarly to Ladan-Mozes & Shavit). However, this
209 * cannot be done for head updates under the above link-forgetting
210 * mechanics because an update may leave head at a detached node.
211 * And while direct writes are possible for tail updates, they
212 * increase the risk of long retraversals, and hence long garbage
213 * chains, which can be much more costly than is worthwhile
214 * considering that the cost difference of performing a CAS vs
215 * write is smaller when they are not triggered on each operation
216 * (especially considering that writes and CASes equally require
217 * additional GC bookkeeping ("write barriers") that are sometimes
218 * more costly than the writes themselves because of contention).
219 *
220 * *** Overview of implementation ***
221 *
222 * We use a threshold-based approach to updates, with a slack
223 * threshold of two -- that is, we update head/tail when the
224 * current pointer appears to be two or more steps away from the
225 * first/last node. The slack value is hard-wired: a path greater
226 * than one is naturally implemented by checking equality of
227 * traversal pointers except when the list has only one element,
228 * in which case we keep slack threshold at one. Avoiding tracking
229 * explicit counts across method calls slightly simplifies an
230 * already-messy implementation. Using randomization would
231 * probably work better if there were a low-quality dirt-cheap
232 * per-thread one available, but even ThreadLocalRandom is too
233 * heavy for these purposes.
234 *
235 * With such a small slack threshold value, it is not worthwhile
236 * to augment this with path short-circuiting (i.e., unsplicing
237 * interior nodes) except in the case of cancellation/removal (see
238 * below).
239 *
240 * All enqueue/dequeue operations are handled by the single method
241 * "xfer" with parameters indicating whether to act as some form
242 * of offer, put, poll, take, or transfer (each possibly with
243 * timeout). The relative complexity of using one monolithic
244 * method outweighs the code bulk and maintenance problems of
245 * using separate methods for each case.
246 *
247 * Operation consists of up to three phases. The first is
248 * implemented within method xfer, the second in tryAppend, and
249 * the third in method awaitMatch.
250 *
251 * 1. Try to match an existing node
252 *
253 * Starting at head, skip already-matched nodes until finding
254 * an unmatched node of opposite mode, if one exists, in which
255 * case matching it and returning, also if necessary updating
256 * head to one past the matched node (or the node itself if the
257 * list has no other unmatched nodes). If the CAS misses, then
258 * a loop retries advancing head by two steps until either
259 * success or the slack is at most two. By requiring that each
260 * attempt advances head by two (if applicable), we ensure that
261 * the slack does not grow without bound. Traversals also check
262 * if the initial head is now off-list, in which case they
263 * restart at the new head.
264 *
265 * If no candidates are found and the call was untimed
266 * poll/offer (argument "how" is NOW), return.
267 *
268 * 2. Try to append a new node (method tryAppend)
269 *
270 * Starting at current tail pointer, find the actual last node
271 * and try to append a new node. Nodes can be appended only if
272 * their predecessors are either already matched or are of the
273 * same mode. If we detect otherwise, then a new node with
274 * opposite mode must have been appended during traversal, so
275 * we must restart at phase 1. The traversal and update steps
276 * are otherwise similar to phase 1: Retrying upon CAS misses
277 * and checking for staleness. In particular, if a self-link
278 * is encountered, then we can safely jump to a node on the
279 * list by continuing the traversal at current head.
280 *
281 * On successful append, if the call was ASYNC, return.
282 *
283 * 3. Await match or cancellation (method awaitMatch)
284 *
285 * Wait for another thread to match node; instead cancelling if
286 * the current thread was interrupted or the wait timed out. On
287 * multiprocessors, we use front-of-queue spinning: If a node
288 * appears to be the first unmatched node in the queue, it
289 * spins a bit before blocking. In either case, before blocking
290 * it tries to unsplice any nodes between the current "head"
291 * and the first unmatched node.
292 *
293 * Front-of-queue spinning vastly improves performance of
294 * heavily contended queues. And so long as it is relatively
295 * brief and "quiet", spinning does not much impact performance
296 * of less-contended queues. During spins threads check their
297 * interrupt status and generate a thread-local random number
298 * to decide to occasionally perform a Thread.yield. While
299 * yield has underdefined specs, we assume that it might help,
300 * and will not hurt, in limiting impact of spinning on busy
301 * systems. We also use smaller (1/2) spins for nodes that are
302 * not known to be front but whose predecessors have not
303 * blocked -- these "chained" spins avoid artifacts of
304 * front-of-queue rules which otherwise lead to alternating
305 * nodes spinning vs blocking. Further, front threads that
306 * represent phase changes (from data to request node or vice
307 * versa) compared to their predecessors receive additional
308 * chained spins, reflecting longer paths typically required to
309 * unblock threads during phase changes.
310 *
311 *
312 * ** Unlinking removed interior nodes **
313 *
314 * In addition to minimizing garbage retention via self-linking
315 * described above, we also unlink removed interior nodes. These
316 * may arise due to timed out or interrupted waits, or calls to
317 * remove(x) or Iterator.remove. Normally, given a node that was
318 * at one time known to be the predecessor of some node s that is
319 * to be removed, we can unsplice s by CASing the next field of
320 * its predecessor if it still points to s (otherwise s must
321 * already have been removed or is now offlist). But there are two
322 * situations in which we cannot guarantee to make node s
323 * unreachable in this way: (1) If s is the trailing node of list
324 * (i.e., with null next), then it is pinned as the target node
325 * for appends, so can only be removed later after other nodes are
326 * appended. (2) We cannot necessarily unlink s given a
327 * predecessor node that is matched (including the case of being
328 * cancelled): the predecessor may already be unspliced, in which
329 * case some previous reachable node may still point to s.
330 * (For further explanation see Herlihy & Shavit "The Art of
331 * Multiprocessor Programming" chapter 9). Although, in both
332 * cases, we can rule out the need for further action if either s
333 * or its predecessor are (or can be made to be) at, or fall off
334 * from, the head of list.
335 *
336 * Without taking these into account, it would be possible for an
337 * unbounded number of supposedly removed nodes to remain
338 * reachable. Situations leading to such buildup are uncommon but
339 * can occur in practice; for example when a series of short timed
340 * calls to poll repeatedly time out but never otherwise fall off
341 * the list because of an untimed call to take at the front of the
342 * queue.
