ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.57
Committed: Sat Mar 16 16:03:08 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.56: +14 -5 lines
Log Message:
Sync with lambda spliterator semantics

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Queue;
16 import java.util.concurrent.TimeUnit;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.stream.Stream;
21 import java.util.stream.Streams;
22 import java.util.function.Consumer;
23
24 /**
25 * An unbounded {@link TransferQueue} based on linked nodes.
26 * This queue orders elements FIFO (first-in-first-out) with respect
27 * to any given producer. The <em>head</em> of the queue is that
28 * element that has been on the queue the longest time for some
29 * producer. The <em>tail</em> of the queue is that element that has
30 * been on the queue the shortest time for some producer.
31 *
32 * <p>Beware that, unlike in most collections, the {@code size} method
33 * is <em>NOT</em> a constant-time operation. Because of the
34 * asynchronous nature of these queues, determining the current number
35 * of elements requires a traversal of the elements, and so may report
36 * inaccurate results if this collection is modified during traversal.
37 * Additionally, the bulk operations {@code addAll},
38 * {@code removeAll}, {@code retainAll}, {@code containsAll},
39 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
40 * to be performed atomically. For example, an iterator operating
41 * concurrently with an {@code addAll} operation might view only some
42 * of the added elements.
43 *
44 * <p>This class and its iterator implement all of the
45 * <em>optional</em> methods of the {@link Collection} and {@link
46 * Iterator} interfaces.
47 *
48 * <p>Memory consistency effects: As with other concurrent
49 * collections, actions in a thread prior to placing an object into a
50 * {@code LinkedTransferQueue}
51 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52 * actions subsequent to the access or removal of that element from
53 * the {@code LinkedTransferQueue} in another thread.
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57 * Java Collections Framework</a>.
58 *
59 * @since 1.7
60 * @author Doug Lea
61 * @param <E> the type of elements held in this collection
62 */
63 public class LinkedTransferQueue<E> extends AbstractQueue<E>
64 implements TransferQueue<E>, java.io.Serializable {
65 private static final long serialVersionUID = -3223113410248163686L;
66
67 /*
68 * *** Overview of Dual Queues with Slack ***
69 *
70 * Dual Queues, introduced by Scherer and Scott
71 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
72 * (linked) queues in which nodes may represent either data or
73 * requests. When a thread tries to enqueue a data node, but
74 * encounters a request node, it instead "matches" and removes it;
75 * and vice versa for enqueuing requests. Blocking Dual Queues
76 * arrange that threads enqueuing unmatched requests block until
77 * other threads provide the match. Dual Synchronous Queues (see
78 * Scherer, Lea, & Scott
79 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
80 * additionally arrange that threads enqueuing unmatched data also
81 * block. Dual Transfer Queues support all of these modes, as
82 * dictated by callers.
83 *
84 * A FIFO dual queue may be implemented using a variation of the
85 * Michael & Scott (M&S) lock-free queue algorithm
86 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
87 * It maintains two pointer fields, "head", pointing to a
88 * (matched) node that in turn points to the first actual
89 * (unmatched) queue node (or null if empty); and "tail" that
90 * points to the last node on the queue (or again null if
91 * empty). For example, here is a possible queue with four data
92 * elements:
93 *
94 * head tail
95 * | |
96 * v v
97 * M -> U -> U -> U -> U
98 *
99 * The M&S queue algorithm is known to be prone to scalability and
100 * overhead limitations when maintaining (via CAS) these head and
101 * tail pointers. This has led to the development of
102 * contention-reducing variants such as elimination arrays (see
103 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
104 * optimistic back pointers (see Ladan-Mozes & Shavit
105 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
106 * However, the nature of dual queues enables a simpler tactic for
107 * improving M&S-style implementations when dual-ness is needed.
108 *
109 * In a dual queue, each node must atomically maintain its match
110 * status. While there are other possible variants, we implement
111 * this here as: for a data-mode node, matching entails CASing an
112 * "item" field from a non-null data value to null upon match, and
113 * vice-versa for request nodes, CASing from null to a data
114 * value. (Note that the linearization properties of this style of
115 * queue are easy to verify -- elements are made available by
116 * linking, and unavailable by matching.) Compared to plain M&S
117 * queues, this property of dual queues requires one additional
118 * successful atomic operation per enq/deq pair. But it also
119 * enables lower cost variants of queue maintenance mechanics. (A
120 * variation of this idea applies even for non-dual queues that
121 * support deletion of interior elements, such as
122 * j.u.c.ConcurrentLinkedQueue.)
123 *
124 * Once a node is matched, its match status can never again
125 * change. We may thus arrange that the linked list of them
126 * contain a prefix of zero or more matched nodes, followed by a
127 * suffix of zero or more unmatched nodes. (Note that we allow
128 * both the prefix and suffix to be zero length, which in turn
129 * means that we do not use a dummy header.) If we were not
130 * concerned with either time or space efficiency, we could
131 * correctly perform enqueue and dequeue operations by traversing
132 * from a pointer to the initial node; CASing the item of the
133 * first unmatched node on match and CASing the next field of the
134 * trailing node on appends. (Plus some special-casing when
135 * initially empty). While this would be a terrible idea in
136 * itself, it does have the benefit of not requiring ANY atomic
137 * updates on head/tail fields.
138 *
139 * We introduce here an approach that lies between the extremes of
140 * never versus always updating queue (head and tail) pointers.
141 * This offers a tradeoff between sometimes requiring extra
142 * traversal steps to locate the first and/or last unmatched
143 * nodes, versus the reduced overhead and contention of fewer
144 * updates to queue pointers. For example, a possible snapshot of
145 * a queue is:
146 *
147 * head tail
148 * | |
149 * v v
150 * M -> M -> U -> U -> U -> U
151 *
152 * The best value for this "slack" (the targeted maximum distance
153 * between the value of "head" and the first unmatched node, and
154 * similarly for "tail") is an empirical matter. We have found
155 * that using very small constants in the range of 1-3 work best
156 * over a range of platforms. Larger values introduce increasing
157 * costs of cache misses and risks of long traversal chains, while
158 * smaller values increase CAS contention and overhead.
