ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.65
Committed: Thu Jul 18 17:38:29 2013 UTC (10 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.64: +2 -0 lines
Log Message:
javadoc warning fixes: add serialization method @param

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Queue;
16 import java.util.concurrent.TimeUnit;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.Spliterator;
19 import java.util.Spliterators;
20 import java.util.stream.Stream;
21 import java.util.function.Consumer;
22
23 /**
24 * An unbounded {@link TransferQueue} based on linked nodes.
25 * This queue orders elements FIFO (first-in-first-out) with respect
26 * to any given producer. The <em>head</em> of the queue is that
27 * element that has been on the queue the longest time for some
28 * producer. The <em>tail</em> of the queue is that element that has
29 * been on the queue the shortest time for some producer.
30 *
31 * <p>Beware that, unlike in most collections, the {@code size} method
32 * is <em>NOT</em> a constant-time operation. Because of the
33 * asynchronous nature of these queues, determining the current number
34 * of elements requires a traversal of the elements, and so may report
35 * inaccurate results if this collection is modified during traversal.
36 * Additionally, the bulk operations {@code addAll},
37 * {@code removeAll}, {@code retainAll}, {@code containsAll},
38 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
39 * to be performed atomically. For example, an iterator operating
40 * concurrently with an {@code addAll} operation might view only some
41 * of the added elements.
42 *
43 * <p>This class and its iterator implement all of the
44 * <em>optional</em> methods of the {@link Collection} and {@link
45 * Iterator} interfaces.
46 *
47 * <p>Memory consistency effects: As with other concurrent
48 * collections, actions in a thread prior to placing an object into a
49 * {@code LinkedTransferQueue}
50 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51 * actions subsequent to the access or removal of that element from
52 * the {@code LinkedTransferQueue} in another thread.
53 *
54 * <p>This class is a member of the
55 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56 * Java Collections Framework</a>.
57 *
58 * @since 1.7
59 * @author Doug Lea
60 * @param <E> the type of elements held in this collection
61 */
62 public class LinkedTransferQueue<E> extends AbstractQueue<E>
63 implements TransferQueue<E>, java.io.Serializable {
64 private static final long serialVersionUID = -3223113410248163686L;
65
66 /*
67 * *** Overview of Dual Queues with Slack ***
68 *
69 * Dual Queues, introduced by Scherer and Scott
70 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
71 * (linked) queues in which nodes may represent either data or
72 * requests. When a thread tries to enqueue a data node, but
73 * encounters a request node, it instead "matches" and removes it;
74 * and vice versa for enqueuing requests. Blocking Dual Queues
75 * arrange that threads enqueuing unmatched requests block until
76 * other threads provide the match. Dual Synchronous Queues (see
77 * Scherer, Lea, & Scott
78 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79 * additionally arrange that threads enqueuing unmatched data also
80 * block. Dual Transfer Queues support all of these modes, as
81 * dictated by callers.
82 *
83 * A FIFO dual queue may be implemented using a variation of the
84 * Michael & Scott (M&S) lock-free queue algorithm
85 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
86 * It maintains two pointer fields, "head", pointing to a
87 * (matched) node that in turn points to the first actual
88 * (unmatched) queue node (or null if empty); and "tail" that
89 * points to the last node on the queue (or again null if
90 * empty). For example, here is a possible queue with four data
91 * elements:
92 *
93 * head tail
94 * | |
95 * v v
96 * M -> U -> U -> U -> U
97 *
98 * The M&S queue algorithm is known to be prone to scalability and
99 * overhead limitations when maintaining (via CAS) these head and
100 * tail pointers. This has led to the development of
101 * contention-reducing variants such as elimination arrays (see
102 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103 * optimistic back pointers (see Ladan-Mozes & Shavit
104 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105 * However, the nature of dual queues enables a simpler tactic for
106 * improving M&S-style implementations when dual-ness is needed.
107 *
108 * In a dual queue, each node must atomically maintain its match
109 * status. While there are other possible variants, we implement
110 * this here as: for a data-mode node, matching entails CASing an
111 * "item" field from a non-null data value to null upon match, and
112 * vice-versa for request nodes, CASing from null to a data
113 * value. (Note that the linearization properties of this style of
114 * queue are easy to verify -- elements are made available by
115 * linking, and unavailable by matching.) Compared to plain M&S
116 * queues, this property of dual queues requires one additional
117 * successful atomic operation per enq/deq pair. But it also
118 * enables lower cost variants of queue maintenance mechanics. (A
119 * variation of this idea applies even for non-dual queues that
120 * support deletion of interior elements, such as
121 * j.u.c.ConcurrentLinkedQueue.)
122 *
123 * Once a node is matched, its match status can never again
124 * change. We may thus arrange that the linked list of them
125 * contain a prefix of zero or more matched nodes, followed by a
126 * suffix of zero or more unmatched nodes. (Note that we allow
127 * both the prefix and suffix to be zero length, which in turn
128 * means that we do not use a dummy header.) If we were not
129 * concerned with either time or space efficiency, we could
130 * correctly perform enqueue and dequeue operations by traversing
131 * from a pointer to the initial node; CASing the item of the
132 * first unmatched node on match and CASing the next field of the
133 * trailing node on appends. (Plus some special-casing when
134 * initially empty). While this would be a terrible idea in
135 * itself, it does have the benefit of not requiring ANY atomic
136 * updates on head/tail fields.
137 *
138 * We introduce here an approach that lies between the extremes of
139 * never versus always updating queue (head and tail) pointers.
140 * This offers a tradeoff between sometimes requiring extra
141 * traversal steps to locate the first and/or last unmatched
142 * nodes, versus the reduced overhead and contention of fewer
143 * updates to queue pointers. For example, a possible snapshot of
144 * a queue is:
145 *
146 * head tail
147 * | |
148 * v v
149 * M -> M -> U -> U -> U -> U
150 *
151 * The best value for this "slack" (the targeted maximum distance
152 * between the value of "head" and the first unmatched node, and
153 * similarly for "tail") is an empirical matter. We have found
154 * that using very small constants in the range of 1-3 work best
155 * over a range of platforms. Larger values introduce increasing
156 * costs of cache misses and risks of long traversal chains, while
157 * smaller values increase CAS contention and overhead.