343 *
344 * When these cases arise, rather than always retraversing the
345 * entire list to find an actual predecessor to unlink (which
346 * won't help for case (1) anyway), we record a conservative
347 * estimate of possible unsplice failures (in "sweepVotes").
348 * We trigger a full sweep when the estimate exceeds a threshold
349 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350 * removal failures to tolerate before sweeping through, unlinking
351 * cancelled nodes that were not unlinked upon initial removal.
352 * We perform sweeps by the thread hitting threshold (rather than
353 * background threads or by spreading work to other threads)
354 * because in the main contexts in which removal occurs, the
355 * caller is already timed-out, cancelled, or performing a
356 * potentially O(n) operation (e.g. remove(x)), none of which are
357 * time-critical enough to warrant the overhead that alternatives
358 * would impose on other threads.
359 *
360 * Because the sweepVotes estimate is conservative, and because
361 * nodes become unlinked "naturally" as they fall off the head of
362 * the queue, and because we allow votes to accumulate even while
363 * sweeps are in progress, there are typically significantly fewer
364 * such nodes than estimated. Choice of a threshold value
365 * balances the likelihood of wasted effort and contention, versus
366 * providing a worst-case bound on retention of interior nodes in
367 * quiescent queues. The value defined below was chosen
368 * empirically to balance these under various timeout scenarios.
369 *
370 * Note that we cannot self-link unlinked interior nodes during
371 * sweeps. However, the associated garbage chains terminate when
372 * some successor ultimately falls off the head of the list and is
373 * self-linked.
374 */
375
376 /** True if on multiprocessor */
377 private static final boolean MP =
378 Runtime.getRuntime().availableProcessors() > 1;
379
380 /**
381 * The number of times to spin (with randomly interspersed calls
382 * to Thread.yield) on multiprocessor before blocking when a node
383 * is apparently the first waiter in the queue. See above for
384 * explanation. Must be a power of two. The value is empirically
385 * derived -- it works pretty well across a variety of processors,
386 * numbers of CPUs, and OSes.
387 */
388 private static final int FRONT_SPINS = 1 << 7;
389
390 /**
391 * The number of times to spin before blocking when a node is
392 * preceded by another node that is apparently spinning. Also
393 * serves as an increment to FRONT_SPINS on phase changes, and as
394 * base average frequency for yielding during spins. Must be a
395 * power of two.
396 */
397 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398
399 /**
400 * The maximum number of estimated removal failures (sweepVotes)
401 * to tolerate before sweeping through the queue unlinking
402 * cancelled nodes that were not unlinked upon initial
403 * removal. See above for explanation. The value must be at least
404 * two to avoid useless sweeps when removing trailing nodes.
405 */
406 static final int SWEEP_THRESHOLD = 32;
407
408 /**
409 * Queue nodes. Uses Object, not E, for items to allow forgetting
410 * them after use. Writes that are intrinsically ordered wrt
411 * other accesses or CASes use simple relaxed forms.
412 */
413 static final class Node {
414 final boolean isData; // false if this is a request node
415 volatile Object item; // initially non-null if isData; CASed to match
416 volatile Node next;
417 volatile Thread waiter; // null when not waiting for a match
418
419 /**
420 * Constructs a data node holding item if item is non-null,
421 * else a request node. Uses relaxed write because item can
422 * only be seen after piggy-backing publication via CAS.
423 */
424 Node(Object item) {
425 ITEM.set(this, item);
426 isData = (item != null);
427 }
428
429 /** Constructs a (matched data) dummy node. */
430 Node() {
431 isData = true;
432 }
433
434 final boolean casNext(Node cmp, Node val) {
435 // assert val != null;
436 return NEXT.compareAndSet(this, cmp, val);
437 }
438
439 final boolean casItem(Object cmp, Object val) {
440 // assert isData == (cmp != null);
441 // assert isData == (val == null);
442 // assert !(cmp instanceof Node);
443 return ITEM.compareAndSet(this, cmp, val);
444 }
445
446 /**
447 * Links node to itself to avoid garbage retention. Called
448 * only after CASing head field, so uses relaxed write.
449 */
450 final void selfLink() {
451 // assert isMatched();
452 NEXT.setRelease(this, this);
453 }
454
455 final void appendRelaxed(Node next) {
456 // assert next != null;
457 // assert this.next == null;
458 NEXT.set(this, next);
459 }
460
461 /**
462 * Sets item (of a request node) to self and waiter to null,
463 * to avoid garbage retention after matching or cancelling.
464 * Uses relaxed writes because order is already constrained in
465 * the only calling contexts: item is forgotten only after
466 * volatile/atomic mechanics that extract items, and visitors
467 * of request nodes only ever check whether item is null.
468 * Similarly, clearing waiter follows either CAS or return
469 * from park (if ever parked; else we don't care).
470 */
471 final void forgetContents() {
472 // assert isMatched();
473 if (!isData)
474 ITEM.set(this, this);
475 WAITER.set(this, null);
476 }
477
478 /**
479 * Returns true if this node has been matched, including the
480 * case of artificial matches due to cancellation.
481 */
482 final boolean isMatched() {
483 return isData == (item == null);
484 }
485
486 /** Tries to CAS-match this node; if successful, wakes waiter. */
487 final boolean tryMatch(Object cmp, Object val) {
488 if (casItem(cmp, val)) {
489 LockSupport.unpark(waiter);
490 return true;
491 }
492 return false;
493 }
494
495 /**
496 * Returns true if a node with the given mode cannot be
497 * appended to this node because this node is unmatched and
498 * has opposite data mode.
499 */
500 final boolean cannotPrecede(boolean haveData) {
501 boolean d = isData;
502 return d != haveData && d != (item == null);
503 }
504
505 private static final long serialVersionUID = -3375979862319811754L;
506 }
507
508 /**
509 * A node from which the first live (non-matched) node (if any)
510 * can be reached in O(1) time.
511 * Invariants:
512 * - all live nodes are reachable from head via .next
513 * - head != null
514 * - (tmp = head).next != tmp || tmp != head
515 * Non-invariants:
516 * - head may or may not be live
517 * - it is permitted for tail to lag behind head, that is, for tail
518 * to not be reachable from head!
519 */
520 transient volatile Node head;
521
522 /**
523 * A node from which the last node on list (that is, the unique
524 * node with node.next == null) can be reached in O(1) time.
525 * Invariants:
526 * - the last node is always reachable from tail via .next
527 * - tail != null
528 * Non-invariants:
529 * - tail may or may not be live
530 * - it is permitted for tail to lag behind head, that is, for tail
531 * to not be reachable from head!