159 *
160 * Dual queues with slack differ from plain M&S dual queues by
161 * virtue of only sometimes updating head or tail pointers when
162 * matching, appending, or even traversing nodes; in order to
163 * maintain a targeted slack. The idea of "sometimes" may be
164 * operationalized in several ways. The simplest is to use a
165 * per-operation counter incremented on each traversal step, and
166 * to try (via CAS) to update the associated queue pointer
167 * whenever the count exceeds a threshold. Another, that requires
168 * more overhead, is to use random number generators to update
169 * with a given probability per traversal step.
170 *
171 * In any strategy along these lines, because CASes updating
172 * fields may fail, the actual slack may exceed targeted
173 * slack. However, they may be retried at any time to maintain
174 * targets. Even when using very small slack values, this
175 * approach works well for dual queues because it allows all
176 * operations up to the point of matching or appending an item
177 * (hence potentially allowing progress by another thread) to be
178 * read-only, thus not introducing any further contention. As
179 * described below, we implement this by performing slack
180 * maintenance retries only after these points.
181 *
182 * As an accompaniment to such techniques, traversal overhead can
183 * be further reduced without increasing contention of head
184 * pointer updates: Threads may sometimes shortcut the "next" link
185 * path from the current "head" node to be closer to the currently
186 * known first unmatched node, and similarly for tail. Again, this
187 * may be triggered with using thresholds or randomization.
188 *
189 * These ideas must be further extended to avoid unbounded amounts
190 * of costly-to-reclaim garbage caused by the sequential "next"
191 * links of nodes starting at old forgotten head nodes: As first
192 * described in detail by Boehm
193 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
194 * delays noticing that any arbitrarily old node has become
195 * garbage, all newer dead nodes will also be unreclaimed.
196 * (Similar issues arise in non-GC environments.) To cope with
197 * this in our implementation, upon CASing to advance the head
198 * pointer, we set the "next" link of the previous head to point
199 * only to itself; thus limiting the length of connected dead lists.
200 * (We also take similar care to wipe out possibly garbage
201 * retaining values held in other Node fields.) However, doing so
202 * adds some further complexity to traversal: If any "next"
203 * pointer links to itself, it indicates that the current thread
204 * has lagged behind a head-update, and so the traversal must
205 * continue from the "head". Traversals trying to find the
206 * current tail starting from "tail" may also encounter
207 * self-links, in which case they also continue at "head".
208 *
209 * It is tempting in slack-based scheme to not even use CAS for
210 * updates (similarly to Ladan-Mozes & Shavit). However, this
211 * cannot be done for head updates under the above link-forgetting
212 * mechanics because an update may leave head at a detached node.
213 * And while direct writes are possible for tail updates, they
214 * increase the risk of long retraversals, and hence long garbage
215 * chains, which can be much more costly than is worthwhile
216 * considering that the cost difference of performing a CAS vs
217 * write is smaller when they are not triggered on each operation
218 * (especially considering that writes and CASes equally require
219 * additional GC bookkeeping ("write barriers") that are sometimes
220 * more costly than the writes themselves because of contention).
221 *
222 * *** Overview of implementation ***
223 *
224 * We use a threshold-based approach to updates, with a slack
225 * threshold of two -- that is, we update head/tail when the
226 * current pointer appears to be two or more steps away from the
227 * first/last node. The slack value is hard-wired: a path greater
228 * than one is naturally implemented by checking equality of
229 * traversal pointers except when the list has only one element,
230 * in which case we keep slack threshold at one. Avoiding tracking
231 * explicit counts across method calls slightly simplifies an
232 * already-messy implementation. Using randomization would
233 * probably work better if there were a low-quality dirt-cheap
234 * per-thread one available, but even ThreadLocalRandom is too
235 * heavy for these purposes.
236 *
237 * With such a small slack threshold value, it is not worthwhile
238 * to augment this with path short-circuiting (i.e., unsplicing
239 * interior nodes) except in the case of cancellation/removal (see
240 * below).
241 *
242 * We allow both the head and tail fields to be null before any
243 * nodes are enqueued; initializing upon first append. This
244 * simplifies some other logic, as well as providing more
245 * efficient explicit control paths instead of letting JVMs insert
246 * implicit NullPointerExceptions when they are null. While not
247 * currently fully implemented, we also leave open the possibility
248 * of re-nulling these fields when empty (which is complicated to
249 * arrange, for little benefit.)
250 *
251 * All enqueue/dequeue operations are handled by the single method
252 * "xfer" with parameters indicating whether to act as some form
253 * of offer, put, poll, take, or transfer (each possibly with
254 * timeout). The relative complexity of using one monolithic
255 * method outweighs the code bulk and maintenance problems of
256 * using separate methods for each case.
257 *
258 * Operation consists of up to three phases. The first is
259 * implemented within method xfer, the second in tryAppend, and
260 * the third in method awaitMatch.
261 *
262 * 1. Try to match an existing node
263 *
264 * Starting at head, skip already-matched nodes until finding
265 * an unmatched node of opposite mode, if one exists, in which
266 * case matching it and returning, also if necessary updating
267 * head to one past the matched node (or the node itself if the
268 * list has no other unmatched nodes). If the CAS misses, then
269 * a loop retries advancing head by two steps until either
270 * success or the slack is at most two. By requiring that each
271 * attempt advances head by two (if applicable), we ensure that
272 * the slack does not grow without bound. Traversals also check
273 * if the initial head is now off-list, in which case they
274 * start at the new head.
275 *
276 * If no candidates are found and the call was untimed
277 * poll/offer, (argument "how" is NOW) return.
278 *
279 * 2. Try to append a new node (method tryAppend)
280 *
281 * Starting at current tail pointer, find the actual last node
282 * and try to append a new node (or if head was null, establish
283 * the first node). Nodes can be appended only if their
284 * predecessors are either already matched or are of the same
285 * mode. If we detect otherwise, then a new node with opposite
286 * mode must have been appended during traversal, so we must
287 * restart at phase 1. The traversal and update steps are
288 * otherwise similar to phase 1: Retrying upon CAS misses and
289 * checking for staleness. In particular, if a self-link is
290 * encountered, then we can safely jump to a node on the list
291 * by continuing the traversal at current head.
292 *
293 * On successful append, if the call was ASYNC, return.
294 *
295 * 3. Await match or cancellation (method awaitMatch)
296 *
297 * Wait for another thread to match node; instead cancelling if
298 * the current thread was interrupted or the wait timed out. On
299 * multiprocessors, we use front-of-queue spinning: If a node
300 * appears to be the first unmatched node in the queue, it
301 * spins a bit before blocking. In either case, before blocking
302 * it tries to unsplice any nodes between the current "head"
303 * and the first unmatched node.