158 *
159 * Dual queues with slack differ from plain M&S dual queues by
160 * virtue of only sometimes updating head or tail pointers when
161 * matching, appending, or even traversing nodes; in order to
162 * maintain a targeted slack. The idea of "sometimes" may be
163 * operationalized in several ways. The simplest is to use a
164 * per-operation counter incremented on each traversal step, and
165 * to try (via CAS) to update the associated queue pointer
166 * whenever the count exceeds a threshold. Another, that requires
167 * more overhead, is to use random number generators to update
168 * with a given probability per traversal step.
169 *
170 * In any strategy along these lines, because CASes updating
171 * fields may fail, the actual slack may exceed targeted
172 * slack. However, they may be retried at any time to maintain
173 * targets. Even when using very small slack values, this
174 * approach works well for dual queues because it allows all
175 * operations up to the point of matching or appending an item
176 * (hence potentially allowing progress by another thread) to be
177 * read-only, thus not introducing any further contention. As
178 * described below, we implement this by performing slack
179 * maintenance retries only after these points.
180 *
181 * As an accompaniment to such techniques, traversal overhead can
182 * be further reduced without increasing contention of head
183 * pointer updates: Threads may sometimes shortcut the "next" link
184 * path from the current "head" node to be closer to the currently
185 * known first unmatched node, and similarly for tail. Again, this
186 * may be triggered with using thresholds or randomization.
187 *
188 * These ideas must be further extended to avoid unbounded amounts
189 * of costly-to-reclaim garbage caused by the sequential "next"
190 * links of nodes starting at old forgotten head nodes: As first
191 * described in detail by Boehm
192 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
193 * delays noticing that any arbitrarily old node has become
194 * garbage, all newer dead nodes will also be unreclaimed.
195 * (Similar issues arise in non-GC environments.) To cope with
196 * this in our implementation, upon CASing to advance the head
197 * pointer, we set the "next" link of the previous head to point
198 * only to itself; thus limiting the length of connected dead lists.
199 * (We also take similar care to wipe out possibly garbage
200 * retaining values held in other Node fields.) However, doing so
201 * adds some further complexity to traversal: If any "next"
202 * pointer links to itself, it indicates that the current thread
203 * has lagged behind a head-update, and so the traversal must
204 * continue from the "head". Traversals trying to find the
205 * current tail starting from "tail" may also encounter
206 * self-links, in which case they also continue at "head".
207 *
208 * It is tempting in slack-based scheme to not even use CAS for
209 * updates (similarly to Ladan-Mozes & Shavit). However, this
210 * cannot be done for head updates under the above link-forgetting
211 * mechanics because an update may leave head at a detached node.
212 * And while direct writes are possible for tail updates, they
213 * increase the risk of long retraversals, and hence long garbage
214 * chains, which can be much more costly than is worthwhile
215 * considering that the cost difference of performing a CAS vs
216 * write is smaller when they are not triggered on each operation
217 * (especially considering that writes and CASes equally require
218 * additional GC bookkeeping ("write barriers") that are sometimes
219 * more costly than the writes themselves because of contention).
220 *
221 * *** Overview of implementation ***
222 *
223 * We use a threshold-based approach to updates, with a slack
224 * threshold of two -- that is, we update head/tail when the
225 * current pointer appears to be two or more steps away from the
226 * first/last node. The slack value is hard-wired: a path greater
227 * than one is naturally implemented by checking equality of
228 * traversal pointers except when the list has only one element,
229 * in which case we keep slack threshold at one. Avoiding tracking
230 * explicit counts across method calls slightly simplifies an
231 * already-messy implementation. Using randomization would
232 * probably work better if there were a low-quality dirt-cheap
233 * per-thread one available, but even ThreadLocalRandom is too
234 * heavy for these purposes.
235 *
236 * With such a small slack threshold value, it is not worthwhile
237 * to augment this with path short-circuiting (i.e., unsplicing
238 * interior nodes) except in the case of cancellation/removal (see
239 * below).
240 *
241 * We allow both the head and tail fields to be null before any
242 * nodes are enqueued; initializing upon first append. This
243 * simplifies some other logic, as well as providing more
244 * efficient explicit control paths instead of letting JVMs insert
245 * implicit NullPointerExceptions when they are null. While not
246 * currently fully implemented, we also leave open the possibility
247 * of re-nulling these fields when empty (which is complicated to
248 * arrange, for little benefit.)
249 *
250 * All enqueue/dequeue operations are handled by the single method
251 * "xfer" with parameters indicating whether to act as some form
252 * of offer, put, poll, take, or transfer (each possibly with
253 * timeout). The relative complexity of using one monolithic
254 * method outweighs the code bulk and maintenance problems of
255 * using separate methods for each case.
256 *
257 * Operation consists of up to three phases. The first is
258 * implemented within method xfer, the second in tryAppend, and
259 * the third in method awaitMatch.
260 *
261 * 1. Try to match an existing node
262 *
263 * Starting at head, skip already-matched nodes until finding
264 * an unmatched node of opposite mode, if one exists, in which
265 * case matching it and returning, also if necessary updating
266 * head to one past the matched node (or the node itself if the
267 * list has no other unmatched nodes). If the CAS misses, then
268 * a loop retries advancing head by two steps until either
269 * success or the slack is at most two. By requiring that each
270 * attempt advances head by two (if applicable), we ensure that
271 * the slack does not grow without bound. Traversals also check
272 * if the initial head is now off-list, in which case they
273 * start at the new head.
274 *
275 * If no candidates are found and the call was untimed
276 * poll/offer, (argument "how" is NOW) return.
277 *
278 * 2. Try to append a new node (method tryAppend)
279 *
280 * Starting at current tail pointer, find the actual last node
281 * and try to append a new node (or if head was null, establish
282 * the first node). Nodes can be appended only if their
283 * predecessors are either already matched or are of the same
284 * mode. If we detect otherwise, then a new node with opposite
285 * mode must have been appended during traversal, so we must
286 * restart at phase 1. The traversal and update steps are
287 * otherwise similar to phase 1: Retrying upon CAS misses and
288 * checking for staleness. In particular, if a self-link is
289 * encountered, then we can safely jump to a node on the list
290 * by continuing the traversal at current head.
