ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.146
Committed: Mon Jan 16 01:05:41 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.145: +2 -2 lines
Log Message:
tryAppend: eliminate u temp

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Objects;
17 import java.util.Queue;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.concurrent.locks.LockSupport;
21 import java.util.function.Consumer;
22 import java.util.function.Predicate;
23
24 /**
25 * An unbounded {@link TransferQueue} based on linked nodes.
26 * This queue orders elements FIFO (first-in-first-out) with respect
27 * to any given producer. The <em>head</em> of the queue is that
28 * element that has been on the queue the longest time for some
29 * producer. The <em>tail</em> of the queue is that element that has
30 * been on the queue the shortest time for some producer.
31 *
32 * <p>Beware that, unlike in most collections, the {@code size} method
33 * is <em>NOT</em> a constant-time operation. Because of the
34 * asynchronous nature of these queues, determining the current number
35 * of elements requires a traversal of the elements, and so may report
36 * inaccurate results if this collection is modified during traversal.
37 *
38 * <p>Bulk operations that add, remove, or examine multiple elements,
39 * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40 * are <em>not</em> guaranteed to be performed atomically.
41 * For example, a {@code forEach} traversal concurrent with an {@code
42 * addAll} operation might observe only some of the added elements.
43 *
44 * <p>This class and its iterator implement all of the <em>optional</em>
45 * methods of the {@link Collection} and {@link Iterator} interfaces.
46 *
47 * <p>Memory consistency effects: As with other concurrent
48 * collections, actions in a thread prior to placing an object into a
49 * {@code LinkedTransferQueue}
50 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51 * actions subsequent to the access or removal of that element from
52 * the {@code LinkedTransferQueue} in another thread.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @since 1.7
59 * @author Doug Lea
60 * @param <E> the type of elements held in this queue
61 */
62 public class LinkedTransferQueue<E> extends AbstractQueue<E>
63 implements TransferQueue<E>, java.io.Serializable {
64 private static final long serialVersionUID = -3223113410248163686L;
65
66 /*
67 * *** Overview of Dual Queues with Slack ***
68 *
69 * Dual Queues, introduced by Scherer and Scott
70 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71 * are (linked) queues in which nodes may represent either data or
72 * requests. When a thread tries to enqueue a data node, but
73 * encounters a request node, it instead "matches" and removes it;
74 * and vice versa for enqueuing requests. Blocking Dual Queues
75 * arrange that threads enqueuing unmatched requests block until
76 * other threads provide the match. Dual Synchronous Queues (see
77 * Scherer, Lea, & Scott
78 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79 * additionally arrange that threads enqueuing unmatched data also
80 * block. Dual Transfer Queues support all of these modes, as
81 * dictated by callers.
82 *
83 * A FIFO dual queue may be implemented using a variation of the
84 * Michael & Scott (M&S) lock-free queue algorithm
85 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 * It maintains two pointer fields, "head", pointing to a
87 * (matched) node that in turn points to the first actual
88 * (unmatched) queue node (or null if empty); and "tail" that
89 * points to the last node on the queue (or again null if
90 * empty). For example, here is a possible queue with four data
91 * elements:
92 *
93 * head tail
94 * | |
95 * v v
96 * M -> U -> U -> U -> U
97 *
98 * The M&S queue algorithm is known to be prone to scalability and
99 * overhead limitations when maintaining (via CAS) these head and
100 * tail pointers. This has led to the development of
101 * contention-reducing variants such as elimination arrays (see
102 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103 * optimistic back pointers (see Ladan-Mozes & Shavit
104 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105 * However, the nature of dual queues enables a simpler tactic for
106 * improving M&S-style implementations when dual-ness is needed.
107 *
108 * In a dual queue, each node must atomically maintain its match
109 * status. While there are other possible variants, we implement
110 * this here as: for a data-mode node, matching entails CASing an
111 * "item" field from a non-null data value to null upon match, and
112 * vice-versa for request nodes, CASing from null to a data
113 * value. (Note that the linearization properties of this style of
114 * queue are easy to verify -- elements are made available by
115 * linking, and unavailable by matching.) Compared to plain M&S
116 * queues, this property of dual queues requires one additional
117 * successful atomic operation per enq/deq pair. But it also
118 * enables lower cost variants of queue maintenance mechanics. (A
119 * variation of this idea applies even for non-dual queues that
120 * support deletion of interior elements, such as
121 * j.u.c.ConcurrentLinkedQueue.)
122 *
123 * Once a node is matched, its match status can never again
124 * change. We may thus arrange that the linked list of them
125 * contain a prefix of zero or more matched nodes, followed by a
126 * suffix of zero or more unmatched nodes. (Note that we allow
127 * both the prefix and suffix to be zero length, which in turn
128 * means that we do not use a dummy header.) If we were not
129 * concerned with either time or space efficiency, we could
130 * correctly perform enqueue and dequeue operations by traversing
131 * from a pointer to the initial node; CASing the item of the
132 * first unmatched node on match and CASing the next field of the
133 * trailing node on appends. While this would be a terrible idea
134 * in itself, it does have the benefit of not requiring ANY atomic
135 * updates on head/tail fields.
136 *
137 * We introduce here an approach that lies between the extremes of
138 * never versus always updating queue (head and tail) pointers.
139 * This offers a tradeoff between sometimes requiring extra
140 * traversal steps to locate the first and/or last unmatched
141 * nodes, versus the reduced overhead and contention of fewer
142 * updates to queue pointers. For example, a possible snapshot of
143 * a queue is:
144 *
145 * head tail
146 * | |
147 * v v
148 * M -> M -> U -> U -> U -> U
149 *
150 * The best value for this "slack" (the targeted maximum distance
151 * between the value of "head" and the first unmatched node, and
152 * similarly for "tail") is an empirical matter. We have found
153 * that using very small constants in the range of 1-3 work best
154 * over a range of platforms. Larger values introduce increasing
155 * costs of cache misses and risks of long traversal chains, while
156 * smaller values increase CAS contention and overhead.
157 *
158 * Dual queues with slack differ from plain M&S dual queues by
159 * virtue of only sometimes updating head or tail pointers when
160 * matching, appending, or even traversing nodes; in order to
161 * maintain a targeted slack. The idea of "sometimes" may be
162 * operationalized in several ways. The simplest is to use a
163 * per-operation counter incremented on each traversal step, and
164 * to try (via CAS) to update the associated queue pointer
165 * whenever the count exceeds a threshold. Another, that requires
166 * more overhead, is to use random number generators to update
167 * with a given probability per traversal step.
168 *
169 * In any strategy along these lines, because CASes updating
170 * fields may fail, the actual slack may exceed targeted slack.
171 * However, they may be retried at any time to maintain targets.
172 * Even when using very small slack values, this approach works
173 * well for dual queues because it allows all operations up to the
174 * point of matching or appending an item (hence potentially
175 * allowing progress by another thread) to be read-only, thus not
176 * introducing any further contention. As described below, we
177 * implement this by performing slack maintenance retries only
178 * after these points.
179 *
180 * As an accompaniment to such techniques, traversal overhead can
181 * be further reduced without increasing contention of head
182 * pointer updates: Threads may sometimes shortcut the "next" link
183 * path from the current "head" node to be closer to the currently
184 * known first unmatched node, and similarly for tail. Again, this
185 * may be triggered with using thresholds or randomization.