304 *
305 * Front-of-queue spinning vastly improves performance of
306 * heavily contended queues. And so long as it is relatively
307 * brief and "quiet", spinning does not much impact performance
308 * of less-contended queues. During spins threads check their
309 * interrupt status and generate a thread-local random number
310 * to decide to occasionally perform a Thread.yield. While
311 * yield has underdefined specs, we assume that it might help,
312 * and will not hurt, in limiting impact of spinning on busy
313 * systems. We also use smaller (1/2) spins for nodes that are
314 * not known to be front but whose predecessors have not
315 * blocked -- these "chained" spins avoid artifacts of
316 * front-of-queue rules which otherwise lead to alternating
317 * nodes spinning vs blocking. Further, front threads that
318 * represent phase changes (from data to request node or vice
319 * versa) compared to their predecessors receive additional
320 * chained spins, reflecting longer paths typically required to
321 * unblock threads during phase changes.
322 *
323 *
324 * ** Unlinking removed interior nodes **
325 *
326 * In addition to minimizing garbage retention via self-linking
327 * described above, we also unlink removed interior nodes. These
328 * may arise due to timed out or interrupted waits, or calls to
329 * remove(x) or Iterator.remove. Normally, given a node that was
330 * at one time known to be the predecessor of some node s that is
331 * to be removed, we can unsplice s by CASing the next field of
332 * its predecessor if it still points to s (otherwise s must
333 * already have been removed or is now offlist). But there are two
334 * situations in which we cannot guarantee to make node s
335 * unreachable in this way: (1) If s is the trailing node of list
336 * (i.e., with null next), then it is pinned as the target node
337 * for appends, so can only be removed later after other nodes are
338 * appended. (2) We cannot necessarily unlink s given a
339 * predecessor node that is matched (including the case of being
340 * cancelled): the predecessor may already be unspliced, in which
341 * case some previous reachable node may still point to s.
342 * (For further explanation see Herlihy & Shavit "The Art of
343 * Multiprocessor Programming" chapter 9). Although, in both
344 * cases, we can rule out the need for further action if either s
345 * or its predecessor are (or can be made to be) at, or fall off
346 * from, the head of list.
347 *
348 * Without taking these into account, it would be possible for an
349 * unbounded number of supposedly removed nodes to remain
350 * reachable. Situations leading to such buildup are uncommon but
351 * can occur in practice; for example when a series of short timed
352 * calls to poll repeatedly time out but never otherwise fall off
353 * the list because of an untimed call to take at the front of the
354 * queue.
355 *
356 * When these cases arise, rather than always retraversing the
357 * entire list to find an actual predecessor to unlink (which
358 * won't help for case (1) anyway), we record a conservative
359 * estimate of possible unsplice failures (in "sweepVotes").
360 * We trigger a full sweep when the estimate exceeds a threshold
361 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
362 * removal failures to tolerate before sweeping through, unlinking
363 * cancelled nodes that were not unlinked upon initial removal.
364 * We perform sweeps by the thread hitting threshold (rather than
365 * background threads or by spreading work to other threads)
366 * because in the main contexts in which removal occurs, the
367 * caller is already timed-out, cancelled, or performing a
368 * potentially O(n) operation (e.g. remove(x)), none of which are
369 * time-critical enough to warrant the overhead that alternatives
370 * would impose on other threads.
371 *
372 * Because the sweepVotes estimate is conservative, and because
373 * nodes become unlinked "naturally" as they fall off the head of
374 * the queue, and because we allow votes to accumulate even while
375 * sweeps are in progress, there are typically significantly fewer
376 * such nodes than estimated. Choice of a threshold value
377 * balances the likelihood of wasted effort and contention, versus
378 * providing a worst-case bound on retention of interior nodes in
379 * quiescent queues. The value defined below was chosen
380 * empirically to balance these under various timeout scenarios.
381 *
382 * Note that we cannot self-link unlinked interior nodes during
383 * sweeps. However, the associated garbage chains terminate when
384 * some successor ultimately falls off the head of the list and is
385 * self-linked.
386 */
387
388 /** True if on multiprocessor */
389 private static final boolean MP =
390 Runtime.getRuntime().availableProcessors() > 1;
391
392 /**
393 * The number of times to spin (with randomly interspersed calls
394 * to Thread.yield) on multiprocessor before blocking when a node
395 * is apparently the first waiter in the queue. See above for
396 * explanation. Must be a power of two. The value is empirically
397 * derived -- it works pretty well across a variety of processors,
398 * numbers of CPUs, and OSes.
399 */
400 private static final int FRONT_SPINS = 1 << 7;
401
402 /**
403 * The number of times to spin before blocking when a node is
404 * preceded by another node that is apparently spinning. Also
405 * serves as an increment to FRONT_SPINS on phase changes, and as
406 * base average frequency for yielding during spins. Must be a
407 * power of two.
408 */
409 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
410
411 /**
412 * The maximum number of estimated removal failures (sweepVotes)
413 * to tolerate before sweeping through the queue unlinking
414 * cancelled nodes that were not unlinked upon initial
415 * removal. See above for explanation. The value must be at least
416 * two to avoid useless sweeps when removing trailing nodes.
417 */
418 static final int SWEEP_THRESHOLD = 32;
419
420 /**
421 * Queue nodes. Uses Object, not E, for items to allow forgetting
422 * them after use. Relies heavily on Unsafe mechanics to minimize
423 * unnecessary ordering constraints: Writes that are intrinsically
424 * ordered wrt other accesses or CASes use simple relaxed forms.
425 */
426 static final class Node {
427 final boolean isData; // false if this is a request node
428 volatile Object item; // initially non-null if isData; CASed to match
429 volatile Node next;
430 volatile Thread waiter; // null until waiting
431
432 // CAS methods for fields
433 final boolean casNext(Node cmp, Node val) {
434 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
435 }
436
437 final boolean casItem(Object cmp, Object val) {
438 // assert cmp == null || cmp.getClass() != Node.class;
439 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
440 }
441
442 /**
443 * Constructs a new node. Uses relaxed write because item can
444 * only be seen after publication via casNext.