291 *
292 * On successful append, if the call was ASYNC, return.
293 *
294 * 3. Await match or cancellation (method awaitMatch)
295 *
296 * Wait for another thread to match node; instead cancelling if
297 * the current thread was interrupted or the wait timed out. On
298 * multiprocessors, we use front-of-queue spinning: If a node
299 * appears to be the first unmatched node in the queue, it
300 * spins a bit before blocking. In either case, before blocking
301 * it tries to unsplice any nodes between the current "head"
302 * and the first unmatched node.
303 *
304 * Front-of-queue spinning vastly improves performance of
305 * heavily contended queues. And so long as it is relatively
306 * brief and "quiet", spinning does not much impact performance
307 * of less-contended queues. During spins threads check their
308 * interrupt status and generate a thread-local random number
309 * to decide to occasionally perform a Thread.yield. While
310 * yield has underdefined specs, we assume that it might help,
311 * and will not hurt, in limiting impact of spinning on busy
312 * systems. We also use smaller (1/2) spins for nodes that are
313 * not known to be front but whose predecessors have not
314 * blocked -- these "chained" spins avoid artifacts of
315 * front-of-queue rules which otherwise lead to alternating
316 * nodes spinning vs blocking. Further, front threads that
317 * represent phase changes (from data to request node or vice
318 * versa) compared to their predecessors receive additional
319 * chained spins, reflecting longer paths typically required to
320 * unblock threads during phase changes.
321 *
322 *
323 * ** Unlinking removed interior nodes **
324 *
325 * In addition to minimizing garbage retention via self-linking
326 * described above, we also unlink removed interior nodes. These
327 * may arise due to timed out or interrupted waits, or calls to
328 * remove(x) or Iterator.remove. Normally, given a node that was
329 * at one time known to be the predecessor of some node s that is
330 * to be removed, we can unsplice s by CASing the next field of
331 * its predecessor if it still points to s (otherwise s must
332 * already have been removed or is now offlist). But there are two
333 * situations in which we cannot guarantee to make node s
334 * unreachable in this way: (1) If s is the trailing node of list
335 * (i.e., with null next), then it is pinned as the target node
336 * for appends, so can only be removed later after other nodes are
337 * appended. (2) We cannot necessarily unlink s given a
338 * predecessor node that is matched (including the case of being
339 * cancelled): the predecessor may already be unspliced, in which
340 * case some previous reachable node may still point to s.
341 * (For further explanation see Herlihy & Shavit "The Art of
342 * Multiprocessor Programming" chapter 9). Although, in both
343 * cases, we can rule out the need for further action if either s
344 * or its predecessor are (or can be made to be) at, or fall off
345 * from, the head of list.
346 *
347 * Without taking these into account, it would be possible for an
348 * unbounded number of supposedly removed nodes to remain
349 * reachable. Situations leading to such buildup are uncommon but
350 * can occur in practice; for example when a series of short timed
351 * calls to poll repeatedly time out but never otherwise fall off
352 * the list because of an untimed call to take at the front of the
353 * queue.
354 *
355 * When these cases arise, rather than always retraversing the
356 * entire list to find an actual predecessor to unlink (which
357 * won't help for case (1) anyway), we record a conservative
358 * estimate of possible unsplice failures (in "sweepVotes").
359 * We trigger a full sweep when the estimate exceeds a threshold
360 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361 * removal failures to tolerate before sweeping through, unlinking
362 * cancelled nodes that were not unlinked upon initial removal.
363 * We perform sweeps by the thread hitting threshold (rather than
364 * background threads or by spreading work to other threads)
365 * because in the main contexts in which removal occurs, the
366 * caller is already timed-out, cancelled, or performing a
367 * potentially O(n) operation (e.g. remove(x)), none of which are
368 * time-critical enough to warrant the overhead that alternatives
369 * would impose on other threads.
370 *
371 * Because the sweepVotes estimate is conservative, and because
372 * nodes become unlinked "naturally" as they fall off the head of
373 * the queue, and because we allow votes to accumulate even while
374 * sweeps are in progress, there are typically significantly fewer
375 * such nodes than estimated. Choice of a threshold value
376 * balances the likelihood of wasted effort and contention, versus
377 * providing a worst-case bound on retention of interior nodes in
378 * quiescent queues. The value defined below was chosen
379 * empirically to balance these under various timeout scenarios.
380 *
381 * Note that we cannot self-link unlinked interior nodes during
382 * sweeps. However, the associated garbage chains terminate when
383 * some successor ultimately falls off the head of the list and is
384 * self-linked.
385 */
386
387 /** True if on multiprocessor */
388 private static final boolean MP =
389 Runtime.getRuntime().availableProcessors() > 1;
390
391 /**
392 * The number of times to spin (with randomly interspersed calls
393 * to Thread.yield) on multiprocessor before blocking when a node
394 * is apparently the first waiter in the queue. See above for
395 * explanation. Must be a power of two. The value is empirically
396 * derived -- it works pretty well across a variety of processors,
397 * numbers of CPUs, and OSes.
398 */
399 private static final int FRONT_SPINS = 1 << 7;
400
401 /**
402 * The number of times to spin before blocking when a node is
403 * preceded by another node that is apparently spinning. Also
404 * serves as an increment to FRONT_SPINS on phase changes, and as
405 * base average frequency for yielding during spins. Must be a
406 * power of two.
407 */
408 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409
410 /**
411 * The maximum number of estimated removal failures (sweepVotes)
412 * to tolerate before sweeping through the queue unlinking
413 * cancelled nodes that were not unlinked upon initial
414 * removal. See above for explanation. The value must be at least
415 * two to avoid useless sweeps when removing trailing nodes.