532 * - tail.next may or may not be self-linked.
533 */
534 private transient volatile Node tail;
535
536 /** The number of apparent failures to unsplice removed nodes */
537 private transient volatile int sweepVotes;
538
539 private boolean casTail(Node cmp, Node val) {
540 // assert cmp != null;
541 // assert val != null;
542 return TAIL.compareAndSet(this, cmp, val);
543 }
544
545 private boolean casHead(Node cmp, Node val) {
546 return HEAD.compareAndSet(this, cmp, val);
547 }
548
549 private boolean casSweepVotes(int cmp, int val) {
550 return SWEEPVOTES.compareAndSet(this, cmp, val);
551 }
552
553 /**
554 * Tries to CAS pred.next (or head, if pred is null) from c to p.
555 * Caller must ensure that we're not unlinking the trailing node.
556 */
557 private boolean tryCasSuccessor(Node pred, Node c, Node p) {
558 // assert p != null;
559 // assert c.isData != (c.item != null);
560 // assert c != p;
561 if (pred != null)
562 return pred.casNext(c, p);
563 if (casHead(c, p)) {
564 c.selfLink();
565 return true;
566 }
567 return false;
568 }
569
570 /**
571 * Collapse dead (matched) nodes between pred and q.
572 * @param pred the last known live node, or null if none
573 * @param c the first dead node
574 * @param p the last dead node
575 * @param q p.next: the next live node, or null if at end
576 * @return either old pred or p if pred dead or CAS failed
577 */
578 private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
579 // assert pred != c;
580 // assert p != q;
581 // assert c.isMatched();
582 // assert p.isMatched();
583 if (q == null) {
584 // Never unlink trailing node.
585 if (c == p) return pred;
586 q = p;
587 }
588 return (tryCasSuccessor(pred, c, q)
589 && (pred == null || !pred.isMatched()))
590 ? pred : p;
591 }
592
593 /* Possible values for "how" argument in xfer method. */
594
595 private static final int NOW = 0; // for untimed poll, tryTransfer
596 private static final int ASYNC = 1; // for offer, put, add
597 private static final int SYNC = 2; // for transfer, take
598 private static final int TIMED = 3; // for timed poll, tryTransfer
599
600 /**
601 * Implements all queuing methods. See above for explanation.
602 *
603 * @param e the item or null for take
604 * @param haveData true if this is a put, else a take
605 * @param how NOW, ASYNC, SYNC, or TIMED
606 * @param nanos timeout in nanosecs, used only if mode is TIMED
607 * @return an item if matched, else e
608 * @throws NullPointerException if haveData mode but e is null
609 */
610 private E xfer(E e, boolean haveData, int how, long nanos) {
611 if (haveData && (e == null))
612 throw new NullPointerException();
613 Node s = null; // the node to append, if needed
614
615 restartFromHead: for (;;) {
616 for (Node h = head, p = h; p != null;) { // find & match first node
617 final boolean isData;
618 final Object item;
619 if (((item = p.item) != null) == (isData = p.isData)) {
620 // unmatched
621 if (isData == haveData) // can't match
622 break;
623 if (p.tryMatch(item, e)) {
624 for (Node q = p; q != h;) {
625 Node n = q.next; // update by 2 unless singleton
626 if (head == h && casHead(h, n == null ? q : n)) {
627 h.selfLink();
628 break;
629 } // advance and retry
630 if ((h = head) == null ||
631 (q = h.next) == null || !q.isMatched())
632 break; // unless slack < 2
633 }
634 @SuppressWarnings("unchecked") E itemE = (E) item;
635 return itemE;
636 }
637 }
638 if (p == (p = p.next))
639 continue restartFromHead;
640 }
641
642 if (how != NOW) { // No matches available
643 if (s == null)
644 s = new Node(e);
645 Node pred = tryAppend(s, haveData);
646 if (pred == null)
647 continue restartFromHead; // lost race vs opposite mode
648 if (how != ASYNC)
649 return awaitMatch(s, pred, e, (how == TIMED), nanos);
650 }
651 return e; // not waiting
652 }
653 }
654
655 /**
656 * Tries to append node s as tail.
657 *
658 * @param s the node to append
659 * @param haveData true if appending in data mode
660 * @return null on failure due to losing race with append in
661 * different mode, else s's predecessor, or s itself if no
662 * predecessor
663 */
664 private Node tryAppend(Node s, boolean haveData) {
665 // assert head != null;
666 // assert tail != null;
667 for (Node t = tail, p = t;;) { // move p to last node and append
668 Node n, u; // temps for reads of next & tail
669 if (p == null)
670 p = head;
671 else if (p.cannotPrecede(haveData))
672 return null; // lost race vs opposite mode
673 else if ((n = p.next) != null) // not last; keep traversing
674 p = p != t && t != (u = tail) ? (t = u) : // stale tail
675 (p != n) ? n : null; // restart if off list
676 else if (!p.casNext(null, s))
677 p = p.next; // re-read on CAS failure
678 else {
679 if (p != t) { // update if slack now >= 2
680 while ((tail != t || !casTail(t, s)) &&
681 (t = tail) != null &&
682 (s = t.next) != null && // advance and retry
683 (s = s.next) != null && s != t);
684 }
685 return p;
686 }
687 }
688 }
689
690 /**
691 * Spins/yields/blocks until node s is matched or caller gives up.
