ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.5
Committed: Fri Jul 31 20:41:13 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.4: +136 -92 lines
Log Message:
sync with jsr166 package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.ConcurrentModificationException;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15 import java.util.concurrent.locks.LockSupport;
16 import java.util.concurrent.atomic.AtomicReference;
17
18 /**
19 * An unbounded {@linkplain TransferQueue} based on linked nodes.
20 * This queue orders elements FIFO (first-in-first-out) with respect
21 * to any given producer. The <em>head</em> of the queue is that
22 * element that has been on the queue the longest time for some
23 * producer. The <em>tail</em> of the queue is that element that has
24 * been on the queue the shortest time for some producer.
25 *
26 * <p>Beware that, unlike in most collections, the {@code size}
27 * method is <em>NOT</em> a constant-time operation. Because of the
28 * asynchronous nature of these queues, determining the current number
29 * of elements requires a traversal of the elements.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>Memory consistency effects: As with other concurrent
36 * collections, actions in a thread prior to placing an object into a
37 * {@code LinkedTransferQueue}
38 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39 * actions subsequent to the access or removal of that element from
40 * the {@code LinkedTransferQueue} in another thread.
41 *
42 * <p>This class is a member of the
43 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44 * Java Collections Framework</a>.
45 *
46 * @since 1.7
47 * @author Doug Lea
48 * @param <E> the type of elements held in this collection
49 */
50 public class LinkedTransferQueue<E> extends AbstractQueue<E>
51 implements TransferQueue<E>, java.io.Serializable {
52 private static final long serialVersionUID = -3223113410248163686L;
53
54 /*
55 * This class extends the approach used in FIFO-mode
56 * SynchronousQueues. See the internal documentation, as well as
57 * the PPoPP 2006 paper "Scalable Synchronous Queues" by Scherer,
58 * Lea & Scott
59 * (http://www.cs.rice.edu/~wns1/papers/2006-PPoPP-SQ.pdf)
60 *
61 * The main extension is to provide different Wait modes for the
62 * main "xfer" method that puts or takes items. These don't
63 * impact the basic dual-queue logic, but instead control whether
64 * or how threads block upon insertion of request or data nodes
65 * into the dual queue. It also uses slightly different
66 * conventions for tracking whether nodes are off-list or
67 * cancelled.
68 */
69
70 // Wait modes for xfer method
71 static final int NOWAIT = 0;
72 static final int TIMEOUT = 1;
73 static final int WAIT = 2;
74
75 /** The number of CPUs, for spin control */
76 static final int NCPUS = Runtime.getRuntime().availableProcessors();
77
78 /**
79 * The number of times to spin before blocking in timed waits.
80 * The value is empirically derived -- it works well across a
81 * variety of processors and OSes. Empirically, the best value
82 * seems not to vary with number of CPUs (beyond 2) so is just
83 * a constant.
84 */
85 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
86
87 /**
88 * The number of times to spin before blocking in untimed waits.
89 * This is greater than timed value because untimed waits spin
90 * faster since they don't need to check times on each spin.
91 */
92 static final int maxUntimedSpins = maxTimedSpins * 16;
93
94 /**
95 * The number of nanoseconds for which it is faster to spin
96 * rather than to use timed park. A rough estimate suffices.
97 */
98 static final long spinForTimeoutThreshold = 1000L;
99
100 /**
101 * Node class for LinkedTransferQueue. Opportunistically
102 * subclasses from AtomicReference to represent item. Uses Object,
103 * not E, to allow setting item to "this" after use, to avoid
104 * garbage retention. Similarly, setting the next field to this is
105 * used as sentinel that node is off list.
106 */
107 static final class Node<E> extends AtomicReference<Object> {
108 volatile Node<E> next;
109 volatile Thread waiter; // to control park/unpark
110 final boolean isData;
111
112 Node(E item, boolean isData) {
113 super(item);
114 this.isData = isData;
115 }
116
117 // Unsafe mechanics
118
119 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
120 private static final long nextOffset =
121 objectFieldOffset(UNSAFE, "next", Node.class);
122
123 final boolean casNext(Node<E> cmp, Node<E> val) {
124 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
125 }
126
127 final void clearNext() {
128 UNSAFE.putOrderedObject(this, nextOffset, this);
129 }
130
131 private static final long serialVersionUID = -3375979862319811754L;
132 }
133
134 /**
135 * Padded version of AtomicReference used for head, tail and
136 * cleanMe, to alleviate contention across threads CASing one vs
137 * the other.