416 */
417 static final int SWEEP_THRESHOLD = 32;
418
419 /**
420 * Queue nodes. Uses Object, not E, for items to allow forgetting
421 * them after use. Relies heavily on Unsafe mechanics to minimize
422 * unnecessary ordering constraints: Writes that are intrinsically
423 * ordered wrt other accesses or CASes use simple relaxed forms.
424 */
425 static final class Node {
426 final boolean isData; // false if this is a request node
427 volatile Object item; // initially non-null if isData; CASed to match
428 volatile Node next;
429 volatile Thread waiter; // null until waiting
430
431 // CAS methods for fields
432 final boolean casNext(Node cmp, Node val) {
433 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
434 }
435
436 final boolean casItem(Object cmp, Object val) {
437 // assert cmp == null || cmp.getClass() != Node.class;
438 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
439 }
440
441 /**
442 * Constructs a new node. Uses relaxed write because item can
443 * only be seen after publication via casNext.
444 */
445 Node(Object item, boolean isData) {
446 UNSAFE.putObject(this, itemOffset, item); // relaxed write
447 this.isData = isData;
448 }
449
450 /**
451 * Links node to itself to avoid garbage retention. Called
452 * only after CASing head field, so uses relaxed write.
453 */
454 final void forgetNext() {
455 UNSAFE.putObject(this, nextOffset, this);
456 }
457
458 /**
459 * Sets item to self and waiter to null, to avoid garbage
460 * retention after matching or cancelling. Uses relaxed writes
461 * because order is already constrained in the only calling
462 * contexts: item is forgotten only after volatile/atomic
463 * mechanics that extract items. Similarly, clearing waiter
464 * follows either CAS or return from park (if ever parked;
465 * else we don't care).
466 */
467 final void forgetContents() {
468 UNSAFE.putObject(this, itemOffset, this);
469 UNSAFE.putObject(this, waiterOffset, null);
470 }
471
472 /**
473 * Returns true if this node has been matched, including the
474 * case of artificial matches due to cancellation.
475 */
476 final boolean isMatched() {
477 Object x = item;
478 return (x == this) || ((x == null) == isData);
479 }
480
481 /**
482 * Returns true if this is an unmatched request node.
483 */
484 final boolean isUnmatchedRequest() {
485 return !isData && item == null;
486 }
487
488 /**
489 * Returns true if a node with the given mode cannot be
490 * appended to this node because this node is unmatched and
491 * has opposite data mode.
492 */
493 final boolean cannotPrecede(boolean haveData) {
494 boolean d = isData;
495 Object x;
496 return d != haveData && (x = item) != this && (x != null) == d;
497 }
498
499 /**
500 * Tries to artificially match a data node -- used by remove.
501 */
502 final boolean tryMatchData() {
503 // assert isData;
504 Object x = item;
505 if (x != null && x != this && casItem(x, null)) {
506 LockSupport.unpark(waiter);
507 return true;
508 }
509 return false;
510 }
511
512 private static final long serialVersionUID = -3375979862319811754L;
513
514 // Unsafe mechanics
515 private static final sun.misc.Unsafe UNSAFE;
516 private static final long itemOffset;
517 private static final long nextOffset;
518 private static final long waiterOffset;
519 static {
520 try {
521 UNSAFE = sun.misc.Unsafe.getUnsafe();
522 Class<?> k = Node.class;
523 itemOffset = UNSAFE.objectFieldOffset
524 (k.getDeclaredField("item"));
525 nextOffset = UNSAFE.objectFieldOffset
526 (k.getDeclaredField("next"));
527 waiterOffset = UNSAFE.objectFieldOffset
528 (k.getDeclaredField("waiter"));
529 } catch (Exception e) {
530 throw new Error(e);
531 }
532 }
533 }
534
535 /** head of the queue; null until first enqueue */
536 transient volatile Node head;
537
538 /** tail of the queue; null until first append */
539 private transient volatile Node tail;
540
541 /** The number of apparent failures to unsplice removed nodes */
542 private transient volatile int sweepVotes;
543
544 // CAS methods for fields
545 private boolean casTail(Node cmp, Node val) {
546 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
547 }
548
549 private boolean casHead(Node cmp, Node val) {
550 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
551 }
552
553 private boolean casSweepVotes(int cmp, int val) {
554 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
555 }
556
557 /*
558 * Possible values for "how" argument in xfer method.
559 */
560 private static final int NOW = 0; // for untimed poll, tryTransfer
561 private static final int ASYNC = 1; // for offer, put, add
562 private static final int SYNC = 2; // for transfer, take
563 private static final int TIMED = 3; // for timed poll, tryTransfer
564
565 @SuppressWarnings("unchecked")
566 static <E> E cast(Object item) {
567 // assert item == null || item.getClass() != Node.class;
568 return (E) item;
569 }
570
571 /**
572 * Implements all queuing methods. See above for explanation.
573 *
574 * @param e the item or null for take
575 * @param haveData true if this is a put, else a take
576 * @param how NOW, ASYNC, SYNC, or TIMED
577 * @param nanos timeout in nanosecs, used only if mode is TIMED
578 * @return an item if matched, else e
579 * @throws NullPointerException if haveData mode but e is null
580 */
581 private E xfer(E e, boolean haveData, int how, long nanos) {
582 if (haveData && (e == null))
583 throw new NullPointerException();
584 Node s = null; // the node to append, if needed
585
586 retry:
587 for (;;) { // restart on append race
588
589 for (Node h = head, p = h; p != null;) { // find & match first node
590 boolean isData = p.isData;
591 Object item = p.item;
592 if (item != p && (item != null) == isData) { // unmatched
593 if (isData == haveData) // can't match
594 break;
595 if (p.casItem(item, e)) { // match
596 for (Node q = p; q != h;) {
597 Node n = q.next; // update by 2 unless singleton
598 if (head == h && casHead(h, n == null ? q : n)) {
599 h.forgetNext();
600 break;
601 } // advance and retry
602 if ((h = head) == null ||
603 (q = h.next) == null || !q.isMatched())
604 break; // unless slack < 2
605 }
606 LockSupport.unpark(p.waiter);
607 return LinkedTransferQueue.<E>cast(item);
608 }
609 }
610 Node n = p.next;
611 p = (p != n) ? n : (h = head); // Use head if p offlist
612 }
613
614 if (how != NOW) { // No matches available
615 if (s == null)
616 s = new Node(e, haveData);
617 Node pred = tryAppend(s, haveData);
618 if (pred == null)
619 continue retry; // lost race vs opposite mode
620 if (how != ASYNC)
621 return awaitMatch(s, pred, e, (how == TIMED), nanos);
622 }
623 return e; // not waiting
624 }
625 }
626
627 /**
628 * Tries to append node s as tail.