692 *
693 * @param s the waiting node
694 * @param pred the predecessor of s, or s itself if it has no
695 * predecessor, or null if unknown (the null case does not occur
696 * in any current calls but may in possible future extensions)
697 * @param e the comparison value for checking match
698 * @param timed if true, wait only until timeout elapses
699 * @param nanos timeout in nanosecs, used only if timed is true
700 * @return matched item, or e if unmatched on interrupt or timeout
701 */
702 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
703 final long deadline = timed ? System.nanoTime() + nanos : 0L;
704 Thread w = Thread.currentThread();
705 int spins = -1; // initialized after first item and cancel checks
706 ThreadLocalRandom randomYields = null; // bound if needed
707
708 for (;;) {
709 final Object item;
710 if ((item = s.item) != e) { // matched
711 // assert item != s;
712 s.forgetContents(); // avoid garbage
713 @SuppressWarnings("unchecked") E itemE = (E) item;
714 return itemE;
715 }
716 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
717 // try to cancel and unlink
718 if (s.casItem(e, s.isData ? null : s)) {
719 unsplice(pred, s);
720 return e;
721 }
722 // return normally if lost CAS
723 }
724 else if (spins < 0) { // establish spins at/near front
725 if ((spins = spinsFor(pred, s.isData)) > 0)
726 randomYields = ThreadLocalRandom.current();
727 }
728 else if (spins > 0) { // spin
729 --spins;
730 if (randomYields.nextInt(CHAINED_SPINS) == 0)
731 Thread.yield(); // occasionally yield
732 }
733 else if (s.waiter == null) {
734 s.waiter = w; // request unpark then recheck
735 }
736 else if (timed) {
737 nanos = deadline - System.nanoTime();
738 if (nanos > 0L)
739 LockSupport.parkNanos(this, nanos);
740 }
741 else {
742 LockSupport.park(this);
743 }
744 }
745 }
746
747 /**
748 * Returns spin/yield value for a node with given predecessor and
749 * data mode. See above for explanation.
750 */
751 private static int spinsFor(Node pred, boolean haveData) {
752 if (MP && pred != null) {
753 if (pred.isData != haveData) // phase change
754 return FRONT_SPINS + CHAINED_SPINS;
755 if (pred.isMatched()) // probably at front
756 return FRONT_SPINS;
757 if (pred.waiter == null) // pred apparently spinning
758 return CHAINED_SPINS;
759 }
760 return 0;
761 }
762
763 /* -------------- Traversal methods -------------- */
764
765 /**
766 * Returns the first unmatched data node, or null if none.
767 * Callers must recheck if the returned node is unmatched
768 * before using.
769 */
770 final Node firstDataNode() {
771 Node first = null;
772 restartFromHead: for (;;) {
773 Node h = head, p = h;
774 for (; p != null;) {
775 final Object item;
776 if ((item = p.item) != null) {
777 if (p.isData) {
778 first = p;
779 break;
780 }
781 }
782 else if (!p.isData)
783 break;
784 final Node q;
785 if ((q = p.next) == null)
786 break;
787 if (p == (p = q))
788 continue restartFromHead;
789 }
790 if (p != h && casHead(h, p))
791 h.selfLink();
792 return first;
793 }
794 }
795
796 /**
797 * Traverses and counts unmatched nodes of the given mode.
798 * Used by methods size and getWaitingConsumerCount.
799 */
800 private int countOfMode(boolean data) {
801 restartFromHead: for (;;) {
802 int count = 0;
803 for (Node p = head; p != null;) {
804 if (!p.isMatched()) {
805 if (p.isData != data)
806 return 0;
807 if (++count == Integer.MAX_VALUE)
808 break; // @see Collection.size()
809 }
810 if (p == (p = p.next))
811 continue restartFromHead;
812 }
813 return count;
814 }
815 }
816
817 public String toString() {
818 String[] a = null;
819 restartFromHead: for (;;) {
820 int charLength = 0;
821 int size = 0;
822 for (Node p = head; p != null;) {
823 Object item = p.item;
824 if (p.isData) {
825 if (item != null) {
826 if (a == null)
827 a = new String[4];
828 else if (size == a.length)
829 a = Arrays.copyOf(a, 2 * size);
830 String s = item.toString();
831 a[size++] = s;
832 charLength += s.length();
833 }
834 } else if (item == null)
835 break;
836 if (p == (p = p.next))
837 continue restartFromHead;
838 }
839
840 if (size == 0)
841 return "[]";
842
843 return Helpers.toString(a, size, charLength);
844 }
845 }
846
847 private Object[] toArrayInternal(Object[] a) {
848 Object[] x = a;
849 restartFromHead: for (;;) {
850 int size = 0;
851 for (Node p = head; p != null;) {
852 Object item = p.item;
853 if (p.isData) {
854 if (item != null) {
855 if (x == null)
856 x = new Object[4];
857 else if (size == x.length)
858 x = Arrays.copyOf(x, 2 * (size + 4));
859 x[size++] = item;
860 }
861 } else if (item == null)
862 break;
863 if (p == (p = p.next))
864 continue restartFromHead;
865 }
866 if (x == null)
867 return new Object[0];
868 else if (a != null && size <= a.length) {
869 if (a != x)
870 System.arraycopy(x, 0, a, 0, size);
871 if (size < a.length)
872 a[size] = null;
873 return a;
874 }
875 return (size == x.length) ? x : Arrays.copyOf(x, size);
876 }
877 }
878
879 /**
880 * Returns an array containing all of the elements in this queue, in
881 * proper sequence.
882 *
883 * <p>The returned array will be "safe" in that no references to it are
884 * maintained by this queue. (In other words, this method must allocate
885 * a new array). The caller is thus free to modify the returned array.
886 *
887 * <p>This method acts as bridge between array-based and collection-based
888 * APIs.
889 *
890 * @return an array containing all of the elements in this queue
891 */
892 public Object[] toArray() {
893 return toArrayInternal(null);
894 }
895
896 /**
897 * Returns an array containing all of the elements in this queue, in
898 * proper sequence; the runtime type of the returned array is that of
899 * the specified array. If the queue fits in the specified array, it
900 * is returned therein. Otherwise, a new array is allocated with the
901 * runtime type of the specified array and the size of this queue.
902 *
903 * <p>If this queue fits in the specified array with room to spare
904 * (i.e., the array has more elements than this queue), the element in
905 * the array immediately following the end of the queue is set to
906 * {@code null}.
907 *
908 * <p>Like the {@link #toArray()} method, this method acts as bridge between
909 * array-based and collection-based APIs. Further, this method allows
910 * precise control over the runtime type of the output array, and may,
911 * under certain circumstances, be used to save allocation costs.
912 *
913 * <p>Suppose {@code x} is a queue known to contain only strings.
914 * The following code can be used to dump the queue into a newly
915 * allocated array of {@code String}:
916 *
917 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
918 *
919 * Note that {@code toArray(new Object[0])} is identical in function to
920 * {@code toArray()}.
921 *
922 * @param a the array into which the elements of the queue are to
923 * be stored, if it is big enough; otherwise, a new array of the
924 * same runtime type is allocated for this purpose
925 * @return an array containing all of the elements in this queue
926 * @throws ArrayStoreException if the runtime type of the specified array
927 * is not a supertype of the runtime type of every element in
928 * this queue
929 * @throws NullPointerException if the specified array is null
930 */
931 @SuppressWarnings("unchecked")
932 public <T> T[] toArray(T[] a) {
933 Objects.requireNonNull(a);
934 return (T[]) toArrayInternal(a);
935 }
936
937 /**
938 * Weakly-consistent iterator.