445 */
446 Node(Object item, boolean isData) {
447 UNSAFE.putObject(this, itemOffset, item); // relaxed write
448 this.isData = isData;
449 }
450
451 /**
452 * Links node to itself to avoid garbage retention. Called
453 * only after CASing head field, so uses relaxed write.
454 */
455 final void forgetNext() {
456 UNSAFE.putObject(this, nextOffset, this);
457 }
458
459 /**
460 * Sets item to self and waiter to null, to avoid garbage
461 * retention after matching or cancelling. Uses relaxed writes
462 * because order is already constrained in the only calling
463 * contexts: item is forgotten only after volatile/atomic
464 * mechanics that extract items. Similarly, clearing waiter
465 * follows either CAS or return from park (if ever parked;
466 * else we don't care).
467 */
468 final void forgetContents() {
469 UNSAFE.putObject(this, itemOffset, this);
470 UNSAFE.putObject(this, waiterOffset, null);
471 }
472
473 /**
474 * Returns true if this node has been matched, including the
475 * case of artificial matches due to cancellation.
476 */
477 final boolean isMatched() {
478 Object x = item;
479 return (x == this) || ((x == null) == isData);
480 }
481
482 /**
483 * Returns true if this is an unmatched request node.
484 */
485 final boolean isUnmatchedRequest() {
486 return !isData && item == null;
487 }
488
489 /**
490 * Returns true if a node with the given mode cannot be
491 * appended to this node because this node is unmatched and
492 * has opposite data mode.
493 */
494 final boolean cannotPrecede(boolean haveData) {
495 boolean d = isData;
496 Object x;
497 return d != haveData && (x = item) != this && (x != null) == d;
498 }
499
500 /**
501 * Tries to artificially match a data node -- used by remove.
502 */
503 final boolean tryMatchData() {
504 // assert isData;
505 Object x = item;
506 if (x != null && x != this && casItem(x, null)) {
507 LockSupport.unpark(waiter);
508 return true;
509 }
510 return false;
511 }
512
513 private static final long serialVersionUID = -3375979862319811754L;
514
515 // Unsafe mechanics
516 private static final sun.misc.Unsafe UNSAFE;
517 private static final long itemOffset;
518 private static final long nextOffset;
519 private static final long waiterOffset;
520 static {
521 try {
522 UNSAFE = sun.misc.Unsafe.getUnsafe();
523 Class<?> k = Node.class;
524 itemOffset = UNSAFE.objectFieldOffset
525 (k.getDeclaredField("item"));
526 nextOffset = UNSAFE.objectFieldOffset
527 (k.getDeclaredField("next"));
528 waiterOffset = UNSAFE.objectFieldOffset
529 (k.getDeclaredField("waiter"));
530 } catch (Exception e) {
531 throw new Error(e);
532 }
533 }
534 }
535
536 /** head of the queue; null until first enqueue */
537 transient volatile Node head;
538
539 /** tail of the queue; null until first append */
540 private transient volatile Node tail;
541
542 /** The number of apparent failures to unsplice removed nodes */
543 private transient volatile int sweepVotes;
544
545 // CAS methods for fields
546 private boolean casTail(Node cmp, Node val) {
547 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
548 }
549
550 private boolean casHead(Node cmp, Node val) {
551 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
552 }
553
554 private boolean casSweepVotes(int cmp, int val) {
555 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
556 }
557
558 /*
559 * Possible values for "how" argument in xfer method.
560 */
561 private static final int NOW = 0; // for untimed poll, tryTransfer
562 private static final int ASYNC = 1; // for offer, put, add
563 private static final int SYNC = 2; // for transfer, take
564 private static final int TIMED = 3; // for timed poll, tryTransfer
565
566 @SuppressWarnings("unchecked")
567 static <E> E cast(Object item) {
568 // assert item == null || item.getClass() != Node.class;
569 return (E) item;
570 }
571
572 /**
573 * Implements all queuing methods. See above for explanation.
574 *
575 * @param e the item or null for take
576 * @param haveData true if this is a put, else a take
577 * @param how NOW, ASYNC, SYNC, or TIMED
578 * @param nanos timeout in nanosecs, used only if mode is TIMED
579 * @return an item if matched, else e
580 * @throws NullPointerException if haveData mode but e is null
581 */
582 private E xfer(E e, boolean haveData, int how, long nanos) {
583 if (haveData && (e == null))
584 throw new NullPointerException();
585 Node s = null; // the node to append, if needed
586
587 retry:
588 for (;;) { // restart on append race
589
590 for (Node h = head, p = h; p != null;) { // find & match first node
591 boolean isData = p.isData;
592 Object item = p.item;
593 if (item != p && (item != null) == isData) { // unmatched
594 if (isData == haveData) // can't match
595 break;
596 if (p.casItem(item, e)) { // match
597 for (Node q = p; q != h;) {
598 Node n = q.next; // update by 2 unless singleton
599 if (head == h && casHead(h, n == null ? q : n)) {
600 h.forgetNext();
601 break;
602 } // advance and retry
603 if ((h = head) == null ||
604 (q = h.next) == null || !q.isMatched())
605 break; // unless slack < 2
606 }
607 LockSupport.unpark(p.waiter);
608 return LinkedTransferQueue.<E>cast(item);
609 }
610 }
611 Node n = p.next;
612 p = (p != n) ? n : (h = head); // Use head if p offlist
613 }
614
615 if (how != NOW) { // No matches available
616 if (s == null)
617 s = new Node(e, haveData);
618 Node pred = tryAppend(s, haveData);
619 if (pred == null)
620 continue retry; // lost race vs opposite mode
621 if (how != ASYNC)
622 return awaitMatch(s, pred, e, (how == TIMED), nanos);
623 }
624 return e; // not waiting
625 }
626 }
627
628 /**
629 * Tries to append node s as tail.