629 *
630 * @param s the node to append
631 * @param haveData true if appending in data mode
632 * @return null on failure due to losing race with append in
633 * different mode, else s's predecessor, or s itself if no
634 * predecessor
635 */
636 private Node tryAppend(Node s, boolean haveData) {
637 for (Node t = tail, p = t;;) { // move p to last node and append
638 Node n, u; // temps for reads of next & tail
639 if (p == null && (p = head) == null) {
640 if (casHead(null, s))
641 return s; // initialize
642 }
643 else if (p.cannotPrecede(haveData))
644 return null; // lost race vs opposite mode
645 else if ((n = p.next) != null) // not last; keep traversing
646 p = p != t && t != (u = tail) ? (t = u) : // stale tail
647 (p != n) ? n : null; // restart if off list
648 else if (!p.casNext(null, s))
649 p = p.next; // re-read on CAS failure
650 else {
651 if (p != t) { // update if slack now >= 2
652 while ((tail != t || !casTail(t, s)) &&
653 (t = tail) != null &&
654 (s = t.next) != null && // advance and retry
655 (s = s.next) != null && s != t);
656 }
657 return p;
658 }
659 }
660 }
661
662 /**
663 * Spins/yields/blocks until node s is matched or caller gives up.
664 *
665 * @param s the waiting node
666 * @param pred the predecessor of s, or s itself if it has no
667 * predecessor, or null if unknown (the null case does not occur
668 * in any current calls but may in possible future extensions)
669 * @param e the comparison value for checking match
670 * @param timed if true, wait only until timeout elapses
671 * @param nanos timeout in nanosecs, used only if timed is true
672 * @return matched item, or e if unmatched on interrupt or timeout
673 */
674 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
675 final long deadline = timed ? System.nanoTime() + nanos : 0L;
676 Thread w = Thread.currentThread();
677 int spins = -1; // initialized after first item and cancel checks
678 ThreadLocalRandom randomYields = null; // bound if needed
679
680 for (;;) {
681 Object item = s.item;
682 if (item != e) { // matched
683 // assert item != s;
684 s.forgetContents(); // avoid garbage
685 return LinkedTransferQueue.<E>cast(item);
686 }
687 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
688 s.casItem(e, s)) { // cancel
689 unsplice(pred, s);
690 return e;
691 }
692
693 if (spins < 0) { // establish spins at/near front
694 if ((spins = spinsFor(pred, s.isData)) > 0)
695 randomYields = ThreadLocalRandom.current();
696 }
697 else if (spins > 0) { // spin
698 --spins;
699 if (randomYields.nextInt(CHAINED_SPINS) == 0)
700 Thread.yield(); // occasionally yield
701 }
702 else if (s.waiter == null) {
703 s.waiter = w; // request unpark then recheck
704 }
705 else if (timed) {
706 nanos = deadline - System.nanoTime();
707 if (nanos > 0L)
708 LockSupport.parkNanos(this, nanos);
709 }
710 else {
711 LockSupport.park(this);
712 }
713 }
714 }
715
716 /**
717 * Returns spin/yield value for a node with given predecessor and
718 * data mode. See above for explanation.
719 */
720 private static int spinsFor(Node pred, boolean haveData) {
721 if (MP && pred != null) {
722 if (pred.isData != haveData) // phase change
723 return FRONT_SPINS + CHAINED_SPINS;
724 if (pred.isMatched()) // probably at front
725 return FRONT_SPINS;
726 if (pred.waiter == null) // pred apparently spinning
727 return CHAINED_SPINS;
728 }
729 return 0;
730 }
731
732 /* -------------- Traversal methods -------------- */
733
734 /**
735 * Returns the successor of p, or the head node if p.next has been
736 * linked to self, which will only be true if traversing with a
737 * stale pointer that is now off the list.
738 */
739 final Node succ(Node p) {
740 Node next = p.next;
741 return (p == next) ? head : next;
742 }
743
744 /**
745 * Returns the first unmatched node of the given mode, or null if
746 * none. Used by methods isEmpty, hasWaitingConsumer.
747 */
748 private Node firstOfMode(boolean isData) {
749 for (Node p = head; p != null; p = succ(p)) {
750 if (!p.isMatched())
751 return (p.isData == isData) ? p : null;
752 }
753 return null;
754 }
755
756 /**
757 * Version of firstOfMode used by Spliterator
758 */
759 final Node firstDataNode() {
760 for (Node p = head; p != null;) {
761 Object item = p.item;
762 if (p.isData) {
763 if (item != null && item != p)
764 return p;
765 }
766 else if (item == null)
767 break;
768 if (p == (p = p.next))
769 p = head;
770 }
771 return null;
772 }
773
774 /**
775 * Returns the item in the first unmatched node with isData; or
776 * null if none. Used by peek.
777 */
778 private E firstDataItem() {
779 for (Node p = head; p != null; p = succ(p)) {
780 Object item = p.item;
781 if (p.isData) {
782 if (item != null && item != p)
783 return LinkedTransferQueue.<E>cast(item);
784 }
785 else if (item == null)
786 return null;
787 }
788 return null;
789 }
790
791 /**
792 * Traverses and counts unmatched nodes of the given mode.
793 * Used by methods size and getWaitingConsumerCount.