939 *
940 * Lazily updated ancestor is expected to be amortized O(1) remove(),
941 * but O(n) in the worst case, when lastRet is concurrently deleted.
942 */
943 final class Itr implements Iterator<E> {
944 private Node nextNode; // next node to return item for
945 private E nextItem; // the corresponding item
946 private Node lastRet; // last returned node, to support remove
947 private Node ancestor; // Helps unlink lastRet on remove()
948
949 /**
950 * Moves to next node after pred, or first node if pred null.
951 */
952 @SuppressWarnings("unchecked")
953 private void advance(Node pred) {
954 for (Node p = (pred == null) ? head : pred.next, c = p;
955 p != null; ) {
956 final Object item;
957 if ((item = p.item) != null && p.isData) {
958 nextNode = p;
959 nextItem = (E) item;
960 if (c != p)
961 tryCasSuccessor(pred, c, p);
962 return;
963 }
964 else if (!p.isData && item == null)
965 break;
966 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
967 pred = p;
968 c = p = p.next;
969 }
970 else if (p == (p = p.next)) {
971 pred = null;
972 c = p = head;
973 }
974 }
975 nextItem = null;
976 nextNode = null;
977 }
978
979 Itr() {
980 advance(null);
981 }
982
983 public final boolean hasNext() {
984 return nextNode != null;
985 }
986
987 public final E next() {
988 final Node p;
989 if ((p = nextNode) == null) throw new NoSuchElementException();
990 E e = nextItem;
991 advance(lastRet = p);
992 return e;
993 }
994
995 public void forEachRemaining(Consumer<? super E> action) {
996 Objects.requireNonNull(action);
997 Node q = null;
998 for (Node p; (p = nextNode) != null; advance(q = p))
999 action.accept(nextItem);
1000 if (q != null)
1001 lastRet = q;
1002 }
1003
1004 public final void remove() {
1005 final Node lastRet = this.lastRet;
1006 if (lastRet == null)
1007 throw new IllegalStateException();
1008 this.lastRet = null;
1009 if (lastRet.item == null) // already deleted?
1010 return;
1011 // Advance ancestor, collapsing intervening dead nodes
1012 Node pred = ancestor;
1013 for (Node p = (pred == null) ? head : pred.next, c = p, q;
1014 p != null; ) {
1015 if (p == lastRet) {
1016 final Object item;
1017 if ((item = p.item) != null)
1018 p.tryMatch(item, null);
1019 if ((q = p.next) == null) q = p;
1020 if (c != q) tryCasSuccessor(pred, c, q);
1021 ancestor = pred;
1022 return;
1023 }
1024 final Object item; final boolean pAlive;
1025 if (pAlive = ((item = p.item) != null && p.isData)) {
1026 // exceptionally, nothing to do
1027 }
1028 else if (!p.isData && item == null)
1029 break;
1030 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1031 pred = p;
1032 c = p = p.next;
1033 }
1034 else if (p == (p = p.next)) {
1035 pred = null;
1036 c = p = head;
1037 }
1038 }
1039 // traversal failed to find lastRet; must have been deleted;
1040 // leave ancestor at original location to avoid overshoot;
1041 // better luck next time!
1042
1043 // assert lastRet.isMatched();
1044 }
1045 }
1046
1047 /** A customized variant of Spliterators.IteratorSpliterator */
1048 final class LTQSpliterator implements Spliterator<E> {
1049 static final int MAX_BATCH = 1 << 25; // max batch array size;
1050 Node current; // current node; null until initialized
1051 int batch; // batch size for splits
1052 boolean exhausted; // true when no more nodes
1053 LTQSpliterator() {}
1054
1055 public Spliterator<E> trySplit() {
1056 Node p, q;
1057 if ((p = current()) == null || (q = p.next) == null)
1058 return null;
1059 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1060 Object[] a = null;
1061 do {
1062 final Object item = p.item;
1063 if (p.isData) {
1064 if (item != null)
1065 ((a != null) ? a : (a = new Object[n]))[i++] = item;
1066 } else if (item == null) {
1067 p = null;
1068 break;
1069 }
1070 if (p == (p = q))
1071 p = firstDataNode();
1072 } while (p != null && (q = p.next) != null && i < n);
1073 setCurrent(p);
1074 return (i == 0) ? null :
1075 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1076 Spliterator.NONNULL |
1077 Spliterator.CONCURRENT));
1078 }
1079
1080 public void forEachRemaining(Consumer<? super E> action) {
1081 Objects.requireNonNull(action);
1082 final Node p;
1083 if ((p = current()) != null) {
1084 current = null;
1085 exhausted = true;
1086 forEachFrom(action, p);
1087 }
1088 }
1089
1090 @SuppressWarnings("unchecked")
1091 public boolean tryAdvance(Consumer<? super E> action) {
1092 Objects.requireNonNull(action);
1093 Node p;
1094 if ((p = current()) != null) {
1095 E e = null;
1096 do {
1097 final Object item = p.item;
1098 final boolean isData = p.isData;
1099 if (p == (p = p.next))
1100 p = head;
1101 if (isData) {
1102 if (item != null) {
1103 e = (E) item;
1104 break;
1105 }
1106 }
1107 else if (item == null)
1108 p = null;
1109 } while (p != null);
1110 setCurrent(p);
1111 if (e != null) {
1112 action.accept(e);
1113 return true;
1114 }
1115 }
1116 return false;
1117 }
1118
1119 private void setCurrent(Node p) {
1120 if ((current = p) == null)
1121 exhausted = true;
1122 }
1123
1124 private Node current() {
1125 Node p;
1126 if ((p = current) == null && !exhausted)
1127 setCurrent(p = firstDataNode());
1128 return p;
1129 }
1130
1131 public long estimateSize() { return Long.MAX_VALUE; }
1132
1133 public int characteristics() {
1134 return (Spliterator.ORDERED |
1135 Spliterator.NONNULL |
1136 Spliterator.CONCURRENT);
1137 }
1138 }
1139
1140 /**
1141 * Returns a {@link Spliterator} over the elements in this queue.