186 *
187 * These ideas must be further extended to avoid unbounded amounts
188 * of costly-to-reclaim garbage caused by the sequential "next"
189 * links of nodes starting at old forgotten head nodes: As first
190 * described in detail by Boehm
191 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 * delays noticing that any arbitrarily old node has become
193 * garbage, all newer dead nodes will also be unreclaimed.
194 * (Similar issues arise in non-GC environments.) To cope with
195 * this in our implementation, upon CASing to advance the head
196 * pointer, we set the "next" link of the previous head to point
197 * only to itself; thus limiting the length of chains of dead nodes.
198 * (We also take similar care to wipe out possibly garbage
199 * retaining values held in other Node fields.) However, doing so
200 * adds some further complexity to traversal: If any "next"
201 * pointer links to itself, it indicates that the current thread
202 * has lagged behind a head-update, and so the traversal must
203 * continue from the "head". Traversals trying to find the
204 * current tail starting from "tail" may also encounter
205 * self-links, in which case they also continue at "head".
206 *
207 * It is tempting in slack-based scheme to not even use CAS for
208 * updates (similarly to Ladan-Mozes & Shavit). However, this
209 * cannot be done for head updates under the above link-forgetting
210 * mechanics because an update may leave head at a detached node.
211 * And while direct writes are possible for tail updates, they
212 * increase the risk of long retraversals, and hence long garbage
213 * chains, which can be much more costly than is worthwhile
214 * considering that the cost difference of performing a CAS vs
215 * write is smaller when they are not triggered on each operation
216 * (especially considering that writes and CASes equally require
217 * additional GC bookkeeping ("write barriers") that are sometimes
218 * more costly than the writes themselves because of contention).
219 *
220 * *** Overview of implementation ***
221 *
222 * We use a threshold-based approach to updates, with a slack
223 * threshold of two -- that is, we update head/tail when the
224 * current pointer appears to be two or more steps away from the
225 * first/last node. The slack value is hard-wired: a path greater
226 * than one is naturally implemented by checking equality of
227 * traversal pointers except when the list has only one element,
228 * in which case we keep slack threshold at one. Avoiding tracking
229 * explicit counts across method calls slightly simplifies an
230 * already-messy implementation. Using randomization would
231 * probably work better if there were a low-quality dirt-cheap
232 * per-thread one available, but even ThreadLocalRandom is too
233 * heavy for these purposes.
234 *
235 * With such a small slack threshold value, it is not worthwhile
236 * to augment this with path short-circuiting (i.e., unsplicing
237 * interior nodes) except in the case of cancellation/removal (see
238 * below).
239 *
240 * All enqueue/dequeue operations are handled by the single method
241 * "xfer" with parameters indicating whether to act as some form
242 * of offer, put, poll, take, or transfer (each possibly with
243 * timeout). The relative complexity of using one monolithic
244 * method outweighs the code bulk and maintenance problems of
245 * using separate methods for each case.
246 *
247 * Operation consists of up to three phases. The first is
248 * implemented within method xfer, the second in tryAppend, and
249 * the third in method awaitMatch.
250 *
251 * 1. Try to match an existing node
252 *
253 * Starting at head, skip already-matched nodes until finding
254 * an unmatched node of opposite mode, if one exists, in which
255 * case matching it and returning, also if necessary updating
256 * head to one past the matched node (or the node itself if the
257 * list has no other unmatched nodes). If the CAS misses, then
258 * a loop retries advancing head by two steps until either
259 * success or the slack is at most two. By requiring that each
260 * attempt advances head by two (if applicable), we ensure that
261 * the slack does not grow without bound. Traversals also check
262 * if the initial head is now off-list, in which case they
263 * restart at the new head.
264 *
265 * If no candidates are found and the call was untimed
266 * poll/offer (argument "how" is NOW), return.
267 *
268 * 2. Try to append a new node (method tryAppend)
269 *
270 * Starting at current tail pointer, find the actual last node
271 * and try to append a new node. Nodes can be appended only if
272 * their predecessors are either already matched or are of the
273 * same mode. If we detect otherwise, then a new node with
274 * opposite mode must have been appended during traversal, so
275 * we must restart at phase 1. The traversal and update steps
276 * are otherwise similar to phase 1: Retrying upon CAS misses
277 * and checking for staleness. In particular, if a self-link
278 * is encountered, then we can safely jump to a node on the
279 * list by continuing the traversal at current head.
280 *
281 * On successful append, if the call was ASYNC, return.
282 *
283 * 3. Await match or cancellation (method awaitMatch)
284 *
285 * Wait for another thread to match node; instead cancelling if
286 * the current thread was interrupted or the wait timed out. On
287 * multiprocessors, we use front-of-queue spinning: If a node
288 * appears to be the first unmatched node in the queue, it
289 * spins a bit before blocking. In either case, before blocking
290 * it tries to unsplice any nodes between the current "head"
291 * and the first unmatched node.
292 *
293 * Front-of-queue spinning vastly improves performance of
294 * heavily contended queues. And so long as it is relatively
295 * brief and "quiet", spinning does not much impact performance
296 * of less-contended queues. During spins threads check their
297 * interrupt status and generate a thread-local random number
298 * to decide to occasionally perform a Thread.yield. While
299 * yield has underdefined specs, we assume that it might help,
300 * and will not hurt, in limiting impact of spinning on busy
301 * systems. We also use smaller (1/2) spins for nodes that are
302 * not known to be front but whose predecessors have not
303 * blocked -- these "chained" spins avoid artifacts of
304 * front-of-queue rules which otherwise lead to alternating
305 * nodes spinning vs blocking. Further, front threads that
306 * represent phase changes (from data to request node or vice
307 * versa) compared to their predecessors receive additional
308 * chained spins, reflecting longer paths typically required to
309 * unblock threads during phase changes.
310 *
311 *
312 * ** Unlinking removed interior nodes **
313 *
314 * In addition to minimizing garbage retention via self-linking
315 * described above, we also unlink removed interior nodes. These
316 * may arise due to timed out or interrupted waits, or calls to
317 * remove(x) or Iterator.remove. Normally, given a node that was
318 * at one time known to be the predecessor of some node s that is
319 * to be removed, we can unsplice s by CASing the next field of
320 * its predecessor if it still points to s (otherwise s must
321 * already have been removed or is now offlist). But there are two
322 * situations in which we cannot guarantee to make node s
323 * unreachable in this way: (1) If s is the trailing node of list
324 * (i.e., with null next), then it is pinned as the target node
325 * for appends, so can only be removed later after other nodes are
326 * appended. (2) We cannot necessarily unlink s given a
327 * predecessor node that is matched (including the case of being
328 * cancelled): the predecessor may already be unspliced, in which
329 * case some previous reachable node may still point to s.
330 * (For further explanation see Herlihy & Shavit "The Art of
331 * Multiprocessor Programming" chapter 9). Although, in both
332 * cases, we can rule out the need for further action if either s
333 * or its predecessor are (or can be made to be) at, or fall off
334 * from, the head of list.
335 *
336 * Without taking these into account, it would be possible for an
337 * unbounded number of supposedly removed nodes to remain
338 * reachable. Situations leading to such buildup are uncommon but
339 * can occur in practice; for example when a series of short timed
340 * calls to poll repeatedly time out but never otherwise fall off
341 * the list because of an untimed call to take at the front of the
342 * queue.
343 *
344 * When these cases arise, rather than always retraversing the
345 * entire list to find an actual predecessor to unlink (which
346 * won't help for case (1) anyway), we record a conservative
347 * estimate of possible unsplice failures (in "sweepVotes").