630 *
631 * @param s the node to append
632 * @param haveData true if appending in data mode
633 * @return null on failure due to losing race with append in
634 * different mode, else s's predecessor, or s itself if no
635 * predecessor
636 */
637 private Node tryAppend(Node s, boolean haveData) {
638 for (Node t = tail, p = t;;) { // move p to last node and append
639 Node n, u; // temps for reads of next & tail
640 if (p == null && (p = head) == null) {
641 if (casHead(null, s))
642 return s; // initialize
643 }
644 else if (p.cannotPrecede(haveData))
645 return null; // lost race vs opposite mode
646 else if ((n = p.next) != null) // not last; keep traversing
647 p = p != t && t != (u = tail) ? (t = u) : // stale tail
648 (p != n) ? n : null; // restart if off list
649 else if (!p.casNext(null, s))
650 p = p.next; // re-read on CAS failure
651 else {
652 if (p != t) { // update if slack now >= 2
653 while ((tail != t || !casTail(t, s)) &&
654 (t = tail) != null &&
655 (s = t.next) != null && // advance and retry
656 (s = s.next) != null && s != t);
657 }
658 return p;
659 }
660 }
661 }
662
663 /**
664 * Spins/yields/blocks until node s is matched or caller gives up.
665 *
666 * @param s the waiting node
667 * @param pred the predecessor of s, or s itself if it has no
668 * predecessor, or null if unknown (the null case does not occur
669 * in any current calls but may in possible future extensions)
670 * @param e the comparison value for checking match
671 * @param timed if true, wait only until timeout elapses
672 * @param nanos timeout in nanosecs, used only if timed is true
673 * @return matched item, or e if unmatched on interrupt or timeout
674 */
675 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
676 final long deadline = timed ? System.nanoTime() + nanos : 0L;
677 Thread w = Thread.currentThread();
678 int spins = -1; // initialized after first item and cancel checks
679 ThreadLocalRandom randomYields = null; // bound if needed
680
681 for (;;) {
682 Object item = s.item;
683 if (item != e) { // matched
684 // assert item != s;
685 s.forgetContents(); // avoid garbage
686 return LinkedTransferQueue.<E>cast(item);
687 }
688 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
689 s.casItem(e, s)) { // cancel
690 unsplice(pred, s);
691 return e;
692 }
693
694 if (spins < 0) { // establish spins at/near front
695 if ((spins = spinsFor(pred, s.isData)) > 0)
696 randomYields = ThreadLocalRandom.current();
697 }
698 else if (spins > 0) { // spin
699 --spins;
700 if (randomYields.nextInt(CHAINED_SPINS) == 0)
701 Thread.yield(); // occasionally yield
702 }
703 else if (s.waiter == null) {
704 s.waiter = w; // request unpark then recheck
705 }
706 else if (timed) {
707 nanos = deadline - System.nanoTime();
708 if (nanos > 0L)
709 LockSupport.parkNanos(this, nanos);
710 }
711 else {
712 LockSupport.park(this);
713 }
714 }
715 }
716
717 /**
718 * Returns spin/yield value for a node with given predecessor and
719 * data mode. See above for explanation.
720 */
721 private static int spinsFor(Node pred, boolean haveData) {
722 if (MP && pred != null) {
723 if (pred.isData != haveData) // phase change
724 return FRONT_SPINS + CHAINED_SPINS;
725 if (pred.isMatched()) // probably at front
726 return FRONT_SPINS;
727 if (pred.waiter == null) // pred apparently spinning
728 return CHAINED_SPINS;
729 }
730 return 0;
731 }
732
733 /* -------------- Traversal methods -------------- */
734
735 /**
736 * Returns the successor of p, or the head node if p.next has been
737 * linked to self, which will only be true if traversing with a
738 * stale pointer that is now off the list.
739 */
740 final Node succ(Node p) {
741 Node next = p.next;
742 return (p == next) ? head : next;
743 }
744
745 /**
746 * Returns the first unmatched node of the given mode, or null if
747 * none. Used by methods isEmpty, hasWaitingConsumer.
748 */
749 private Node firstOfMode(boolean isData) {
750 for (Node p = head; p != null; p = succ(p)) {
751 if (!p.isMatched())
752 return (p.isData == isData) ? p : null;
753 }
754 return null;
755 }
756
757 /**
758 * Version of firstOfMode used by Spliterator
759 */
760 final Node firstDataNode() {
761 for (Node p = head; p != null;) {
762 Object item = p.item;
763 if (p.isData) {
764 if (item != null && item != p)
765 return p;
766 }
767 else if (item == null)
768 break;
769 if (p == (p = p.next))
770 p = head;
771 }
772 return null;
773 }
774
775 /**
776 * Returns the item in the first unmatched node with isData; or
777 * null if none. Used by peek.
778 */
779 private E firstDataItem() {
780 for (Node p = head; p != null; p = succ(p)) {
781 Object item = p.item;
782 if (p.isData) {
783 if (item != null && item != p)
784 return LinkedTransferQueue.<E>cast(item);
785 }
786 else if (item == null)
787 return null;
788 }
789 return null;
790 }
791
792 /**
793 * Traverses and counts unmatched nodes of the given mode.
794 * Used by methods size and getWaitingConsumerCount.
795 */
796 private int countOfMode(boolean data) {
797 int count = 0;
798 for (Node p = head; p != null; ) {
799 if (!p.isMatched()) {
800 if (p.isData != data)
801 return 0;
802 if (++count == Integer.MAX_VALUE) // saturated
803 break;
804 }
805 Node n = p.next;
806 if (n != p)
807 p = n;
808 else {
809 count = 0;
810 p = head;
811 }
812 }
813 return count;
814 }
815
816 final class Itr implements Iterator<E> {
817 private Node nextNode; // next node to return item for
818 private E nextItem; // the corresponding item
819 private Node lastRet; // last returned node, to support remove
820 private Node lastPred; // predecessor to unlink lastRet
821
822 /**
823 * Moves to next node after prev, or first node if prev null.
824 */
825 private void advance(Node prev) {
826 /*
827 * To track and avoid buildup of deleted nodes in the face
828 * of calls to both Queue.remove and Itr.remove, we must
829 * include variants of unsplice and sweep upon each
830 * advance: Upon Itr.remove, we may need to catch up links
831 * from lastPred, and upon other removes, we might need to
832 * skip ahead from stale nodes and unsplice deleted ones
833 * found while advancing.