1142 *
1143 * <p>The returned spliterator is
1144 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1145 *
1146 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1147 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1148 *
1149 * @implNote
1150 * The {@code Spliterator} implements {@code trySplit} to permit limited
1151 * parallelism.
1152 *
1153 * @return a {@code Spliterator} over the elements in this queue
1154 * @since 1.8
1155 */
1156 public Spliterator<E> spliterator() {
1157 return new LTQSpliterator();
1158 }
1159
1160 /* -------------- Removal methods -------------- */
1161
1162 /**
1163 * Unsplices (now or later) the given deleted/cancelled node with
1164 * the given predecessor.
1165 *
1166 * @param pred a node that was at one time known to be the
1167 * predecessor of s, or null or s itself if s is/was at head
1168 * @param s the node to be unspliced
1169 */
1170 final void unsplice(Node pred, Node s) {
1171 s.waiter = null; // disable signals
1172 /*
1173 * See above for rationale. Briefly: if pred still points to
1174 * s, try to unlink s. If s cannot be unlinked, because it is
1175 * trailing node or pred might be unlinked, and neither pred
1176 * nor s are head or offlist, add to sweepVotes, and if enough
1177 * votes have accumulated, sweep.
1178 */
1179 if (pred != null && pred != s && pred.next == s) {
1180 Node n = s.next;
1181 if (n == null ||
1182 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1183 for (;;) { // check if at, or could be, head
1184 Node h = head;
1185 if (h == pred || h == s || h == null)
1186 return; // at head or list empty
1187 if (!h.isMatched())
1188 break;
1189 Node hn = h.next;
1190 if (hn == null)
1191 return; // now empty
1192 if (hn != h && casHead(h, hn))
1193 h.selfLink(); // advance head
1194 }
1195 if (pred.next != pred && s.next != s) { // recheck if offlist
1196 for (;;) { // sweep now if enough votes
1197 int v = sweepVotes;
1198 if (v < SWEEP_THRESHOLD) {
1199 if (casSweepVotes(v, v + 1))
1200 break;
1201 }
1202 else if (casSweepVotes(v, 0)) {
1203 sweep();
1204 break;
1205 }
1206 }
1207 }
1208 }
1209 }
1210 }
1211
1212 /**
1213 * Unlinks matched (typically cancelled) nodes encountered in a
1214 * traversal from head.
1215 */
1216 private void sweep() {
1217 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1218 if (!s.isMatched())
1219 // Unmatched nodes are never self-linked
1220 p = s;
1221 else if ((n = s.next) == null) // trailing node is pinned
1222 break;
1223 else if (s == n) // stale
1224 // No need to also check for p == s, since that implies s == n
1225 p = head;
1226 else
1227 p.casNext(s, n);
1228 }
1229 }
1230
1231 /**
1232 * Creates an initially empty {@code LinkedTransferQueue}.
1233 */
1234 public LinkedTransferQueue() {
1235 head = tail = new Node();
1236 }
1237
1238 /**
1239 * Creates a {@code LinkedTransferQueue}
1240 * initially containing the elements of the given collection,
1241 * added in traversal order of the collection's iterator.
1242 *
1243 * @param c the collection of elements to initially contain
1244 * @throws NullPointerException if the specified collection or any
1245 * of its elements are null
1246 */
1247 public LinkedTransferQueue(Collection<? extends E> c) {
1248 Node h = null, t = null;
1249 for (E e : c) {
1250 Node newNode = new Node(Objects.requireNonNull(e));
1251 if (h == null)
1252 h = t = newNode;
1253 else
1254 t.appendRelaxed(t = newNode);
1255 }
1256 if (h == null)
1257 h = t = new Node();
1258 head = h;
1259 tail = t;
1260 }
1261
1262 /**
1263 * Inserts the specified element at the tail of this queue.
1264 * As the queue is unbounded, this method will never block.
1265 *
1266 * @throws NullPointerException if the specified element is null
1267 */
1268 public void put(E e) {
1269 xfer(e, true, ASYNC, 0);
1270 }
1271
1272 /**
1273 * Inserts the specified element at the tail of this queue.
1274 * As the queue is unbounded, this method will never block or
1275 * return {@code false}.
1276 *
1277 * @return {@code true} (as specified by
1278 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1279 * BlockingQueue.offer})
1280 * @throws NullPointerException if the specified element is null
1281 */
1282 public boolean offer(E e, long timeout, TimeUnit unit) {
1283 xfer(e, true, ASYNC, 0);
1284 return true;
1285 }
1286
1287 /**
1288 * Inserts the specified element at the tail of this queue.
1289 * As the queue is unbounded, this method will never return {@code false}.
1290 *
1291 * @return {@code true} (as specified by {@link Queue#offer})
1292 * @throws NullPointerException if the specified element is null
1293 */
1294 public boolean offer(E e) {
1295 xfer(e, true, ASYNC, 0);
1296 return true;
1297 }
1298
1299 /**
1300 * Inserts the specified element at the tail of this queue.
1301 * As the queue is unbounded, this method will never throw
1302 * {@link IllegalStateException} or return {@code false}.
1303 *
1304 * @return {@code true} (as specified by {@link Collection#add})
1305 * @throws NullPointerException if the specified element is null
1306 */
1307 public boolean add(E e) {
1308 xfer(e, true, ASYNC, 0);
1309 return true;
1310 }
1311
1312 /**
1313 * Transfers the element to a waiting consumer immediately, if possible.
1314 *
1315 * <p>More precisely, transfers the specified element immediately
1316 * if there exists a consumer already waiting to receive it (in
1317 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1318 * otherwise returning {@code false} without enqueuing the element.
1319 *
1320 * @throws NullPointerException if the specified element is null
1321 */
1322 public boolean tryTransfer(E e) {
1323 return xfer(e, true, NOW, 0) == null;
1324 }
1325
1326 /**
1327 * Transfers the element to a consumer, waiting if necessary to do so.
1328 *
1329 * <p>More precisely, transfers the specified element immediately
1330 * if there exists a consumer already waiting to receive it (in
1331 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1332 * else inserts the specified element at the tail of this queue
1333 * and waits until the element is received by a consumer.
1334 *
1335 * @throws NullPointerException if the specified element is null
1336 */
1337 public void transfer(E e) throws InterruptedException {
1338 if (xfer(e, true, SYNC, 0) != null) {
1339 Thread.interrupted(); // failure possible only due to interrupt
1340 throw new InterruptedException();
1341 }
1342 }
1343
1344 /**
1345 * Transfers the element to a consumer if it is possible to do so
1346 * before the timeout elapses.