794 */
795 private int countOfMode(boolean data) {
796 int count = 0;
797 for (Node p = head; p != null; ) {
798 if (!p.isMatched()) {
799 if (p.isData != data)
800 return 0;
801 if (++count == Integer.MAX_VALUE) // saturated
802 break;
803 }
804 Node n = p.next;
805 if (n != p)
806 p = n;
807 else {
808 count = 0;
809 p = head;
810 }
811 }
812 return count;
813 }
814
815 final class Itr implements Iterator<E> {
816 private Node nextNode; // next node to return item for
817 private E nextItem; // the corresponding item
818 private Node lastRet; // last returned node, to support remove
819 private Node lastPred; // predecessor to unlink lastRet
820
821 /**
822 * Moves to next node after prev, or first node if prev null.
823 */
824 private void advance(Node prev) {
825 /*
826 * To track and avoid buildup of deleted nodes in the face
827 * of calls to both Queue.remove and Itr.remove, we must
828 * include variants of unsplice and sweep upon each
829 * advance: Upon Itr.remove, we may need to catch up links
830 * from lastPred, and upon other removes, we might need to
831 * skip ahead from stale nodes and unsplice deleted ones
832 * found while advancing.
833 */
834
835 Node r, b; // reset lastPred upon possible deletion of lastRet
836 if ((r = lastRet) != null && !r.isMatched())
837 lastPred = r; // next lastPred is old lastRet
838 else if ((b = lastPred) == null || b.isMatched())
839 lastPred = null; // at start of list
840 else {
841 Node s, n; // help with removal of lastPred.next
842 while ((s = b.next) != null &&
843 s != b && s.isMatched() &&
844 (n = s.next) != null && n != s)
845 b.casNext(s, n);
846 }
847
848 this.lastRet = prev;
849
850 for (Node p = prev, s, n;;) {
851 s = (p == null) ? head : p.next;
852 if (s == null)
853 break;
854 else if (s == p) {
855 p = null;
856 continue;
857 }
858 Object item = s.item;
859 if (s.isData) {
860 if (item != null && item != s) {
861 nextItem = LinkedTransferQueue.<E>cast(item);
862 nextNode = s;
863 return;
864 }
865 }
866 else if (item == null)
867 break;
868 // assert s.isMatched();
869 if (p == null)
870 p = s;
871 else if ((n = s.next) == null)
872 break;
873 else if (s == n)
874 p = null;
875 else
876 p.casNext(s, n);
877 }
878 nextNode = null;
879 nextItem = null;
880 }
881
882 Itr() {
883 advance(null);
884 }
885
886 public final boolean hasNext() {
887 return nextNode != null;
888 }
889
890 public final E next() {
891 Node p = nextNode;
892 if (p == null) throw new NoSuchElementException();
893 E e = nextItem;
894 advance(p);
895 return e;
896 }
897
898 public final void remove() {
899 final Node lastRet = this.lastRet;
900 if (lastRet == null)
901 throw new IllegalStateException();
902 this.lastRet = null;
903 if (lastRet.tryMatchData())
904 unsplice(lastPred, lastRet);
905 }
906 }
907
908 /** A customized variant of Spliterators.IteratorSpliterator */
909 static final class LTQSpliterator<E> implements Spliterator<E> {
910 static final int MAX_BATCH = 1 << 25; // max batch array size;
911 final LinkedTransferQueue<E> queue;
912 Node current; // current node; null until initialized
913 int batch; // batch size for splits
914 boolean exhausted; // true when no more nodes
915 LTQSpliterator(LinkedTransferQueue<E> queue) {
916 this.queue = queue;
917 }
918
919 public Spliterator<E> trySplit() {
920 Node p;
921 final LinkedTransferQueue<E> q = this.queue;
922 int b = batch;
923 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
924 if (!exhausted &&
925 ((p = current) != null || (p = q.firstDataNode()) != null) &&
926 p.next != null) {
927 Object[] a = new Object[n];
928 int i = 0;
929 do {
930 if ((a[i] = p.item) != null)
931 ++i;
932 if (p == (p = p.next))
933 p = q.firstDataNode();
934 } while (p != null && i < n);
935 if ((current = p) == null)
936 exhausted = true;
937 if (i > 0) {
938 batch = i;
939 return Spliterators.spliterator
940 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
941 Spliterator.CONCURRENT);
942 }
943 }
944 return null;
945 }
946
947 @SuppressWarnings("unchecked")
948 public void forEachRemaining(Consumer<? super E> action) {
949 Node p;
950 if (action == null) throw new NullPointerException();
951 final LinkedTransferQueue<E> q = this.queue;
952 if (!exhausted &&
953 ((p = current) != null || (p = q.firstDataNode()) != null)) {
954 exhausted = true;
955 do {
956 Object e = p.item;
957 if (p == (p = p.next))
958 p = q.firstDataNode();
959 if (e != null)
960 action.accept((E)e);
961 } while (p != null);
962 }
963 }
964
965 @SuppressWarnings("unchecked")
966 public boolean tryAdvance(Consumer<? super E> action) {
967 Node p;
968 if (action == null) throw new NullPointerException();
969 final LinkedTransferQueue<E> q = this.queue;
970 if (!exhausted &&
971 ((p = current) != null || (p = q.firstDataNode()) != null)) {
972 Object e;
973 do {
974 e = p.item;
975 if (p == (p = p.next))
976 p = q.firstDataNode();
977 } while (e == null && p != null);
978 if ((current = p) == null)
979 exhausted = true;
980 if (e != null) {
981 action.accept((E)e);
982 return true;
983 }
984 }
985 return false;
986 }
987
988 public long estimateSize() { return Long.MAX_VALUE; }
989
990 public int characteristics() {
991 return Spliterator.ORDERED | Spliterator.NONNULL |
992 Spliterator.CONCURRENT;
993 }
994 }
995
996 public Spliterator<E> spliterator() {
997 return new LTQSpliterator<E>(this);
998 }
999
1000 /* -------------- Removal methods -------------- */
1001
1002 /**
1003 * Unsplices (now or later) the given deleted/cancelled node with
1004 * the given predecessor.