834 */
835
836 Node r, b; // reset lastPred upon possible deletion of lastRet
837 if ((r = lastRet) != null && !r.isMatched())
838 lastPred = r; // next lastPred is old lastRet
839 else if ((b = lastPred) == null || b.isMatched())
840 lastPred = null; // at start of list
841 else {
842 Node s, n; // help with removal of lastPred.next
843 while ((s = b.next) != null &&
844 s != b && s.isMatched() &&
845 (n = s.next) != null && n != s)
846 b.casNext(s, n);
847 }
848
849 this.lastRet = prev;
850
851 for (Node p = prev, s, n;;) {
852 s = (p == null) ? head : p.next;
853 if (s == null)
854 break;
855 else if (s == p) {
856 p = null;
857 continue;
858 }
859 Object item = s.item;
860 if (s.isData) {
861 if (item != null && item != s) {
862 nextItem = LinkedTransferQueue.<E>cast(item);
863 nextNode = s;
864 return;
865 }
866 }
867 else if (item == null)
868 break;
869 // assert s.isMatched();
870 if (p == null)
871 p = s;
872 else if ((n = s.next) == null)
873 break;
874 else if (s == n)
875 p = null;
876 else
877 p.casNext(s, n);
878 }
879 nextNode = null;
880 nextItem = null;
881 }
882
883 Itr() {
884 advance(null);
885 }
886
887 public final boolean hasNext() {
888 return nextNode != null;
889 }
890
891 public final E next() {
892 Node p = nextNode;
893 if (p == null) throw new NoSuchElementException();
894 E e = nextItem;
895 advance(p);
896 return e;
897 }
898
899 public final void remove() {
900 final Node lastRet = this.lastRet;
901 if (lastRet == null)
902 throw new IllegalStateException();
903 this.lastRet = null;
904 if (lastRet.tryMatchData())
905 unsplice(lastPred, lastRet);
906 }
907 }
908
909 /** A customized variant of Spliterators.IteratorSpliterator */
910 static final class LTQSpliterator<E> implements Spliterator<E> {
911 static final int MAX_BATCH = 1 << 20; // max batch array size;
912 static final int MAX_QUEUED = 1 << 12; // max task backlog
913 final LinkedTransferQueue<E> queue;
914 Node current; // current node; null until initialized
915 int batch; // batch size for splits
916 boolean exhausted; // true when no more nodes
917 LTQSpliterator(LinkedTransferQueue<E> queue) {
918 this.queue = queue;
919 }
920
921 /**
922 * Splits into arrays of arithmetically increasing batch sizes,
923 * giving up at MAX_BATCH. Treat the result as a
924 * CopyOnWriteArrayList array snapshot. This will only
925 * improve parallel performance if per-element forEach actions
926 * are more costly than transfering them into an array. If
927 * not, we limit slowdowns by eventually returning null split.
928 */
929 public Spliterator<E> trySplit() {
930 Node p; int b;
931 final LinkedTransferQueue<E> q = this.queue;
932 if (!exhausted &&
933 ((b = batch) < MAX_QUEUED ||
934 java.util.concurrent.ForkJoinTask.getQueuedTaskCount() < MAX_QUEUED) &&
935 ((p = current) != null || (p = q.firstDataNode()) != null) &&
936 p.next != null) {
937 int n = batch = (b >= MAX_BATCH)? MAX_BATCH : b + 1;
938 Object[] a;
939 try {
940 a = new Object[n];
941 } catch (OutOfMemoryError oome) {
942 return null;
943 }
944 int i = 0;
945 do {
946 if ((a[i] = p.item) != null)
947 ++i;
948 if (p == (p = p.next))
949 p = q.firstDataNode();
950 } while (p != null && i < n);
951 if ((current = p) == null)
952 exhausted = true;
953 return Spliterators.spliterator
954 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
955 Spliterator.CONCURRENT);
956 }
957 return null;
958 }
959
960 @SuppressWarnings("unchecked")
961 public void forEach(Consumer<? super E> action) {
962 Node p;
963 if (action == null) throw new NullPointerException();
964 final LinkedTransferQueue<E> q = this.queue;
965 if (!exhausted &&
966 ((p = current) != null || (p = q.firstDataNode()) != null)) {
967 exhausted = true;
968 do {
969 Object e = p.item;
970 if (p == (p = p.next))
971 p = q.firstDataNode();
972 if (e != null)
973 action.accept((E)e);
974 } while (p != null);
975 }
976 }
977
978 @SuppressWarnings("unchecked")
979 public boolean tryAdvance(Consumer<? super E> action) {
980 Node p;
981 if (action == null) throw new NullPointerException();
982 final LinkedTransferQueue<E> q = this.queue;
983 if (!exhausted &&
984 ((p = current) != null || (p = q.firstDataNode()) != null)) {
985 Object e;
986 do {
987 e = p.item;
988 if (p == (p = p.next))
989 p = q.firstDataNode();
990 } while (e == null && p != null);
991 if ((current = p) == null)
992 exhausted = true;
993 if (e != null) {
994 action.accept((E)e);
995 return true;
996 }
997 }
998 return false;
999 }
1000
1001 public long estimateSize() { return Long.MAX_VALUE; }
1002
1003 public int characteristics() {
1004 return Spliterator.ORDERED | Spliterator.NONNULL |
1005 Spliterator.CONCURRENT;
1006 }
1007 }
1008
1009
1010 public Spliterator<E> spliterator() {
1011 return new LTQSpliterator<E>(this);
1012 }
1013
1014 /* -------------- Removal methods -------------- */
1015
1016 /**
1017 * Unsplices (now or later) the given deleted/cancelled node with
1018 * the given predecessor.
1019 *
1020 * @param pred a node that was at one time known to be the
1021 * predecessor of s, or null or s itself if s is/was at head
1022 * @param s the node to be unspliced
1023 */
1024 final void unsplice(Node pred, Node s) {
1025 s.forgetContents(); // forget unneeded fields
1026 /*
1027 * See above for rationale. Briefly: if pred still points to
1028 * s, try to unlink s. If s cannot be unlinked, because it is
1029 * trailing node or pred might be unlinked, and neither pred
1030 * nor s are head or offlist, add to sweepVotes, and if enough
1031 * votes have accumulated, sweep.