138 */
139 static final class PaddedAtomicReference<T> extends AtomicReference<T> {
140 // enough padding for 64bytes with 4byte refs
141 Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
142 PaddedAtomicReference(T r) { super(r); }
143 private static final long serialVersionUID = 8170090609809740854L;
144 }
145
146
147 /** head of the queue */
148 private transient final PaddedAtomicReference<Node<E>> head;
149
150 /** tail of the queue */
151 private transient final PaddedAtomicReference<Node<E>> tail;
152
153 /**
154 * Reference to a cancelled node that might not yet have been
155 * unlinked from queue because it was the last inserted node
156 * when it cancelled.
157 */
158 private transient final PaddedAtomicReference<Node<E>> cleanMe;
159
160 /**
161 * Tries to cas nh as new head; if successful, unlink
162 * old head's next node to avoid garbage retention.
163 */
164 private boolean advanceHead(Node<E> h, Node<E> nh) {
165 if (h == head.get() && head.compareAndSet(h, nh)) {
166 h.clearNext(); // forget old next
167 return true;
168 }
169 return false;
170 }
171
172 /**
173 * Puts or takes an item. Used for most queue operations (except
174 * poll() and tryTransfer()). See the similar code in
175 * SynchronousQueue for detailed explanation.
176 *
177 * @param e the item or if null, signifies that this is a take
178 * @param mode the wait mode: NOWAIT, TIMEOUT, WAIT
179 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
180 * @return an item, or null on failure
181 */
182 private E xfer(E e, int mode, long nanos) {
183 boolean isData = (e != null);
184 Node<E> s = null;
185 final PaddedAtomicReference<Node<E>> head = this.head;
186 final PaddedAtomicReference<Node<E>> tail = this.tail;
187
188 for (;;) {
189 Node<E> t = tail.get();
190 Node<E> h = head.get();
191
192 if (t != null && (t == h || t.isData == isData)) {
193 if (s == null)
194 s = new Node<E>(e, isData);
195 Node<E> last = t.next;
196 if (last != null) {
197 if (t == tail.get())
198 tail.compareAndSet(t, last);
199 }
200 else if (t.casNext(null, s)) {
201 tail.compareAndSet(t, s);
202 return awaitFulfill(t, s, e, mode, nanos);
203 }
204 }
205
206 else if (h != null) {
207 Node<E> first = h.next;
208 if (t == tail.get() && first != null &&
209 advanceHead(h, first)) {
210 Object x = first.get();
211 if (x != first && first.compareAndSet(x, e)) {
212 LockSupport.unpark(first.waiter);
213 return isData ? e : (E) x;
214 }
215 }
216 }
217 }
218 }
219
220
221 /**
222 * Version of xfer for poll() and tryTransfer, which
223 * simplifies control paths both here and in xfer.
224 */
225 private E fulfill(E e) {
226 boolean isData = (e != null);
227 final PaddedAtomicReference<Node<E>> head = this.head;
228 final PaddedAtomicReference<Node<E>> tail = this.tail;
229
230 for (;;) {
231 Node<E> t = tail.get();
232 Node<E> h = head.get();
233
234 if (t != null && (t == h || t.isData == isData)) {
235 Node<E> last = t.next;
236 if (t == tail.get()) {
237 if (last != null)
238 tail.compareAndSet(t, last);
239 else
240 return null;
241 }
242 }
243 else if (h != null) {
244 Node<E> first = h.next;
245 if (t == tail.get() &&
246 first != null &&
247 advanceHead(h, first)) {
248 Object x = first.get();
249 if (x != first && first.compareAndSet(x, e)) {
250 LockSupport.unpark(first.waiter);
251 return isData ? e : (E) x;
252 }
253 }
254 }
255 }
256 }
257
258 /**
259 * Spins/blocks until node s is fulfilled or caller gives up,
260 * depending on wait mode.