1005 *
1006 * @param pred a node that was at one time known to be the
1007 * predecessor of s, or null or s itself if s is/was at head
1008 * @param s the node to be unspliced
1009 */
1010 final void unsplice(Node pred, Node s) {
1011 s.forgetContents(); // forget unneeded fields
1012 /*
1013 * See above for rationale. Briefly: if pred still points to
1014 * s, try to unlink s. If s cannot be unlinked, because it is
1015 * trailing node or pred might be unlinked, and neither pred
1016 * nor s are head or offlist, add to sweepVotes, and if enough
1017 * votes have accumulated, sweep.
1018 */
1019 if (pred != null && pred != s && pred.next == s) {
1020 Node n = s.next;
1021 if (n == null ||
1022 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1023 for (;;) { // check if at, or could be, head
1024 Node h = head;
1025 if (h == pred || h == s || h == null)
1026 return; // at head or list empty
1027 if (!h.isMatched())
1028 break;
1029 Node hn = h.next;
1030 if (hn == null)
1031 return; // now empty
1032 if (hn != h && casHead(h, hn))
1033 h.forgetNext(); // advance head
1034 }
1035 if (pred.next != pred && s.next != s) { // recheck if offlist
1036 for (;;) { // sweep now if enough votes
1037 int v = sweepVotes;
1038 if (v < SWEEP_THRESHOLD) {
1039 if (casSweepVotes(v, v + 1))
1040 break;
1041 }
1042 else if (casSweepVotes(v, 0)) {
1043 sweep();
1044 break;
1045 }
1046 }
1047 }
1048 }
1049 }
1050 }
1051
1052 /**
1053 * Unlinks matched (typically cancelled) nodes encountered in a
1054 * traversal from head.
1055 */
1056 private void sweep() {
1057 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1058 if (!s.isMatched())
1059 // Unmatched nodes are never self-linked
1060 p = s;
1061 else if ((n = s.next) == null) // trailing node is pinned
1062 break;
1063 else if (s == n) // stale
1064 // No need to also check for p == s, since that implies s == n
1065 p = head;
1066 else
1067 p.casNext(s, n);
1068 }
1069 }
1070
1071 /**
1072 * Main implementation of remove(Object)
1073 */
1074 private boolean findAndRemove(Object e) {
1075 if (e != null) {
1076 for (Node pred = null, p = head; p != null; ) {
1077 Object item = p.item;
1078 if (p.isData) {
1079 if (item != null && item != p && e.equals(item) &&
1080 p.tryMatchData()) {
1081 unsplice(pred, p);
1082 return true;
1083 }
1084 }
1085 else if (item == null)
1086 break;
1087 pred = p;
1088 if ((p = p.next) == pred) { // stale
1089 pred = null;
1090 p = head;
1091 }
1092 }
1093 }
1094 return false;
1095 }
1096
1097 /**
1098 * Creates an initially empty {@code LinkedTransferQueue}.
1099 */
1100 public LinkedTransferQueue() {
1101 }
1102
1103 /**
1104 * Creates a {@code LinkedTransferQueue}
1105 * initially containing the elements of the given collection,
1106 * added in traversal order of the collection's iterator.
1107 *
1108 * @param c the collection of elements to initially contain
1109 * @throws NullPointerException if the specified collection or any
1110 * of its elements are null
1111 */
1112 public LinkedTransferQueue(Collection<? extends E> c) {
1113 this();
1114 addAll(c);
1115 }
1116
1117 /**
1118 * Inserts the specified element at the tail of this queue.
1119 * As the queue is unbounded, this method will never block.
1120 *
1121 * @throws NullPointerException if the specified element is null
1122 */
1123 public void put(E e) {
1124 xfer(e, true, ASYNC, 0);
1125 }
1126
1127 /**
1128 * Inserts the specified element at the tail of this queue.
1129 * As the queue is unbounded, this method will never block or
1130 * return {@code false}.
1131 *
1132 * @return {@code true} (as specified by
1133 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1134 * BlockingQueue.offer})
1135 * @throws NullPointerException if the specified element is null
1136 */
1137 public boolean offer(E e, long timeout, TimeUnit unit) {
1138 xfer(e, true, ASYNC, 0);
1139 return true;
1140 }
1141
1142 /**
1143 * Inserts the specified element at the tail of this queue.
1144 * As the queue is unbounded, this method will never return {@code false}.
1145 *
1146 * @return {@code true} (as specified by {@link Queue#offer})
1147 * @throws NullPointerException if the specified element is null
1148 */
1149 public boolean offer(E e) {
1150 xfer(e, true, ASYNC, 0);
1151 return true;
1152 }
1153
1154 /**
1155 * Inserts the specified element at the tail of this queue.
1156 * As the queue is unbounded, this method will never throw
1157 * {@link IllegalStateException} or return {@code false}.
1158 *
1159 * @return {@code true} (as specified by {@link Collection#add})
1160 * @throws NullPointerException if the specified element is null
1161 */
1162 public boolean add(E e) {
1163 xfer(e, true, ASYNC, 0);
1164 return true;
1165 }
1166
1167 /**
1168 * Transfers the element to a waiting consumer immediately, if possible.
1169 *
1170 * <p>More precisely, transfers the specified element immediately
1171 * if there exists a consumer already waiting to receive it (in
1172 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1173 * otherwise returning {@code false} without enqueuing the element.
1174 *
1175 * @throws NullPointerException if the specified element is null
1176 */
1177 public boolean tryTransfer(E e) {
1178 return xfer(e, true, NOW, 0) == null;
1179 }
1180
1181 /**
1182 * Transfers the element to a consumer, waiting if necessary to do so.
1183 *
1184 * <p>More precisely, transfers the specified element immediately
1185 * if there exists a consumer already waiting to receive it (in
1186 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1187 * else inserts the specified element at the tail of this queue
1188 * and waits until the element is received by a consumer.
1189 *
1190 * @throws NullPointerException if the specified element is null
1191 */
1192 public void transfer(E e) throws InterruptedException {
1193 if (xfer(e, true, SYNC, 0) != null) {
1194 Thread.interrupted(); // failure possible only due to interrupt
1195 throw new InterruptedException();
1196 }
1197 }
1198
1199 /**
1200 * Transfers the element to a consumer if it is possible to do so
1201 * before the timeout elapses.