348 * We trigger a full sweep when the estimate exceeds a threshold
349 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350 * removal failures to tolerate before sweeping through, unlinking
351 * cancelled nodes that were not unlinked upon initial removal.
352 * We perform sweeps by the thread hitting threshold (rather than
353 * background threads or by spreading work to other threads)
354 * because in the main contexts in which removal occurs, the
355 * caller is already timed-out, cancelled, or performing a
356 * potentially O(n) operation (e.g. remove(x)), none of which are
357 * time-critical enough to warrant the overhead that alternatives
358 * would impose on other threads.
359 *
360 * Because the sweepVotes estimate is conservative, and because
361 * nodes become unlinked "naturally" as they fall off the head of
362 * the queue, and because we allow votes to accumulate even while
363 * sweeps are in progress, there are typically significantly fewer
364 * such nodes than estimated. Choice of a threshold value
365 * balances the likelihood of wasted effort and contention, versus
366 * providing a worst-case bound on retention of interior nodes in
367 * quiescent queues. The value defined below was chosen
368 * empirically to balance these under various timeout scenarios.
369 *
370 * Note that we cannot self-link unlinked interior nodes during
371 * sweeps. However, the associated garbage chains terminate when
372 * some successor ultimately falls off the head of the list and is
373 * self-linked.
374 */
375
376 /** True if on multiprocessor */
377 private static final boolean MP =
378 Runtime.getRuntime().availableProcessors() > 1;
379
380 /**
381 * The number of times to spin (with randomly interspersed calls
382 * to Thread.yield) on multiprocessor before blocking when a node
383 * is apparently the first waiter in the queue. See above for
384 * explanation. Must be a power of two. The value is empirically
385 * derived -- it works pretty well across a variety of processors,
386 * numbers of CPUs, and OSes.
387 */
388 private static final int FRONT_SPINS = 1 << 7;
389
390 /**
391 * The number of times to spin before blocking when a node is
392 * preceded by another node that is apparently spinning. Also
393 * serves as an increment to FRONT_SPINS on phase changes, and as
394 * base average frequency for yielding during spins. Must be a
395 * power of two.
396 */
397 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398
399 /**
400 * The maximum number of estimated removal failures (sweepVotes)
401 * to tolerate before sweeping through the queue unlinking
402 * cancelled nodes that were not unlinked upon initial
403 * removal. See above for explanation. The value must be at least
404 * two to avoid useless sweeps when removing trailing nodes.
405 */
406 static final int SWEEP_THRESHOLD = 32;
407
408 /**
409 * Queue nodes. Uses Object, not E, for items to allow forgetting
410 * them after use. Writes that are intrinsically ordered wrt
411 * other accesses or CASes use simple relaxed forms.
412 */
413 static final class Node {
414 final boolean isData; // false if this is a request node
415 volatile Object item; // initially non-null if isData; CASed to match
416 volatile Node next;
417 volatile Thread waiter; // null when not waiting for a match
418
419 /**
420 * Constructs a data node holding item if item is non-null,
421 * else a request node. Uses relaxed write because item can
422 * only be seen after piggy-backing publication via CAS.
423 */
424 Node(Object item) {
425 ITEM.set(this, item);
426 isData = (item != null);
427 }
428
429 /** Constructs a (matched data) dummy node. */
430 Node() {
431 isData = true;
432 }
433
434 final boolean casNext(Node cmp, Node val) {
435 // assert val != null;
436 return NEXT.compareAndSet(this, cmp, val);
437 }
438
439 final boolean casItem(Object cmp, Object val) {
440 // assert isData == (cmp != null);
441 // assert isData == (val == null);
442 // assert !(cmp instanceof Node);
443 return ITEM.compareAndSet(this, cmp, val);
444 }
445
446 /**
447 * Links node to itself to avoid garbage retention. Called
448 * only after CASing head field, so uses relaxed write.
449 */
450 final void selfLink() {
451 // assert isMatched();
452 NEXT.setRelease(this, this);
453 }
454
455 final void appendRelaxed(Node next) {
456 // assert next != null;
457 // assert this.next == null;
458 NEXT.set(this, next);
459 }
460
461 /**
462 * Sets item (of a request node) to self and waiter to null,
463 * to avoid garbage retention after matching or cancelling.
464 * Uses relaxed writes because order is already constrained in
465 * the only calling contexts: item is forgotten only after
466 * volatile/atomic mechanics that extract items, and visitors
467 * of request nodes only ever check whether item is null.
468 * Similarly, clearing waiter follows either CAS or return
469 * from park (if ever parked; else we don't care).
470 */
471 final void forgetContents() {
472 // assert isMatched();
473 if (!isData)
474 ITEM.set(this, this);
475 WAITER.set(this, null);
476 }
477
478 /**
479 * Returns true if this node has been matched, including the
480 * case of artificial matches due to cancellation.
481 */
482 final boolean isMatched() {
483 return isData == (item == null);
484 }
485
486 /** Tries to CAS-match this node; if successful, wakes waiter. */
487 final boolean tryMatch(Object cmp, Object val) {
488 if (casItem(cmp, val)) {
489 LockSupport.unpark(waiter);
490 return true;
491 }
492 return false;
493 }
494
495 /**
496 * Returns true if a node with the given mode cannot be
497 * appended to this node because this node is unmatched and
498 * has opposite data mode.
499 */
500 final boolean cannotPrecede(boolean haveData) {
501 boolean d = isData;
502 return d != haveData && d != (item == null);
503 }
504
505 private static final long serialVersionUID = -3375979862319811754L;
506 }
507
508 /**
509 * A node from which the first live (non-matched) node (if any)
510 * can be reached in O(1) time.
511 * Invariants:
512 * - all live nodes are reachable from head via .next
513 * - head != null
514 * - (tmp = head).next != tmp || tmp != head
515 * Non-invariants:
516 * - head may or may not be live
517 * - it is permitted for tail to lag behind head, that is, for tail
518 * to not be reachable from head!
519 */
520 transient volatile Node head;
521
522 /**
523 * A node from which the last node on list (that is, the unique
524 * node with node.next == null) can be reached in O(1) time.
525 * Invariants:
526 * - the last node is always reachable from tail via .next
527 * - tail != null
528 * Non-invariants:
529 * - tail may or may not be live
530 * - it is permitted for tail to lag behind head, that is, for tail
531 * to not be reachable from head!
532 * - tail.next may or may not be self-linked.
533 */
534 private transient volatile Node tail;
535
536 /** The number of apparent failures to unsplice removed nodes */
537 private transient volatile int sweepVotes;
538
539 private boolean casTail(Node cmp, Node val) {
540 // assert cmp != null;
541 // assert val != null;
542 return TAIL.compareAndSet(this, cmp, val);
543 }
544
545 private boolean casHead(Node cmp, Node val) {
546 return HEAD.compareAndSet(this, cmp, val);
547 }
548
549 private boolean casSweepVotes(int cmp, int val) {
550 return SWEEPVOTES.compareAndSet(this, cmp, val);
551 }
552
553 /**
554 * Tries to CAS pred.next (or head, if pred is null) from c to p.
555 * Caller must ensure that we're not unlinking the trailing node.
556 */
557 private boolean tryCasSuccessor(Node pred, Node c, Node p) {
558 // assert p != null;
559 // assert c.isData != (c.item != null);
560 // assert c != p;
561 if (pred != null)
562 return pred.casNext(c, p);
563 if (casHead(c, p)) {
564 c.selfLink();
565 return true;
566 }
567 return false;
568 }
569
570 /**
571 * Collapses dead (matched) nodes between pred and q.