261 *
262 * @param pred the predecessor of waiting node
263 * @param s the waiting node
264 * @param e the comparison value for checking match
265 * @param mode mode
266 * @param nanos timeout value
267 * @return matched item, or null if cancelled
268 */
269 private E awaitFulfill(Node<E> pred, Node<E> s, E e,
270 int mode, long nanos) {
271 if (mode == NOWAIT)
272 return null;
273
274 long lastTime = (mode == TIMEOUT) ? System.nanoTime() : 0;
275 Thread w = Thread.currentThread();
276 int spins = -1; // set to desired spin count below
277 for (;;) {
278 if (w.isInterrupted())
279 s.compareAndSet(e, s);
280 Object x = s.get();
281 if (x != e) { // Node was matched or cancelled
282 advanceHead(pred, s); // unlink if head
283 if (x == s) { // was cancelled
284 clean(pred, s);
285 return null;
286 }
287 else if (x != null) {
288 s.set(s); // avoid garbage retention
289 return (E) x;
290 }
291 else
292 return e;
293 }
294 if (mode == TIMEOUT) {
295 long now = System.nanoTime();
296 nanos -= now - lastTime;
297 lastTime = now;
298 if (nanos <= 0) {
299 s.compareAndSet(e, s); // try to cancel
300 continue;
301 }
302 }
303 if (spins < 0) {
304 Node<E> h = head.get(); // only spin if at head
305 spins = ((h != null && h.next == s) ?
306 ((mode == TIMEOUT) ?
307 maxTimedSpins : maxUntimedSpins) : 0);
308 }
309 if (spins > 0)
310 --spins;
311 else if (s.waiter == null)
312 s.waiter = w;
313 else if (mode != TIMEOUT) {
314 LockSupport.park(this);
315 s.waiter = null;
316 spins = -1;
317 }
318 else if (nanos > spinForTimeoutThreshold) {
319 LockSupport.parkNanos(this, nanos);
320 s.waiter = null;
321 spins = -1;
322 }
323 }
324 }
325
326 /**
327 * Returns validated tail for use in cleaning methods.
328 */
329 private Node<E> getValidatedTail() {
330 for (;;) {
331 Node<E> h = head.get();
332 Node<E> first = h.next;
333 if (first != null && first.get() == first) { // help advance
334 advanceHead(h, first);
335 continue;
336 }
337 Node<E> t = tail.get();
338 Node<E> last = t.next;
339 if (t == tail.get()) {
340 if (last != null)
341 tail.compareAndSet(t, last); // help advance
342 else
343 return t;
344 }
345 }
346 }
347
348 /**
349 * Gets rid of cancelled node s with original predecessor pred.
350 *
351 * @param pred predecessor of cancelled node
352 * @param s the cancelled node
353 */
354 private void clean(Node<E> pred, Node<E> s) {
355 Thread w = s.waiter;
356 if (w != null) { // Wake up thread
357 s.waiter = null;
358 if (w != Thread.currentThread())
359 LockSupport.unpark(w);
360 }
361
362 if (pred == null)
363 return;
364
365 /*
366 * At any given time, exactly one node on list cannot be
367 * deleted -- the last inserted node. To accommodate this, if
368 * we cannot delete s, we save its predecessor as "cleanMe",
369 * processing the previously saved version first. At least one
370 * of node s or the node previously saved can always be
371 * processed, so this always terminates.
372 */
373 while (pred.next == s) {
374 Node<E> oldpred = reclean(); // First, help get rid of cleanMe
375 Node<E> t = getValidatedTail();
376 if (s != t) { // If not tail, try to unsplice
377 Node<E> sn = s.next; // s.next == s means s already off list
378 if (sn == s || pred.casNext(s, sn))
379 break;
380 }
381 else if (oldpred == pred || // Already saved
382 (oldpred == null && cleanMe.compareAndSet(null, pred)))
383 break; // Postpone cleaning
384 }
385 }
386
387 /**
388 * Tries to unsplice the cancelled node held in cleanMe that was
389 * previously uncleanable because it was at tail.
390 *
391 * @return current cleanMe node (or null)
392 */
393 private Node<E> reclean() {
394 /*
395 * cleanMe is, or at one time was, predecessor of cancelled
396 * node s that was the tail so could not be unspliced. If s
397 * is no longer the tail, try to unsplice if necessary and
398 * make cleanMe slot available. This differs from similar
399 * code in clean() because we must check that pred still
400 * points to a cancelled node that must be unspliced -- if
401 * not, we can (must) clear cleanMe without unsplicing.
402 * This can loop only due to contention on casNext or
403 * clearing cleanMe.
404 */
405 Node<E> pred;
406 while ((pred = cleanMe.get()) != null) {
407 Node<E> t = getValidatedTail();
408 Node<E> s = pred.next;
409 if (s != t) {
410 Node<E> sn;
411 if (s == null || s == pred || s.get() != s ||
412 (sn = s.next) == s || pred.casNext(s, sn))
413 cleanMe.compareAndSet(pred, null);
414 }
415 else // s is still tail; cannot clean
416 break;
417 }
418 return pred;
419 }
420
421 /**
422 * Creates an initially empty {@code LinkedTransferQueue}.