1347 *
1348 * <p>More precisely, transfers the specified element immediately
1349 * if there exists a consumer already waiting to receive it (in
1350 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1351 * else inserts the specified element at the tail of this queue
1352 * and waits until the element is received by a consumer,
1353 * returning {@code false} if the specified wait time elapses
1354 * before the element can be transferred.
1355 *
1356 * @throws NullPointerException if the specified element is null
1357 */
1358 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1359 throws InterruptedException {
1360 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1361 return true;
1362 if (!Thread.interrupted())
1363 return false;
1364 throw new InterruptedException();
1365 }
1366
1367 public E take() throws InterruptedException {
1368 E e = xfer(null, false, SYNC, 0);
1369 if (e != null)
1370 return e;
1371 Thread.interrupted();
1372 throw new InterruptedException();
1373 }
1374
1375 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1376 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1377 if (e != null || !Thread.interrupted())
1378 return e;
1379 throw new InterruptedException();
1380 }
1381
1382 public E poll() {
1383 return xfer(null, false, NOW, 0);
1384 }
1385
1386 /**
1387 * @throws NullPointerException {@inheritDoc}
1388 * @throws IllegalArgumentException {@inheritDoc}
1389 */
1390 public int drainTo(Collection<? super E> c) {
1391 Objects.requireNonNull(c);
1392 if (c == this)
1393 throw new IllegalArgumentException();
1394 int n = 0;
1395 for (E e; (e = poll()) != null; n++)
1396 c.add(e);
1397 return n;
1398 }
1399
1400 /**
1401 * @throws NullPointerException {@inheritDoc}
1402 * @throws IllegalArgumentException {@inheritDoc}
1403 */
1404 public int drainTo(Collection<? super E> c, int maxElements) {
1405 Objects.requireNonNull(c);
1406 if (c == this)
1407 throw new IllegalArgumentException();
1408 int n = 0;
1409 for (E e; n < maxElements && (e = poll()) != null; n++)
1410 c.add(e);
1411 return n;
1412 }
1413
1414 /**
1415 * Returns an iterator over the elements in this queue in proper sequence.
1416 * The elements will be returned in order from first (head) to last (tail).
1417 *
1418 * <p>The returned iterator is
1419 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1420 *
1421 * @return an iterator over the elements in this queue in proper sequence
1422 */
1423 public Iterator<E> iterator() {
1424 return new Itr();
1425 }
1426
1427 public E peek() {
1428 restartFromHead: for (;;) {
1429 for (Node p = head; p != null;) {
1430 Object item = p.item;
1431 if (p.isData) {
1432 if (item != null) {
1433 @SuppressWarnings("unchecked") E e = (E) item;
1434 return e;
1435 }
1436 }
1437 else if (item == null)
1438 break;
1439 if (p == (p = p.next))
1440 continue restartFromHead;
1441 }
1442 return null;
1443 }
1444 }
1445
1446 /**
1447 * Returns {@code true} if this queue contains no elements.
1448 *
1449 * @return {@code true} if this queue contains no elements
1450 */
1451 public boolean isEmpty() {
1452 return firstDataNode() == null;
1453 }
1454
1455 public boolean hasWaitingConsumer() {
1456 restartFromHead: for (;;) {
1457 for (Node p = head; p != null;) {
1458 Object item = p.item;
1459 if (p.isData) {
1460 if (item != null)
1461 break;
1462 }
1463 else if (item == null)
1464 return true;
1465 if (p == (p = p.next))
1466 continue restartFromHead;
1467 }
1468 return false;
1469 }
1470 }
1471
1472 /**
1473 * Returns the number of elements in this queue. If this queue
1474 * contains more than {@code Integer.MAX_VALUE} elements, returns
1475 * {@code Integer.MAX_VALUE}.
1476 *
1477 * <p>Beware that, unlike in most collections, this method is
1478 * <em>NOT</em> a constant-time operation. Because of the
1479 * asynchronous nature of these queues, determining the current
1480 * number of elements requires an O(n) traversal.
1481 *
1482 * @return the number of elements in this queue
1483 */
1484 public int size() {
1485 return countOfMode(true);
1486 }
1487
1488 public int getWaitingConsumerCount() {
1489 return countOfMode(false);
1490 }
1491
1492 /**
1493 * Removes a single instance of the specified element from this queue,
1494 * if it is present. More formally, removes an element {@code e} such
1495 * that {@code o.equals(e)}, if this queue contains one or more such
1496 * elements.
1497 * Returns {@code true} if this queue contained the specified element
1498 * (or equivalently, if this queue changed as a result of the call).
1499 *
1500 * @param o element to be removed from this queue, if present
1501 * @return {@code true} if this queue changed as a result of the call
1502 */
1503 public boolean remove(Object o) {
1504 if (o == null) return false;
1505 restartFromHead: for (;;) {
1506 for (Node p = head, pred = null; p != null; ) {
1507 Node q = p.next;
1508 final Object item;
1509 if ((item = p.item) != null) {
1510 if (p.isData) {
1511 if (o.equals(item) && p.tryMatch(item, null)) {
1512 skipDeadNodes(pred, p, p, q);
1513 return true;
1514 }
1515 pred = p; p = q; continue;
1516 }
1517 }
1518 else if (!p.isData)
1519 break;
1520 for (Node c = p;; q = p.next) {
1521 if (q == null || !q.isMatched()) {
1522 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1523 }
1524 if (p == (p = q)) continue restartFromHead;
1525 }
1526 }
1527 return false;
1528 }
1529 }
1530
1531 /**
1532 * Returns {@code true} if this queue contains the specified element.
1533 * More formally, returns {@code true} if and only if this queue contains
1534 * at least one element {@code e} such that {@code o.equals(e)}.
1535 *
1536 * @param o object to be checked for containment in this queue
1537 * @return {@code true} if this queue contains the specified element
1538 */
1539 public boolean contains(Object o) {
1540 if (o == null) return false;
1541 restartFromHead: for (;;) {
1542 for (Node p = head, pred = null; p != null; ) {
1543 Node q = p.next;
1544 final Object item;
1545 if ((item = p.item) != null) {
1546 if (p.isData) {
1547 if (o.equals(item))
1548 return true;
1549 pred = p; p = q; continue;
1550 }
1551 }
1552 else if (!p.isData)
1553 break;
1554 for (Node c = p;; q = p.next) {
1555 if (q == null || !q.isMatched()) {
1556 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1557 }
1558 if (p == (p = q)) continue restartFromHead;
1559 }
1560 }
1561 return false;
1562 }
1563 }
1564
1565 /**
1566 * Always returns {@code Integer.MAX_VALUE} because a
1567 * {@code LinkedTransferQueue} is not capacity constrained.