572 * @param pred the last known live node, or null if none
573 * @param c the first dead node
574 * @param p the last dead node
575 * @param q p.next: the next live node, or null if at end
576 * @return either old pred or p if pred dead or CAS failed
577 */
578 private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
579 // assert pred != c;
580 // assert p != q;
581 // assert c.isMatched();
582 // assert p.isMatched();
583 if (q == null) {
584 // Never unlink trailing node.
585 if (c == p) return pred;
586 q = p;
587 }
588 return (tryCasSuccessor(pred, c, q)
589 && (pred == null || !pred.isMatched()))
590 ? pred : p;
591 }
592
593 /**
594 * Collapses dead (matched) nodes between h and p.
595 * h was once head, and all nodes between h and p are dead.
596 */
597 private void skipDeadNodesNearHead(Node h, Node p) {
598 // assert h != p;
599 // assert p.isMatched();
600 // find live or trailing node, starting at p
601 for (Node q; (q = p.next) != null; ) {
602 if (!q.isMatched()) {
603 p = q;
604 break;
605 }
606 if (p == (p = q))
607 return;
608 }
609 if (h == HEAD.getAcquire(this) && casHead(h, p))
610 h.selfLink();
611 }
612
613 /* Possible values for "how" argument in xfer method. */
614
615 private static final int NOW = 0; // for untimed poll, tryTransfer
616 private static final int ASYNC = 1; // for offer, put, add
617 private static final int SYNC = 2; // for transfer, take
618 private static final int TIMED = 3; // for timed poll, tryTransfer
619
620 /**
621 * Implements all queuing methods. See above for explanation.
622 *
623 * @param e the item or null for take
624 * @param haveData true if this is a put, else a take
625 * @param how NOW, ASYNC, SYNC, or TIMED
626 * @param nanos timeout in nanosecs, used only if mode is TIMED
627 * @return an item if matched, else e
628 * @throws NullPointerException if haveData mode but e is null
629 */
630 private E xfer(E e, boolean haveData, int how, long nanos) {
631 if (haveData && (e == null))
632 throw new NullPointerException();
633 Node s = null; // the node to append, if needed
634
635 restartFromHead: for (;;) {
636 for (Node h = head, p = h; p != null;) { // find & match first node
637 final boolean isData;
638 final Object item;
639 if (((item = p.item) != null) == (isData = p.isData)) {
640 // unmatched
641 if (isData == haveData) // can't match
642 break;
643 if (p.tryMatch(item, e)) {
644 // collapse at least 2
645 if (h != p) skipDeadNodesNearHead(h, p);
646 @SuppressWarnings("unchecked") E itemE = (E) item;
647 return itemE;
648 }
649 }
650 if (p == (p = p.next))
651 continue restartFromHead;
652 }
653
654 if (how != NOW) { // No matches available
655 if (s == null)
656 s = new Node(e);
657 Node pred = tryAppend(s, haveData);
658 if (pred == null)
659 continue restartFromHead; // lost race vs opposite mode
660 if (how != ASYNC)
661 return awaitMatch(s, pred, e, (how == TIMED), nanos);
662 }
663 return e; // not waiting
664 }
665 }
666
667 /**
668 * Tries to append node s as tail.
669 *
670 * @param s the node to append
671 * @param haveData true if appending in data mode
672 * @return null on failure due to losing race with append in
673 * different mode, else s's predecessor, or s itself if no
674 * predecessor
675 */
676 private Node tryAppend(Node s, boolean haveData) {
677 // assert head != null;
678 // assert tail != null;
679 // assert s.isData == haveData;
680 for (Node t = tail, p = t;;) { // move p to last node and append
681 Node n;
682 if (p.cannotPrecede(haveData))
683 return null; // lost race vs opposite mode
684 else if ((n = p.next) != null) // not last; keep traversing
685 p = (p != t && t != (t = tail)) ? t : // stale tail
686 (p != n) ? n : head; // restart if off list
687 else if (!p.casNext(null, s))
688 p = p.next; // re-read on CAS failure
689 else {
690 if (p != t) { // update if slack now >= 2
691 while ((tail != t || !casTail(t, s)) &&
692 (t = tail) != null &&
693 (s = t.next) != null && // advance and retry
694 (s = s.next) != null && s != t);
695 }
696 return p;
697 }
698 }
699 }
700
701 /**
702 * Spins/yields/blocks until node s is matched or caller gives up.
703 *
704 * @param s the waiting node
705 * @param pred the predecessor of s, or s itself if it has no
706 * predecessor, or null if unknown (the null case does not occur
707 * in any current calls but may in possible future extensions)
708 * @param e the comparison value for checking match
709 * @param timed if true, wait only until timeout elapses
710 * @param nanos timeout in nanosecs, used only if timed is true
711 * @return matched item, or e if unmatched on interrupt or timeout
712 */
713 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
714 final long deadline = timed ? System.nanoTime() + nanos : 0L;
715 Thread w = Thread.currentThread();
716 int spins = -1; // initialized after first item and cancel checks
717 ThreadLocalRandom randomYields = null; // bound if needed
718
719 for (;;) {
720 final Object item;
721 if ((item = s.item) != e) { // matched
722 // assert item != s;
723 s.forgetContents(); // avoid garbage
724 @SuppressWarnings("unchecked") E itemE = (E) item;
725 return itemE;
726 }
727 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
728 // try to cancel and unlink
729 if (s.casItem(e, s.isData ? null : s)) {
730 unsplice(pred, s);
731 return e;
732 }
733 // return normally if lost CAS
734 }
735 else if (spins < 0) { // establish spins at/near front
736 if ((spins = spinsFor(pred, s.isData)) > 0)
737 randomYields = ThreadLocalRandom.current();
738 }
739 else if (spins > 0) { // spin
740 --spins;
741 if (randomYields.nextInt(CHAINED_SPINS) == 0)
742 Thread.yield(); // occasionally yield
743 }
744 else if (s.waiter == null) {
745 s.waiter = w; // request unpark then recheck
746 }
747 else if (timed) {
748 nanos = deadline - System.nanoTime();
749 if (nanos > 0L)
750 LockSupport.parkNanos(this, nanos);
751 }
752 else {
753 LockSupport.park(this);
754 }
755 }
756 }
757
758 /**
759 * Returns spin/yield value for a node with given predecessor and
760 * data mode. See above for explanation.
761 */
762 private static int spinsFor(Node pred, boolean haveData) {
763 if (MP && pred != null) {
764 if (pred.isData != haveData) // phase change
765 return FRONT_SPINS + CHAINED_SPINS;
766 if (pred.isMatched()) // probably at front
767 return FRONT_SPINS;
768 if (pred.waiter == null) // pred apparently spinning
769 return CHAINED_SPINS;
770 }
771 return 0;
772 }
773
774 /* -------------- Traversal methods -------------- */
775
776 /**
777 * Returns the first unmatched data node, or null if none.
778 * Callers must recheck if the returned node is unmatched
779 * before using.
780 */
781 final Node firstDataNode() {
782 Node first = null;
783 restartFromHead: for (;;) {
784 Node h = head, p = h;
785 for (; p != null;) {
786 final Object item;
787 if ((item = p.item) != null) {
788 if (p.isData) {
789 first = p;
790 break;
791 }
792 }
793 else if (!p.isData)
794 break;
795 final Node q;
796 if ((q = p.next) == null)
797 break;
798 if (p == (p = q))
799 continue restartFromHead;
800 }
801 if (p != h && casHead(h, p))
802 h.selfLink();
803 return first;
804 }
805 }
806
807 /**
808 * Traverses and counts unmatched nodes of the given mode.