1032 */
1033 if (pred != null && pred != s && pred.next == s) {
1034 Node n = s.next;
1035 if (n == null ||
1036 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1037 for (;;) { // check if at, or could be, head
1038 Node h = head;
1039 if (h == pred || h == s || h == null)
1040 return; // at head or list empty
1041 if (!h.isMatched())
1042 break;
1043 Node hn = h.next;
1044 if (hn == null)
1045 return; // now empty
1046 if (hn != h && casHead(h, hn))
1047 h.forgetNext(); // advance head
1048 }
1049 if (pred.next != pred && s.next != s) { // recheck if offlist
1050 for (;;) { // sweep now if enough votes
1051 int v = sweepVotes;
1052 if (v < SWEEP_THRESHOLD) {
1053 if (casSweepVotes(v, v + 1))
1054 break;
1055 }
1056 else if (casSweepVotes(v, 0)) {
1057 sweep();
1058 break;
1059 }
1060 }
1061 }
1062 }
1063 }
1064 }
1065
1066 /**
1067 * Unlinks matched (typically cancelled) nodes encountered in a
1068 * traversal from head.
1069 */
1070 private void sweep() {
1071 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1072 if (!s.isMatched())
1073 // Unmatched nodes are never self-linked
1074 p = s;
1075 else if ((n = s.next) == null) // trailing node is pinned
1076 break;
1077 else if (s == n) // stale
1078 // No need to also check for p == s, since that implies s == n
1079 p = head;
1080 else
1081 p.casNext(s, n);
1082 }
1083 }
1084
1085 /**
1086 * Main implementation of remove(Object)
1087 */
1088 private boolean findAndRemove(Object e) {
1089 if (e != null) {
1090 for (Node pred = null, p = head; p != null; ) {
1091 Object item = p.item;
1092 if (p.isData) {
1093 if (item != null && item != p && e.equals(item) &&
1094 p.tryMatchData()) {
1095 unsplice(pred, p);
1096 return true;
1097 }
1098 }
1099 else if (item == null)
1100 break;
1101 pred = p;
1102 if ((p = p.next) == pred) { // stale
1103 pred = null;
1104 p = head;
1105 }
1106 }
1107 }
1108 return false;
1109 }
1110
1111 /**
1112 * Creates an initially empty {@code LinkedTransferQueue}.
1113 */
1114 public LinkedTransferQueue() {
1115 }
1116
1117 /**
1118 * Creates a {@code LinkedTransferQueue}
1119 * initially containing the elements of the given collection,
1120 * added in traversal order of the collection's iterator.
1121 *
1122 * @param c the collection of elements to initially contain
1123 * @throws NullPointerException if the specified collection or any
1124 * of its elements are null
1125 */
1126 public LinkedTransferQueue(Collection<? extends E> c) {
1127 this();
1128 addAll(c);
1129 }
1130
1131 /**
1132 * Inserts the specified element at the tail of this queue.
1133 * As the queue is unbounded, this method will never block.
1134 *
1135 * @throws NullPointerException if the specified element is null
1136 */
1137 public void put(E e) {
1138 xfer(e, true, ASYNC, 0);
1139 }
1140
1141 /**
1142 * Inserts the specified element at the tail of this queue.
1143 * As the queue is unbounded, this method will never block or
1144 * return {@code false}.
1145 *
1146 * @return {@code true} (as specified by
1147 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1148 * BlockingQueue.offer})
1149 * @throws NullPointerException if the specified element is null
1150 */
1151 public boolean offer(E e, long timeout, TimeUnit unit) {
1152 xfer(e, true, ASYNC, 0);
1153 return true;
1154 }
1155
1156 /**
1157 * Inserts the specified element at the tail of this queue.
1158 * As the queue is unbounded, this method will never return {@code false}.
1159 *
1160 * @return {@code true} (as specified by {@link Queue#offer})
1161 * @throws NullPointerException if the specified element is null
1162 */
1163 public boolean offer(E e) {
1164 xfer(e, true, ASYNC, 0);
1165 return true;
1166 }
1167
1168 /**
1169 * Inserts the specified element at the tail of this queue.
1170 * As the queue is unbounded, this method will never throw
1171 * {@link IllegalStateException} or return {@code false}.
1172 *
1173 * @return {@code true} (as specified by {@link Collection#add})
1174 * @throws NullPointerException if the specified element is null
1175 */
1176 public boolean add(E e) {
1177 xfer(e, true, ASYNC, 0);
1178 return true;
1179 }
1180
1181 /**
1182 * Transfers the element to a waiting consumer immediately, if possible.
1183 *
1184 * <p>More precisely, transfers the specified element immediately
1185 * if there exists a consumer already waiting to receive it (in
1186 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1187 * otherwise returning {@code false} without enqueuing the element.
1188 *
1189 * @throws NullPointerException if the specified element is null
1190 */
1191 public boolean tryTransfer(E e) {
1192 return xfer(e, true, NOW, 0) == null;
1193 }
1194
1195 /**
1196 * Transfers the element to a consumer, waiting if necessary to do so.
1197 *
1198 * <p>More precisely, transfers the specified element immediately
1199 * if there exists a consumer already waiting to receive it (in
1200 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1201 * else inserts the specified element at the tail of this queue
1202 * and waits until the element is received by a consumer.
1203 *
1204 * @throws NullPointerException if the specified element is null
1205 */
1206 public void transfer(E e) throws InterruptedException {
1207 if (xfer(e, true, SYNC, 0) != null) {
1208 Thread.interrupted(); // failure possible only due to interrupt
1209 throw new InterruptedException();
1210 }
1211 }
1212
1213 /**
1214 * Transfers the element to a consumer if it is possible to do so
1215 * before the timeout elapses.
1216 *
1217 * <p>More precisely, transfers the specified element immediately
1218 * if there exists a consumer already waiting to receive it (in
1219 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1220 * else inserts the specified element at the tail of this queue
1221 * and waits until the element is received by a consumer,
1222 * returning {@code false} if the specified wait time elapses
1223 * before the element can be transferred.