1568 *
1569 * @return {@code Integer.MAX_VALUE} (as specified by
1570 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1571 * BlockingQueue.remainingCapacity})
1572 */
1573 public int remainingCapacity() {
1574 return Integer.MAX_VALUE;
1575 }
1576
1577 /**
1578 * Saves this queue to a stream (that is, serializes it).
1579 *
1580 * @param s the stream
1581 * @throws java.io.IOException if an I/O error occurs
1582 * @serialData All of the elements (each an {@code E}) in
1583 * the proper order, followed by a null
1584 */
1585 private void writeObject(java.io.ObjectOutputStream s)
1586 throws java.io.IOException {
1587 s.defaultWriteObject();
1588 for (E e : this)
1589 s.writeObject(e);
1590 // Use trailing null as sentinel
1591 s.writeObject(null);
1592 }
1593
1594 /**
1595 * Reconstitutes this queue from a stream (that is, deserializes it).
1596 * @param s the stream
1597 * @throws ClassNotFoundException if the class of a serialized object
1598 * could not be found
1599 * @throws java.io.IOException if an I/O error occurs
1600 */
1601 private void readObject(java.io.ObjectInputStream s)
1602 throws java.io.IOException, ClassNotFoundException {
1603
1604 // Read in elements until trailing null sentinel found
1605 Node h = null, t = null;
1606 for (Object item; (item = s.readObject()) != null; ) {
1607 @SuppressWarnings("unchecked")
1608 Node newNode = new Node((E) item);
1609 if (h == null)
1610 h = t = newNode;
1611 else
1612 t.appendRelaxed(t = newNode);
1613 }
1614 if (h == null)
1615 h = t = new Node();
1616 head = h;
1617 tail = t;
1618 }
1619
1620 /**
1621 * @throws NullPointerException {@inheritDoc}
1622 */
1623 public boolean removeIf(Predicate<? super E> filter) {
1624 Objects.requireNonNull(filter);
1625 return bulkRemove(filter);
1626 }
1627
1628 /**
1629 * @throws NullPointerException {@inheritDoc}
1630 */
1631 public boolean removeAll(Collection<?> c) {
1632 Objects.requireNonNull(c);
1633 return bulkRemove(e -> c.contains(e));
1634 }
1635
1636 /**
1637 * @throws NullPointerException {@inheritDoc}
1638 */
1639 public boolean retainAll(Collection<?> c) {
1640 Objects.requireNonNull(c);
1641 return bulkRemove(e -> !c.contains(e));
1642 }
1643
1644 public void clear() {
1645 bulkRemove(e -> true);
1646 }
1647
1648 /**
1649 * Tolerate this many consecutive dead nodes before CAS-collapsing.
1650 * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1651 */
1652 private static final int MAX_HOPS = 8;
1653
1654 /** Implementation of bulk remove methods. */
1655 @SuppressWarnings("unchecked")
1656 private boolean bulkRemove(Predicate<? super E> filter) {
1657 boolean removed = false;
1658 restartFromHead: for (;;) {
1659 int hops = MAX_HOPS;
1660 // c will be CASed to collapse intervening dead nodes between
1661 // pred (or head if null) and p.
1662 for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1663 q = p.next;
1664 final Object item; boolean pAlive;
1665 if (pAlive = ((item = p.item) != null && p.isData)) {
1666 if (filter.test((E) item)) {
1667 if (p.tryMatch(item, null))
1668 removed = true;
1669 pAlive = false;
1670 }
1671 }
1672 else if (!p.isData && item == null)
1673 break;
1674 if (pAlive || q == null || --hops == 0) {
1675 // p might already be self-linked here, but if so:
1676 // - CASing head will surely fail
1677 // - CASing pred's next will be useless but harmless.
1678 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1679 || pAlive) {
1680 // if CAS failed or alive, abandon old pred
1681 hops = MAX_HOPS;
1682 pred = p;
1683 c = q;
1684 }
1685 } else if (p == q)
1686 continue restartFromHead;
1687 }
1688 return removed;
1689 }
1690 }
1691
1692 /**
1693 * Runs action on each element found during a traversal starting at p.
1694 * If p is null, the action is not run.
1695 */
1696 @SuppressWarnings("unchecked")
1697 void forEachFrom(Consumer<? super E> action, Node p) {
1698 for (Node pred = null; p != null; ) {
1699 Node q = p.next;
1700 final Object item;
1701 if ((item = p.item) != null) {
1702 if (p.isData) {
1703 action.accept((E) item);
1704 pred = p; p = q; continue;
1705 }
1706 }
1707 else if (!p.isData)
1708 break;
1709 for (Node c = p;; q = p.next) {
1710 if (q == null || !q.isMatched()) {
1711 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1712 }
1713 if (p == (p = q)) { pred = null; p = head; break; }
1714 }
1715 }
1716 }
1717
1718 /**
1719 * @throws NullPointerException {@inheritDoc}
1720 */
1721 public void forEach(Consumer<? super E> action) {
1722 Objects.requireNonNull(action);
1723 forEachFrom(action, head);
1724 }
1725
1726 // VarHandle mechanics
1727 private static final VarHandle HEAD;
1728 private static final VarHandle TAIL;
1729 private static final VarHandle SWEEPVOTES;
1730 static final VarHandle ITEM;
1731 static final VarHandle NEXT;
1732 static final VarHandle WAITER;
1733 static {
1734 try {
1735 MethodHandles.Lookup l = MethodHandles.lookup();
1736 HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1737 Node.class);
1738 TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1739 Node.class);
1740 SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1741 int.class);
1742 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1743 NEXT = l.findVarHandle(Node.class, "next", Node.class);
1744 WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1745 } catch (ReflectiveOperationException e) {
1746 throw new Error(e);
1747 }
1748
1749 // Reduce the risk of rare disastrous classloading in first call to
1750 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1751 Class<?> ensureLoaded = LockSupport.class;
1752 }
1753 }