809 * Used by methods size and getWaitingConsumerCount.
810 */
811 private int countOfMode(boolean data) {
812 restartFromHead: for (;;) {
813 int count = 0;
814 for (Node p = head; p != null;) {
815 if (!p.isMatched()) {
816 if (p.isData != data)
817 return 0;
818 if (++count == Integer.MAX_VALUE)
819 break; // @see Collection.size()
820 }
821 if (p == (p = p.next))
822 continue restartFromHead;
823 }
824 return count;
825 }
826 }
827
828 public String toString() {
829 String[] a = null;
830 restartFromHead: for (;;) {
831 int charLength = 0;
832 int size = 0;
833 for (Node p = head; p != null;) {
834 Object item = p.item;
835 if (p.isData) {
836 if (item != null) {
837 if (a == null)
838 a = new String[4];
839 else if (size == a.length)
840 a = Arrays.copyOf(a, 2 * size);
841 String s = item.toString();
842 a[size++] = s;
843 charLength += s.length();
844 }
845 } else if (item == null)
846 break;
847 if (p == (p = p.next))
848 continue restartFromHead;
849 }
850
851 if (size == 0)
852 return "[]";
853
854 return Helpers.toString(a, size, charLength);
855 }
856 }
857
858 private Object[] toArrayInternal(Object[] a) {
859 Object[] x = a;
860 restartFromHead: for (;;) {
861 int size = 0;
862 for (Node p = head; p != null;) {
863 Object item = p.item;
864 if (p.isData) {
865 if (item != null) {
866 if (x == null)
867 x = new Object[4];
868 else if (size == x.length)
869 x = Arrays.copyOf(x, 2 * (size + 4));
870 x[size++] = item;
871 }
872 } else if (item == null)
873 break;
874 if (p == (p = p.next))
875 continue restartFromHead;
876 }
877 if (x == null)
878 return new Object[0];
879 else if (a != null && size <= a.length) {
880 if (a != x)
881 System.arraycopy(x, 0, a, 0, size);
882 if (size < a.length)
883 a[size] = null;
884 return a;
885 }
886 return (size == x.length) ? x : Arrays.copyOf(x, size);
887 }
888 }
889
890 /**
891 * Returns an array containing all of the elements in this queue, in
892 * proper sequence.
893 *
894 * <p>The returned array will be "safe" in that no references to it are
895 * maintained by this queue. (In other words, this method must allocate
896 * a new array). The caller is thus free to modify the returned array.
897 *
898 * <p>This method acts as bridge between array-based and collection-based
899 * APIs.
900 *
901 * @return an array containing all of the elements in this queue
902 */
903 public Object[] toArray() {
904 return toArrayInternal(null);
905 }
906
907 /**
908 * Returns an array containing all of the elements in this queue, in
909 * proper sequence; the runtime type of the returned array is that of
910 * the specified array. If the queue fits in the specified array, it
911 * is returned therein. Otherwise, a new array is allocated with the
912 * runtime type of the specified array and the size of this queue.
913 *
914 * <p>If this queue fits in the specified array with room to spare
915 * (i.e., the array has more elements than this queue), the element in
916 * the array immediately following the end of the queue is set to
917 * {@code null}.
918 *
919 * <p>Like the {@link #toArray()} method, this method acts as bridge between
920 * array-based and collection-based APIs. Further, this method allows
921 * precise control over the runtime type of the output array, and may,
922 * under certain circumstances, be used to save allocation costs.
923 *
924 * <p>Suppose {@code x} is a queue known to contain only strings.
925 * The following code can be used to dump the queue into a newly
926 * allocated array of {@code String}:
927 *
928 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
929 *
930 * Note that {@code toArray(new Object[0])} is identical in function to
931 * {@code toArray()}.
932 *
933 * @param a the array into which the elements of the queue are to
934 * be stored, if it is big enough; otherwise, a new array of the
935 * same runtime type is allocated for this purpose
936 * @return an array containing all of the elements in this queue
937 * @throws ArrayStoreException if the runtime type of the specified array
938 * is not a supertype of the runtime type of every element in
939 * this queue
940 * @throws NullPointerException if the specified array is null
941 */
942 @SuppressWarnings("unchecked")
943 public <T> T[] toArray(T[] a) {
944 Objects.requireNonNull(a);
945 return (T[]) toArrayInternal(a);
946 }
947
948 /**
949 * Weakly-consistent iterator.
950 *
951 * Lazily updated ancestor is expected to be amortized O(1) remove(),
952 * but O(n) in the worst case, when lastRet is concurrently deleted.
953 */
954 final class Itr implements Iterator<E> {
955 private Node nextNode; // next node to return item for
956 private E nextItem; // the corresponding item
957 private Node lastRet; // last returned node, to support remove
958 private Node ancestor; // Helps unlink lastRet on remove()
959
960 /**
961 * Moves to next node after pred, or first node if pred null.
962 */
963 @SuppressWarnings("unchecked")
964 private void advance(Node pred) {
965 for (Node p = (pred == null) ? head : pred.next, c = p;
966 p != null; ) {
967 final Object item;
968 if ((item = p.item) != null && p.isData) {
969 nextNode = p;
970 nextItem = (E) item;
971 if (c != p)
972 tryCasSuccessor(pred, c, p);
973 return;
974 }
975 else if (!p.isData && item == null)
976 break;
977 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
978 pred = p;
979 c = p = p.next;
980 }
981 else if (p == (p = p.next)) {
982 pred = null;
983 c = p = head;
984 }
985 }
986 nextItem = null;
987 nextNode = null;
988 }
989
990 Itr() {
991 advance(null);
992 }
993
994 public final boolean hasNext() {
995 return nextNode != null;
996 }
997
998 public final E next() {
999 final Node p;
1000 if ((p = nextNode) == null) throw new NoSuchElementException();
1001 E e = nextItem;
1002 advance(lastRet = p);
1003 return e;
1004 }
1005
1006 public void forEachRemaining(Consumer<? super E> action) {
1007 Objects.requireNonNull(action);
1008 Node q = null;
1009 for (Node p; (p = nextNode) != null; advance(q = p))
1010 action.accept(nextItem);
1011 if (q != null)
1012 lastRet = q;
1013 }
1014
1015 public final void remove() {
1016 final Node lastRet = this.lastRet;
1017 if (lastRet == null)
1018 throw new IllegalStateException();
1019 this.lastRet = null;
1020 if (lastRet.item == null) // already deleted?
1021 return;
1022 // Advance ancestor, collapsing intervening dead nodes
1023 Node pred = ancestor;
1024 for (Node p = (pred == null) ? head : pred.next, c = p, q;
1025 p != null; ) {
1026 if (p == lastRet) {
1027 final Object item;
1028 if ((item = p.item) != null)
1029 p.tryMatch(item, null);
1030 if ((q = p.next) == null) q = p;
1031 if (c != q) tryCasSuccessor(pred, c, q);
1032 ancestor = pred;
1033 return;
1034 }
1035 final Object item; final boolean pAlive;
1036 if (pAlive = ((item = p.item) != null && p.isData)) {
1037 // exceptionally, nothing to do
1038 }
1039 else if (!p.isData && item == null)
1040 break;
1041 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1042 pred = p;
1043 c = p = p.next;
1044 }
1045 else if (p == (p = p.next)) {
1046 pred = null;
1047 c = p = head;
1048 }
1049 }
1050 // traversal failed to find lastRet; must have been deleted;
1051 // leave ancestor at original location to avoid overshoot;
1052 // better luck next time!