423 */
424 public LinkedTransferQueue() {
425 Node<E> dummy = new Node<E>(null, false);
426 head = new PaddedAtomicReference<Node<E>>(dummy);
427 tail = new PaddedAtomicReference<Node<E>>(dummy);
428 cleanMe = new PaddedAtomicReference<Node<E>>(null);
429 }
430
431 /**
432 * Creates a {@code LinkedTransferQueue}
433 * initially containing the elements of the given collection,
434 * added in traversal order of the collection's iterator.
435 *
436 * @param c the collection of elements to initially contain
437 * @throws NullPointerException if the specified collection or any
438 * of its elements are null
439 */
440 public LinkedTransferQueue(Collection<? extends E> c) {
441 this();
442 addAll(c);
443 }
444
445 /**
446 * Inserts the specified element at the tail of this queue.
447 * As the queue is unbounded, this method will never block.
448 *
449 * @throws NullPointerException if the specified element is null
450 */
451 public void put(E e) {
452 offer(e);
453 }
454
455 /**
456 * Inserts the specified element at the tail of this queue.
457 * As the queue is unbounded, this method will never block or
458 * return {@code false}.
459 *
460 * @return {@code true} (as specified by
461 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
462 * @throws NullPointerException if the specified element is null
463 */
464 public boolean offer(E e, long timeout, TimeUnit unit) {
465 return offer(e);
466 }
467
468 /**
469 * Inserts the specified element at the tail of this queue.
470 * As the queue is unbounded, this method will never return {@code false}.
471 *
472 * @return {@code true} (as specified by
473 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
474 * @throws NullPointerException if the specified element is null
475 */
476 public boolean offer(E e) {
477 if (e == null) throw new NullPointerException();
478 xfer(e, NOWAIT, 0);
479 return true;
480 }
481
482 /**
483 * Inserts the specified element at the tail of this queue.
484 * As the queue is unbounded, this method will never throw
485 * {@link IllegalStateException} or return {@code false}.
486 *
487 * @return {@code true} (as specified by {@link Collection#add})
488 * @throws NullPointerException if the specified element is null
489 */
490 public boolean add(E e) {
491 return offer(e);
492 }
493
494 /**
495 * Transfers the specified element immediately if there exists a
496 * consumer already waiting to receive it (in {@link #take} or
497 * timed {@link #poll(long,TimeUnit) poll}), otherwise
498 * returning {@code false} without enqueuing the element.
499 *
500 * @throws NullPointerException if the specified element is null
501 */
502 public boolean tryTransfer(E e) {
503 if (e == null) throw new NullPointerException();
504 return fulfill(e) != null;
505 }
506
507 /**
508 * Inserts the specified element at the tail of this queue,
509 * waiting if necessary for the element to be received by a
510 * consumer invoking {@code take} or {@code poll}.
511 *
512 * @throws NullPointerException if the specified element is null
513 */
514 public void transfer(E e) throws InterruptedException {
515 if (e == null) throw new NullPointerException();
516 if (xfer(e, WAIT, 0) == null) {
517 Thread.interrupted();
518 throw new InterruptedException();
519 }
520 }
521
522 /**
523 * Inserts the specified element at the tail of this queue,
524 * waiting up to the specified wait time if necessary for the
525 * element to be received by a consumer invoking {@code take} or
526 * {@code poll}.
527 *
528 * @throws NullPointerException if the specified element is null
529 */
530 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
531 throws InterruptedException {
532 if (e == null) throw new NullPointerException();
533 if (xfer(e, TIMEOUT, unit.toNanos(timeout)) != null)
534 return true;
535 if (!Thread.interrupted())
536 return false;
537 throw new InterruptedException();
538 }
539
540 public E take() throws InterruptedException {
541 E e = xfer(null, WAIT, 0);
542 if (e != null)
543 return e;
544 Thread.interrupted();
545 throw new InterruptedException();
546 }
547
548 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
549 E e = xfer(null, TIMEOUT, unit.toNanos(timeout));
550 if (e != null || !Thread.interrupted())
551 return e;
552 throw new InterruptedException();
553 }
554
555 public E poll() {
556 return fulfill(null);
557 }
558
559 /**
560 * @throws NullPointerException {@inheritDoc}
561 * @throws IllegalArgumentException {@inheritDoc}
562 */
563 public int drainTo(Collection<? super E> c) {
564 if (c == null)
565 throw new NullPointerException();
566 if (c == this)
567 throw new IllegalArgumentException();
568 int n = 0;
569 E e;
570 while ( (e = poll()) != null) {
571 c.add(e);
572 ++n;
573 }
574 return n;
575 }
576
577 /**
578 * @throws NullPointerException {@inheritDoc}
579 * @throws IllegalArgumentException {@inheritDoc}
580 */
581 public int drainTo(Collection<? super E> c, int maxElements) {
582 if (c == null)
583 throw new NullPointerException();
584 if (c == this)
585 throw new IllegalArgumentException();
586 int n = 0;
587 E e;
588 while (n < maxElements && (e = poll()) != null) {
589 c.add(e);
590 ++n;
591 }
592 return n;
593 }
594
595 // Traversal-based methods
596
597 /**
598 * Returns head after performing any outstanding helping steps.