1224 *
1225 * @throws NullPointerException if the specified element is null
1226 */
1227 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1228 throws InterruptedException {
1229 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1230 return true;
1231 if (!Thread.interrupted())
1232 return false;
1233 throw new InterruptedException();
1234 }
1235
1236 public E take() throws InterruptedException {
1237 E e = xfer(null, false, SYNC, 0);
1238 if (e != null)
1239 return e;
1240 Thread.interrupted();
1241 throw new InterruptedException();
1242 }
1243
1244 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1245 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1246 if (e != null || !Thread.interrupted())
1247 return e;
1248 throw new InterruptedException();
1249 }
1250
1251 public E poll() {
1252 return xfer(null, false, NOW, 0);
1253 }
1254
1255 /**
1256 * @throws NullPointerException {@inheritDoc}
1257 * @throws IllegalArgumentException {@inheritDoc}
1258 */
1259 public int drainTo(Collection<? super E> c) {
1260 if (c == null)
1261 throw new NullPointerException();
1262 if (c == this)
1263 throw new IllegalArgumentException();
1264 int n = 0;
1265 for (E e; (e = poll()) != null;) {
1266 c.add(e);
1267 ++n;
1268 }
1269 return n;
1270 }
1271
1272 /**
1273 * @throws NullPointerException {@inheritDoc}
1274 * @throws IllegalArgumentException {@inheritDoc}
1275 */
1276 public int drainTo(Collection<? super E> c, int maxElements) {
1277 if (c == null)
1278 throw new NullPointerException();
1279 if (c == this)
1280 throw new IllegalArgumentException();
1281 int n = 0;
1282 for (E e; n < maxElements && (e = poll()) != null;) {
1283 c.add(e);
1284 ++n;
1285 }
1286 return n;
1287 }
1288
1289 /**
1290 * Returns an iterator over the elements in this queue in proper sequence.
1291 * The elements will be returned in order from first (head) to last (tail).
1292 *
1293 * <p>The returned iterator is a "weakly consistent" iterator that
1294 * will never throw {@link java.util.ConcurrentModificationException
1295 * ConcurrentModificationException}, and guarantees to traverse
1296 * elements as they existed upon construction of the iterator, and
1297 * may (but is not guaranteed to) reflect any modifications
1298 * subsequent to construction.
1299 *
1300 * @return an iterator over the elements in this queue in proper sequence
1301 */
1302 public Iterator<E> iterator() {
1303 return new Itr();
1304 }
1305
1306 public E peek() {
1307 return firstDataItem();
1308 }
1309
1310 /**
1311 * Returns {@code true} if this queue contains no elements.
1312 *
1313 * @return {@code true} if this queue contains no elements
1314 */
1315 public boolean isEmpty() {
1316 for (Node p = head; p != null; p = succ(p)) {
1317 if (!p.isMatched())
1318 return !p.isData;
1319 }
1320 return true;
1321 }
1322
1323 public boolean hasWaitingConsumer() {
1324 return firstOfMode(false) != null;
1325 }
1326
1327 /**
1328 * Returns the number of elements in this queue. If this queue
1329 * contains more than {@code Integer.MAX_VALUE} elements, returns
1330 * {@code Integer.MAX_VALUE}.
1331 *
1332 * <p>Beware that, unlike in most collections, this method is
1333 * <em>NOT</em> a constant-time operation. Because of the
1334 * asynchronous nature of these queues, determining the current
1335 * number of elements requires an O(n) traversal.
1336 *
1337 * @return the number of elements in this queue
1338 */
1339 public int size() {
1340 return countOfMode(true);
1341 }
1342
1343 public int getWaitingConsumerCount() {
1344 return countOfMode(false);
1345 }
1346
1347 /**
1348 * Removes a single instance of the specified element from this queue,
1349 * if it is present. More formally, removes an element {@code e} such
1350 * that {@code o.equals(e)}, if this queue contains one or more such
1351 * elements.
1352 * Returns {@code true} if this queue contained the specified element
1353 * (or equivalently, if this queue changed as a result of the call).
1354 *
1355 * @param o element to be removed from this queue, if present
1356 * @return {@code true} if this queue changed as a result of the call
1357 */
1358 public boolean remove(Object o) {
1359 return findAndRemove(o);
1360 }
1361
1362 /**
1363 * Returns {@code true} if this queue contains the specified element.
1364 * More formally, returns {@code true} if and only if this queue contains
1365 * at least one element {@code e} such that {@code o.equals(e)}.
1366 *
1367 * @param o object to be checked for containment in this queue
1368 * @return {@code true} if this queue contains the specified element
1369 */
1370 public boolean contains(Object o) {
1371 if (o == null) return false;
1372 for (Node p = head; p != null; p = succ(p)) {
1373 Object item = p.item;
1374 if (p.isData) {
1375 if (item != null && item != p && o.equals(item))
1376 return true;
1377 }
1378 else if (item == null)
1379 break;
1380 }
1381 return false;
1382 }
1383
1384 /**
1385 * Always returns {@code Integer.MAX_VALUE} because a
1386 * {@code LinkedTransferQueue} is not capacity constrained.
1387 *
1388 * @return {@code Integer.MAX_VALUE} (as specified by
1389 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1390 * BlockingQueue.remainingCapacity})
1391 */
1392 public int remainingCapacity() {
1393 return Integer.MAX_VALUE;
1394 }
1395
1396 /**
1397 * Saves this queue to a stream (that is, serializes it).
1398 *
1399 * @serialData All of the elements (each an {@code E}) in
1400 * the proper order, followed by a null
1401 */
1402 private void writeObject(java.io.ObjectOutputStream s)
1403 throws java.io.IOException {
1404 s.defaultWriteObject();
1405 for (E e : this)
1406 s.writeObject(e);
1407 // Use trailing null as sentinel
1408 s.writeObject(null);
1409 }
1410
1411 /**
1412 * Reconstitutes this queue from a stream (that is, deserializes it).
1413 */
1414 private void readObject(java.io.ObjectInputStream s)
1415 throws java.io.IOException, ClassNotFoundException {
1416 s.defaultReadObject();
1417 for (;;) {
1418 @SuppressWarnings("unchecked")
1419 E item = (E) s.readObject();
1420 if (item == null)
1421 break;
1422 else
1423 offer(item);
1424 }
1425 }
1426
1427 // Unsafe mechanics
1428
1429 private static final sun.misc.Unsafe UNSAFE;
1430 private static final long headOffset;
1431 private static final long tailOffset;
1432 private static final long sweepVotesOffset;
1433 static {
1434 try {
1435 UNSAFE = sun.misc.Unsafe.getUnsafe();
1436 Class<?> k = LinkedTransferQueue.class;
1437 headOffset = UNSAFE.objectFieldOffset
1438 (k.getDeclaredField("head"));
1439 tailOffset = UNSAFE.objectFieldOffset
1440 (k.getDeclaredField("tail"));
1441 sweepVotesOffset = UNSAFE.objectFieldOffset
1442 (k.getDeclaredField("sweepVotes"));
1443 } catch (Exception e) {
1444 throw new Error(e);
1445 }
1446 }
1447 }