1053
1054 // assert lastRet.isMatched();
1055 }
1056 }
1057
1058 /** A customized variant of Spliterators.IteratorSpliterator */
1059 final class LTQSpliterator implements Spliterator<E> {
1060 static final int MAX_BATCH = 1 << 25; // max batch array size;
1061 Node current; // current node; null until initialized
1062 int batch; // batch size for splits
1063 boolean exhausted; // true when no more nodes
1064 LTQSpliterator() {}
1065
1066 public Spliterator<E> trySplit() {
1067 Node p, q;
1068 if ((p = current()) == null || (q = p.next) == null)
1069 return null;
1070 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1071 Object[] a = null;
1072 do {
1073 final Object item = p.item;
1074 if (p.isData) {
1075 if (item != null)
1076 ((a != null) ? a : (a = new Object[n]))[i++] = item;
1077 } else if (item == null) {
1078 p = null;
1079 break;
1080 }
1081 if (p == (p = q))
1082 p = firstDataNode();
1083 } while (p != null && (q = p.next) != null && i < n);
1084 setCurrent(p);
1085 return (i == 0) ? null :
1086 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1087 Spliterator.NONNULL |
1088 Spliterator.CONCURRENT));
1089 }
1090
1091 public void forEachRemaining(Consumer<? super E> action) {
1092 Objects.requireNonNull(action);
1093 final Node p;
1094 if ((p = current()) != null) {
1095 current = null;
1096 exhausted = true;
1097 forEachFrom(action, p);
1098 }
1099 }
1100
1101 @SuppressWarnings("unchecked")
1102 public boolean tryAdvance(Consumer<? super E> action) {
1103 Objects.requireNonNull(action);
1104 Node p;
1105 if ((p = current()) != null) {
1106 E e = null;
1107 do {
1108 final Object item = p.item;
1109 final boolean isData = p.isData;
1110 if (p == (p = p.next))
1111 p = head;
1112 if (isData) {
1113 if (item != null) {
1114 e = (E) item;
1115 break;
1116 }
1117 }
1118 else if (item == null)
1119 p = null;
1120 } while (p != null);
1121 setCurrent(p);
1122 if (e != null) {
1123 action.accept(e);
1124 return true;
1125 }
1126 }
1127 return false;
1128 }
1129
1130 private void setCurrent(Node p) {
1131 if ((current = p) == null)
1132 exhausted = true;
1133 }
1134
1135 private Node current() {
1136 Node p;
1137 if ((p = current) == null && !exhausted)
1138 setCurrent(p = firstDataNode());
1139 return p;
1140 }
1141
1142 public long estimateSize() { return Long.MAX_VALUE; }
1143
1144 public int characteristics() {
1145 return (Spliterator.ORDERED |
1146 Spliterator.NONNULL |
1147 Spliterator.CONCURRENT);
1148 }
1149 }
1150
1151 /**
1152 * Returns a {@link Spliterator} over the elements in this queue.
1153 *
1154 * <p>The returned spliterator is
1155 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1156 *
1157 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1158 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1159 *
1160 * @implNote
1161 * The {@code Spliterator} implements {@code trySplit} to permit limited
1162 * parallelism.
1163 *
1164 * @return a {@code Spliterator} over the elements in this queue
1165 * @since 1.8
1166 */
1167 public Spliterator<E> spliterator() {
1168 return new LTQSpliterator();
1169 }
1170
1171 /* -------------- Removal methods -------------- */
1172
1173 /**
1174 * Unsplices (now or later) the given deleted/cancelled node with
1175 * the given predecessor.
1176 *
1177 * @param pred a node that was at one time known to be the
1178 * predecessor of s, or null or s itself if s is/was at head
1179 * @param s the node to be unspliced
1180 */
1181 final void unsplice(Node pred, Node s) {
1182 s.waiter = null; // disable signals
1183 /*
1184 * See above for rationale. Briefly: if pred still points to
1185 * s, try to unlink s. If s cannot be unlinked, because it is
1186 * trailing node or pred might be unlinked, and neither pred
1187 * nor s are head or offlist, add to sweepVotes, and if enough
1188 * votes have accumulated, sweep.
1189 */
1190 if (pred != null && pred != s && pred.next == s) {
1191 Node n = s.next;
1192 if (n == null ||
1193 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1194 for (;;) { // check if at, or could be, head
1195 Node h = head;
1196 if (h == pred || h == s || h == null)
1197 return; // at head or list empty
1198 if (!h.isMatched())
1199 break;
1200 Node hn = h.next;
1201 if (hn == null)
1202 return; // now empty
1203 if (hn != h && casHead(h, hn))
1204 h.selfLink(); // advance head
1205 }
1206 if (pred.next != pred && s.next != s) { // recheck if offlist
1207 for (;;) { // sweep now if enough votes
1208 int v = sweepVotes;
1209 if (v < SWEEP_THRESHOLD) {
1210 if (casSweepVotes(v, v + 1))
1211 break;
1212 }
1213 else if (casSweepVotes(v, 0)) {
1214 sweep();
1215 break;
1216 }
1217 }
1218 }
1219 }
1220 }
1221 }
1222
1223 /**
1224 * Unlinks matched (typically cancelled) nodes encountered in a
1225 * traversal from head.
1226 */
1227 private void sweep() {
1228 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1229 if (!s.isMatched())
1230 // Unmatched nodes are never self-linked
1231 p = s;
1232 else if ((n = s.next) == null) // trailing node is pinned
1233 break;
1234 else if (s == n) // stale
1235 // No need to also check for p == s, since that implies s == n
1236 p = head;
1237 else
1238 p.casNext(s, n);
1239 }
1240 }
1241
1242 /**
1243 * Creates an initially empty {@code LinkedTransferQueue}.
1244 */
1245 public LinkedTransferQueue() {
1246 head = tail = new Node();
1247 }
1248
1249 /**
1250 * Creates a {@code LinkedTransferQueue}
1251 * initially containing the elements of the given collection,
1252 * added in traversal order of the collection's iterator.
1253 *
1254 * @param c the collection of elements to initially contain
1255 * @throws NullPointerException if the specified collection or any
1256 * of its elements are null
1257 */
1258 public LinkedTransferQueue(Collection<? extends E> c) {
1259 Node h = null, t = null;
1260 for (E e : c) {
1261 Node newNode = new Node(Objects.requireNonNull(e));
1262 if (h == null)
1263 h = t = newNode;
1264 else
1265 t.appendRelaxed(t = newNode);
1266 }
1267 if (h == null)
1268 h = t = new Node();
1269 head = h;
1270 tail = t;
1271 }
1272
1273 /**
1274 * Inserts the specified element at the tail of this queue.
1275 * As the queue is unbounded, this method will never block.
1276 *
1277 * @throws NullPointerException if the specified element is null
1278 */
1279 public void put(E e) {
1280 xfer(e, true, ASYNC, 0);
1281 }
1282
1283 /**
1284 * Inserts the specified element at the tail of this queue.
1285 * As the queue is unbounded, this method will never block or
1286 * return {@code false}.