599 */
600 private Node<E> traversalHead() {
601 for (;;) {
602 Node<E> t = tail.get();
603 Node<E> h = head.get();
604 if (h != null && t != null) {
605 Node<E> last = t.next;
606 Node<E> first = h.next;
607 if (t == tail.get()) {
608 if (last != null)
609 tail.compareAndSet(t, last);
610 else if (first != null) {
611 Object x = first.get();
612 if (x == first)
613 advanceHead(h, first);
614 else
615 return h;
616 }
617 else
618 return h;
619 }
620 }
621 reclean();
622 }
623 }
624
625 /**
626 * Returns an iterator over the elements in this queue in proper
627 * sequence, from head to tail.
628 *
629 * <p>The returned iterator is a "weakly consistent" iterator that
630 * will never throw
631 * {@link ConcurrentModificationException ConcurrentModificationException},
632 * and guarantees to traverse elements as they existed upon
633 * construction of the iterator, and may (but is not guaranteed
634 * to) reflect any modifications subsequent to construction.
635 *
636 * @return an iterator over the elements in this queue in proper sequence
637 */
638 public Iterator<E> iterator() {
639 return new Itr();
640 }
641
642 /**
643 * Iterators. Basic strategy is to traverse list, treating
644 * non-data (i.e., request) nodes as terminating list.
645 * Once a valid data node is found, the item is cached
646 * so that the next call to next() will return it even
647 * if subsequently removed.
648 */
649 class Itr implements Iterator<E> {
650 Node<E> next; // node to return next
651 Node<E> pnext; // predecessor of next
652 Node<E> curr; // last returned node, for remove()
653 Node<E> pcurr; // predecessor of curr, for remove()
654 E nextItem; // Cache of next item, once committed to in next
655
656 Itr() {
657 advance();
658 }
659
660 /**
661 * Moves to next valid node and returns item to return for
662 * next(), or null if no such.
663 */
664 private E advance() {
665 pcurr = pnext;
666 curr = next;
667 E item = nextItem;
668
669 for (;;) {
670 pnext = (next == null) ? traversalHead() : next;
671 next = pnext.next;
672 if (next == pnext) {
673 next = null;
674 continue; // restart
675 }
676 if (next == null)
677 break;
678 Object x = next.get();
679 if (x != null && x != next) {
680 nextItem = (E) x;
681 break;
682 }
683 }
684 return item;
685 }
686
687 public boolean hasNext() {
688 return next != null;
689 }
690
691 public E next() {
692 if (next == null)
693 throw new NoSuchElementException();
694 return advance();
695 }
696
697 public void remove() {
698 Node<E> p = curr;
699 if (p == null)
700 throw new IllegalStateException();
701 Object x = p.get();
702 if (x != null && x != p && p.compareAndSet(x, p))
703 clean(pcurr, p);
704 }
705 }
706
707 public E peek() {
708 for (;;) {
709 Node<E> h = traversalHead();
710 Node<E> p = h.next;
711 if (p == null)
712 return null;
713 Object x = p.get();
714 if (p != x) {
715 if (!p.isData)
716 return null;
717 if (x != null)
718 return (E) x;
719 }
720 }
721 }
722
723 public boolean isEmpty() {
724 for (;;) {
725 Node<E> h = traversalHead();
726 Node<E> p = h.next;
727 if (p == null)
728 return true;
729 Object x = p.get();
730 if (p != x) {
731 if (!p.isData)
732 return true;
733 if (x != null)
734 return false;
735 }
736 }
737 }
738
739 public boolean hasWaitingConsumer() {
740 for (;;) {
741 Node<E> h = traversalHead();
742 Node<E> p = h.next;
743 if (p == null)
744 return false;
745 Object x = p.get();
746 if (p != x)
747 return !p.isData;
748 }
749 }
750
751 /**
752 * Returns the number of elements in this queue. If this queue
753 * contains more than {@code Integer.MAX_VALUE} elements, returns
754 * {@code Integer.MAX_VALUE}.