1287 *
1288 * @return {@code true} (as specified by
1289 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1290 * BlockingQueue.offer})
1291 * @throws NullPointerException if the specified element is null
1292 */
1293 public boolean offer(E e, long timeout, TimeUnit unit) {
1294 xfer(e, true, ASYNC, 0);
1295 return true;
1296 }
1297
1298 /**
1299 * Inserts the specified element at the tail of this queue.
1300 * As the queue is unbounded, this method will never return {@code false}.
1301 *
1302 * @return {@code true} (as specified by {@link Queue#offer})
1303 * @throws NullPointerException if the specified element is null
1304 */
1305 public boolean offer(E e) {
1306 xfer(e, true, ASYNC, 0);
1307 return true;
1308 }
1309
1310 /**
1311 * Inserts the specified element at the tail of this queue.
1312 * As the queue is unbounded, this method will never throw
1313 * {@link IllegalStateException} or return {@code false}.
1314 *
1315 * @return {@code true} (as specified by {@link Collection#add})
1316 * @throws NullPointerException if the specified element is null
1317 */
1318 public boolean add(E e) {
1319 xfer(e, true, ASYNC, 0);
1320 return true;
1321 }
1322
1323 /**
1324 * Transfers the element to a waiting consumer immediately, if possible.
1325 *
1326 * <p>More precisely, transfers the specified element immediately
1327 * if there exists a consumer already waiting to receive it (in
1328 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1329 * otherwise returning {@code false} without enqueuing the element.
1330 *
1331 * @throws NullPointerException if the specified element is null
1332 */
1333 public boolean tryTransfer(E e) {
1334 return xfer(e, true, NOW, 0) == null;
1335 }
1336
1337 /**
1338 * Transfers the element to a consumer, waiting if necessary to do so.
1339 *
1340 * <p>More precisely, transfers the specified element immediately
1341 * if there exists a consumer already waiting to receive it (in
1342 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1343 * else inserts the specified element at the tail of this queue
1344 * and waits until the element is received by a consumer.
1345 *
1346 * @throws NullPointerException if the specified element is null
1347 */
1348 public void transfer(E e) throws InterruptedException {
1349 if (xfer(e, true, SYNC, 0) != null) {
1350 Thread.interrupted(); // failure possible only due to interrupt
1351 throw new InterruptedException();
1352 }
1353 }
1354
1355 /**
1356 * Transfers the element to a consumer if it is possible to do so
1357 * before the timeout elapses.
1358 *
1359 * <p>More precisely, transfers the specified element immediately
1360 * if there exists a consumer already waiting to receive it (in
1361 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1362 * else inserts the specified element at the tail of this queue
1363 * and waits until the element is received by a consumer,
1364 * returning {@code false} if the specified wait time elapses
1365 * before the element can be transferred.
1366 *
1367 * @throws NullPointerException if the specified element is null
1368 */
1369 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1370 throws InterruptedException {
1371 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1372 return true;
1373 if (!Thread.interrupted())
1374 return false;
1375 throw new InterruptedException();
1376 }
1377
1378 public E take() throws InterruptedException {
1379 E e = xfer(null, false, SYNC, 0);
1380 if (e != null)
1381 return e;
1382 Thread.interrupted();
1383 throw new InterruptedException();
1384 }
1385
1386 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1387 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1388 if (e != null || !Thread.interrupted())
1389 return e;
1390 throw new InterruptedException();
1391 }
1392
1393 public E poll() {
1394 return xfer(null, false, NOW, 0);
1395 }
1396
1397 /**
1398 * @throws NullPointerException {@inheritDoc}
1399 * @throws IllegalArgumentException {@inheritDoc}
1400 */
1401 public int drainTo(Collection<? super E> c) {
1402 Objects.requireNonNull(c);
1403 if (c == this)
1404 throw new IllegalArgumentException();
1405 int n = 0;
1406 for (E e; (e = poll()) != null; n++)
1407 c.add(e);
1408 return n;
1409 }
1410
1411 /**
1412 * @throws NullPointerException {@inheritDoc}
1413 * @throws IllegalArgumentException {@inheritDoc}
1414 */
1415 public int drainTo(Collection<? super E> c, int maxElements) {
1416 Objects.requireNonNull(c);
1417 if (c == this)
1418 throw new IllegalArgumentException();
1419 int n = 0;
1420 for (E e; n < maxElements && (e = poll()) != null; n++)
1421 c.add(e);
1422 return n;
1423 }
1424
1425 /**
1426 * Returns an iterator over the elements in this queue in proper sequence.
1427 * The elements will be returned in order from first (head) to last (tail).
1428 *
1429 * <p>The returned iterator is
1430 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1431 *
1432 * @return an iterator over the elements in this queue in proper sequence
1433 */
1434 public Iterator<E> iterator() {
1435 return new Itr();
1436 }
1437
1438 public E peek() {
1439 restartFromHead: for (;;) {
1440 for (Node p = head; p != null;) {
1441 Object item = p.item;
1442 if (p.isData) {
1443 if (item != null) {
1444 @SuppressWarnings("unchecked") E e = (E) item;
1445 return e;
1446 }
1447 }
1448 else if (item == null)
1449 break;
1450 if (p == (p = p.next))
1451 continue restartFromHead;
1452 }
1453 return null;
1454 }
1455 }
1456
1457 /**
1458 * Returns {@code true} if this queue contains no elements.
1459 *
1460 * @return {@code true} if this queue contains no elements
1461 */
1462 public boolean isEmpty() {
1463 return firstDataNode() == null;
1464 }
1465
1466 public boolean hasWaitingConsumer() {
1467 restartFromHead: for (;;) {
1468 for (Node p = head; p != null;) {
1469 Object item = p.item;
1470 if (p.isData) {
1471 if (item != null)
1472 break;
1473 }
1474 else if (item == null)
1475 return true;
1476 if (p == (p = p.next))
1477 continue restartFromHead;
1478 }
1479 return false;
1480 }
1481 }
1482
1483 /**
1484 * Returns the number of elements in this queue. If this queue
1485 * contains more than {@code Integer.MAX_VALUE} elements, returns
1486 * {@code Integer.MAX_VALUE}.
1487 *
1488 * <p>Beware that, unlike in most collections, this method is
1489 * <em>NOT</em> a constant-time operation. Because of the
1490 * asynchronous nature of these queues, determining the current
1491 * number of elements requires an O(n) traversal.
1492 *
1493 * @return the number of elements in this queue
1494 */
1495 public int size() {
1496 return countOfMode(true);
1497 }
1498
1499 public int getWaitingConsumerCount() {
1500 return countOfMode(false);
1501 }
1502
1503 /**
1504 * Removes a single instance of the specified element from this queue,
1505 * if it is present. More formally, removes an element {@code e} such
1506 * that {@code o.equals(e)}, if this queue contains one or more such
1507 * elements.
1508 * Returns {@code true} if this queue contained the specified element
1509 * (or equivalently, if this queue changed as a result of the call).
1510 *
1511 * @param o element to be removed from this queue, if present
1512 * @return {@code true} if this queue changed as a result of the call
1513 */
1514 public boolean remove(Object o) {
1515 if (o == null) return false;
1516 restartFromHead: for (;;) {
1517 for (Node p = head, pred = null; p != null; ) {
1518 Node q = p.next;
1519 final Object item;
1520 if ((item = p.item) != null) {
1521 if (p.isData) {
1522 if (o.equals(item) && p.tryMatch(item, null)) {
1523 skipDeadNodes(pred, p, p, q);
1524 return true;
1525 }
1526 pred = p; p = q; continue;
1527 }
1528 }
1529 else if (!p.isData)
1530 break;
1531 for (Node c = p;; q = p.next) {
1532 if (q == null || !q.isMatched()) {
1533 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1534 }
1535 if (p == (p = q)) continue restartFromHead;
1536 }
1537 }
1538 return false;
1539 }
1540 }
1541
1542 /**
1543 * Returns {@code true} if this queue contains the specified element.
1544 * More formally, returns {@code true} if and only if this queue contains
1545 * at least one element {@code e} such that {@code o.equals(e)}.
1546 *
1547 * @param o object to be checked for containment in this queue
1548 * @return {@code true} if this queue contains the specified element
1549 */
1550 public boolean contains(Object o) {
1551 if (o == null) return false;
1552 restartFromHead: for (;;) {
1553 for (Node p = head, pred = null; p != null; ) {
1554 Node q = p.next;
1555 final Object item;
1556 if ((item = p.item) != null) {
1557 if (p.isData) {
1558 if (o.equals(item))
1559 return true;
1560 pred = p; p = q; continue;
1561 }
1562 }
1563 else if (!p.isData)
1564 break;
1565 for (Node c = p;; q = p.next) {
1566 if (q == null || !q.isMatched()) {
1567 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1568 }
1569 if (p == (p = q)) continue restartFromHead;
1570 }
1571 }
1572 return false;
1573 }
1574 }
1575
1576 /**
1577 * Always returns {@code Integer.MAX_VALUE} because a
1578 * {@code LinkedTransferQueue} is not capacity constrained.
1579 *
1580 * @return {@code Integer.MAX_VALUE} (as specified by
1581 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1582 * BlockingQueue.remainingCapacity})
1583 */
1584 public int remainingCapacity() {
1585 return Integer.MAX_VALUE;
1586 }
1587
1588 /**
1589 * Saves this queue to a stream (that is, serializes it).
1590 *
1591 * @param s the stream
1592 * @throws java.io.IOException if an I/O error occurs
1593 * @serialData All of the elements (each an {@code E}) in
1594 * the proper order, followed by a null
1595 */
1596 private void writeObject(java.io.ObjectOutputStream s)
1597 throws java.io.IOException {
1598 s.defaultWriteObject();
1599 for (E e : this)
1600 s.writeObject(e);
1601 // Use trailing null as sentinel
1602 s.writeObject(null);
1603 }
1604
1605 /**
1606 * Reconstitutes this queue from a stream (that is, deserializes it).
1607 * @param s the stream
1608 * @throws ClassNotFoundException if the class of a serialized object
1609 * could not be found
1610 * @throws java.io.IOException if an I/O error occurs
1611 */
1612 private void readObject(java.io.ObjectInputStream s)
1613 throws java.io.IOException, ClassNotFoundException {
1614
1615 // Read in elements until trailing null sentinel found
1616 Node h = null, t = null;
1617 for (Object item; (item = s.readObject()) != null; ) {
1618 @SuppressWarnings("unchecked")
1619 Node newNode = new Node((E) item);
1620 if (h == null)
1621 h = t = newNode;
1622 else
1623 t.appendRelaxed(t = newNode);
1624 }
1625 if (h == null)
1626 h = t = new Node();
1627 head = h;
1628 tail = t;
1629 }
1630
1631 /**
1632 * @throws NullPointerException {@inheritDoc}
1633 */
1634 public boolean removeIf(Predicate<? super E> filter) {
1635 Objects.requireNonNull(filter);
1636 return bulkRemove(filter);
1637 }
1638
1639 /**
1640 * @throws NullPointerException {@inheritDoc}
1641 */
1642 public boolean removeAll(Collection<?> c) {
1643 Objects.requireNonNull(c);
1644 return bulkRemove(e -> c.contains(e));
1645 }
1646
1647 /**
1648 * @throws NullPointerException {@inheritDoc}
1649 */
1650 public boolean retainAll(Collection<?> c) {
1651 Objects.requireNonNull(c);
1652 return bulkRemove(e -> !c.contains(e));
1653 }
1654
1655 public void clear() {
1656 bulkRemove(e -> true);
1657 }
1658
1659 /**
1660 * Tolerate this many consecutive dead nodes before CAS-collapsing.
1661 * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1662 */
1663 private static final int MAX_HOPS = 8;
1664
1665 /** Implementation of bulk remove methods. */
1666 @SuppressWarnings("unchecked")
1667 private boolean bulkRemove(Predicate<? super E> filter) {
1668 boolean removed = false;
1669 restartFromHead: for (;;) {
1670 int hops = MAX_HOPS;
1671 // c will be CASed to collapse intervening dead nodes between
1672 // pred (or head if null) and p.
1673 for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1674 q = p.next;
1675 final Object item; boolean pAlive;
1676 if (pAlive = ((item = p.item) != null && p.isData)) {
1677 if (filter.test((E) item)) {
1678 if (p.tryMatch(item, null))
1679 removed = true;
1680 pAlive = false;
1681 }
1682 }
1683 else if (!p.isData && item == null)
1684 break;
1685 if (pAlive || q == null || --hops == 0) {
1686 // p might already be self-linked here, but if so:
1687 // - CASing head will surely fail
1688 // - CASing pred's next will be useless but harmless.
1689 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1690 || pAlive) {
1691 // if CAS failed or alive, abandon old pred
1692 hops = MAX_HOPS;
1693 pred = p;
1694 c = q;
1695 }
1696 } else if (p == q)
1697 continue restartFromHead;
1698 }
1699 return removed;
1700 }
1701 }
1702
1703 /**
1704 * Runs action on each element found during a traversal starting at p.
1705 * If p is null, the action is not run.
1706 */
1707 @SuppressWarnings("unchecked")
1708 void forEachFrom(Consumer<? super E> action, Node p) {
1709 for (Node pred = null; p != null; ) {
1710 Node q = p.next;
1711 final Object item;
1712 if ((item = p.item) != null) {
1713 if (p.isData) {
1714 action.accept((E) item);
1715 pred = p; p = q; continue;
1716 }
1717 }
1718 else if (!p.isData)
1719 break;
1720 for (Node c = p;; q = p.next) {
1721 if (q == null || !q.isMatched()) {
1722 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1723 }
1724 if (p == (p = q)) { pred = null; p = head; break; }
1725 }
1726 }
1727 }
1728
1729 /**
1730 * @throws NullPointerException {@inheritDoc}
1731 */
1732 public void forEach(Consumer<? super E> action) {
1733 Objects.requireNonNull(action);
1734 forEachFrom(action, head);
1735 }
1736
1737 // VarHandle mechanics
1738 private static final VarHandle HEAD;
1739 private static final VarHandle TAIL;
1740 private static final VarHandle SWEEPVOTES;
1741 static final VarHandle ITEM;
1742 static final VarHandle NEXT;
1743 static final VarHandle WAITER;
1744 static {
1745 try {
1746 MethodHandles.Lookup l = MethodHandles.lookup();
1747 HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1748 Node.class);
1749 TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1750 Node.class);
1751 SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1752 int.class);
1753 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1754 NEXT = l.findVarHandle(Node.class, "next", Node.class);
1755 WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1756 } catch (ReflectiveOperationException e) {
1757 throw new Error(e);
1758 }
1759
1760 // Reduce the risk of rare disastrous classloading in first call to
1761 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1762 Class<?> ensureLoaded = LockSupport.class;
1763 }
1764 }