755 *
756 * <p>Beware that, unlike in most collections, this method is
757 * <em>NOT</em> a constant-time operation. Because of the
758 * asynchronous nature of these queues, determining the current
759 * number of elements requires an O(n) traversal.
760 *
761 * @return the number of elements in this queue
762 */
763 public int size() {
764 for (;;) {
765 int count = 0;
766 Node<E> pred = traversalHead();
767 for (;;) {
768 Node<E> q = pred.next;
769 if (q == pred) // restart
770 break;
771 if (q == null || !q.isData)
772 return count;
773 Object x = q.get();
774 if (x != null && x != q) {
775 if (++count == Integer.MAX_VALUE) // saturated
776 return count;
777 }
778 pred = q;
779 }
780 }
781 }
782
783 public int getWaitingConsumerCount() {
784 // converse of size -- count valid non-data nodes
785 for (;;) {
786 int count = 0;
787 Node<E> pred = traversalHead();
788 for (;;) {
789 Node<E> q = pred.next;
790 if (q == pred) // restart
791 break;
792 if (q == null || q.isData)
793 return count;
794 Object x = q.get();
795 if (x == null) {
796 if (++count == Integer.MAX_VALUE) // saturated
797 return count;
798 }
799 pred = q;
800 }
801 }
802 }
803
804 public boolean remove(Object o) {
805 if (o == null)
806 return false;
807 for (;;) {
808 Node<E> pred = traversalHead();
809 for (;;) {
810 Node<E> q = pred.next;
811 if (q == pred) // restart
812 break;
813 if (q == null || !q.isData)
814 return false;
815 Object x = q.get();
816 if (x != null && x != q && o.equals(x) &&
817 q.compareAndSet(x, q)) {
818 clean(pred, q);
819 return true;
820 }
821 pred = q;
822 }
823 }
824 }
825
826 /**
827 * Always returns {@code Integer.MAX_VALUE} because a
828 * {@code LinkedTransferQueue} is not capacity constrained.
829 *
830 * @return {@code Integer.MAX_VALUE} (as specified by
831 * {@link BlockingQueue#remainingCapacity()})
832 */
833 public int remainingCapacity() {
834 return Integer.MAX_VALUE;
835 }
836
837 /**
838 * Save the state to a stream (that is, serialize it).
839 *
840 * @serialData All of the elements (each an {@code E}) in
841 * the proper order, followed by a null
842 * @param s the stream
843 */
844 private void writeObject(java.io.ObjectOutputStream s)
845 throws java.io.IOException {
846 s.defaultWriteObject();
847 for (E e : this)
848 s.writeObject(e);
849 // Use trailing null as sentinel
850 s.writeObject(null);
851 }
852
853 /**
854 * Reconstitute the Queue instance from a stream (that is,
855 * deserialize it).
856 *
857 * @param s the stream
858 */
859 private void readObject(java.io.ObjectInputStream s)
860 throws java.io.IOException, ClassNotFoundException {
861 s.defaultReadObject();
862 resetHeadAndTail();
863 for (;;) {
864 @SuppressWarnings("unchecked") E item = (E) s.readObject();
865 if (item == null)
866 break;
867 else
868 offer(item);
869 }
870 }
871
872 // Support for resetting head/tail while deserializing
873 private void resetHeadAndTail() {
874 Node<E> dummy = new Node<E>(null, false);
875 UNSAFE.putObjectVolatile(this, headOffset,
876 new PaddedAtomicReference<Node<E>>(dummy));
877 UNSAFE.putObjectVolatile(this, tailOffset,
878 new PaddedAtomicReference<Node<E>>(dummy));
879 UNSAFE.putObjectVolatile(this, cleanMeOffset,
880 new PaddedAtomicReference<Node<E>>(null));
881 }
882
883 // Unsafe mechanics
884
885 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
886 private static final long headOffset =
887 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
888 private static final long tailOffset =
889 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
890 private static final long cleanMeOffset =
891 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
892
893
894 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
895 String field, Class<?> klazz) {
896 try {
897 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
898 } catch (NoSuchFieldException e) {
899 // Convert Exception to corresponding Error
900 NoSuchFieldError error = new NoSuchFieldError(field);
901 error.initCause(e);
902 throw error;
903 }
904 }
905 }