1202 *
1203 * <p>More precisely, transfers the specified element immediately
1204 * if there exists a consumer already waiting to receive it (in
1205 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1206 * else inserts the specified element at the tail of this queue
1207 * and waits until the element is received by a consumer,
1208 * returning {@code false} if the specified wait time elapses
1209 * before the element can be transferred.
1210 *
1211 * @throws NullPointerException if the specified element is null
1212 */
1213 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1214 throws InterruptedException {
1215 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1216 return true;
1217 if (!Thread.interrupted())
1218 return false;
1219 throw new InterruptedException();
1220 }
1221
1222 public E take() throws InterruptedException {
1223 E e = xfer(null, false, SYNC, 0);
1224 if (e != null)
1225 return e;
1226 Thread.interrupted();
1227 throw new InterruptedException();
1228 }
1229
1230 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1231 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1232 if (e != null || !Thread.interrupted())
1233 return e;
1234 throw new InterruptedException();
1235 }
1236
1237 public E poll() {
1238 return xfer(null, false, NOW, 0);
1239 }
1240
1241 /**
1242 * @throws NullPointerException {@inheritDoc}
1243 * @throws IllegalArgumentException {@inheritDoc}
1244 */
1245 public int drainTo(Collection<? super E> c) {
1246 if (c == null)
1247 throw new NullPointerException();
1248 if (c == this)
1249 throw new IllegalArgumentException();
1250 int n = 0;
1251 for (E e; (e = poll()) != null;) {
1252 c.add(e);
1253 ++n;
1254 }
1255 return n;
1256 }
1257
1258 /**
1259 * @throws NullPointerException {@inheritDoc}
1260 * @throws IllegalArgumentException {@inheritDoc}
1261 */
1262 public int drainTo(Collection<? super E> c, int maxElements) {
1263 if (c == null)
1264 throw new NullPointerException();
1265 if (c == this)
1266 throw new IllegalArgumentException();
1267 int n = 0;
1268 for (E e; n < maxElements && (e = poll()) != null;) {
1269 c.add(e);
1270 ++n;
1271 }
1272 return n;
1273 }
1274
1275 /**
1276 * Returns an iterator over the elements in this queue in proper sequence.
1277 * The elements will be returned in order from first (head) to last (tail).
1278 *
1279 * <p>The returned iterator is a "weakly consistent" iterator that
1280 * will never throw {@link java.util.ConcurrentModificationException
1281 * ConcurrentModificationException}, and guarantees to traverse
1282 * elements as they existed upon construction of the iterator, and
1283 * may (but is not guaranteed to) reflect any modifications
1284 * subsequent to construction.
1285 *
1286 * @return an iterator over the elements in this queue in proper sequence
1287 */
1288 public Iterator<E> iterator() {
1289 return new Itr();
1290 }
1291
1292 public E peek() {
1293 return firstDataItem();
1294 }
1295
1296 /**
1297 * Returns {@code true} if this queue contains no elements.
1298 *
1299 * @return {@code true} if this queue contains no elements
1300 */
1301 public boolean isEmpty() {
1302 for (Node p = head; p != null; p = succ(p)) {
1303 if (!p.isMatched())
1304 return !p.isData;
1305 }
1306 return true;
1307 }
1308
1309 public boolean hasWaitingConsumer() {
1310 return firstOfMode(false) != null;
1311 }
1312
1313 /**
1314 * Returns the number of elements in this queue. If this queue
1315 * contains more than {@code Integer.MAX_VALUE} elements, returns
1316 * {@code Integer.MAX_VALUE}.
1317 *
1318 * <p>Beware that, unlike in most collections, this method is
1319 * <em>NOT</em> a constant-time operation. Because of the
1320 * asynchronous nature of these queues, determining the current
1321 * number of elements requires an O(n) traversal.
1322 *
1323 * @return the number of elements in this queue
1324 */
1325 public int size() {
1326 return countOfMode(true);
1327 }
1328
1329 public int getWaitingConsumerCount() {
1330 return countOfMode(false);
1331 }
1332
1333 /**
1334 * Removes a single instance of the specified element from this queue,
1335 * if it is present. More formally, removes an element {@code e} such
1336 * that {@code o.equals(e)}, if this queue contains one or more such
1337 * elements.
1338 * Returns {@code true} if this queue contained the specified element
1339 * (or equivalently, if this queue changed as a result of the call).
1340 *
1341 * @param o element to be removed from this queue, if present
1342 * @return {@code true} if this queue changed as a result of the call
1343 */
1344 public boolean remove(Object o) {
1345 return findAndRemove(o);
1346 }
1347
1348 /**
1349 * Returns {@code true} if this queue contains the specified element.
1350 * More formally, returns {@code true} if and only if this queue contains
1351 * at least one element {@code e} such that {@code o.equals(e)}.
1352 *
1353 * @param o object to be checked for containment in this queue
1354 * @return {@code true} if this queue contains the specified element
1355 */
1356 public boolean contains(Object o) {
1357 if (o == null) return false;
1358 for (Node p = head; p != null; p = succ(p)) {
1359 Object item = p.item;
1360 if (p.isData) {
1361 if (item != null && item != p && o.equals(item))
1362 return true;
1363 }
1364 else if (item == null)
1365 break;
1366 }
1367 return false;
1368 }
1369
1370 /**
1371 * Always returns {@code Integer.MAX_VALUE} because a
1372 * {@code LinkedTransferQueue} is not capacity constrained.
1373 *
1374 * @return {@code Integer.MAX_VALUE} (as specified by
1375 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1376 * BlockingQueue.remainingCapacity})
1377 */
1378 public int remainingCapacity() {
1379 return Integer.MAX_VALUE;
1380 }
1381
1382 /**
1383 * Saves this queue to a stream (that is, serializes it).
1384 *
1385 * @param s the stream
1386 * @serialData All of the elements (each an {@code E}) in
1387 * the proper order, followed by a null
1388 */
1389 private void writeObject(java.io.ObjectOutputStream s)
1390 throws java.io.IOException {
1391 s.defaultWriteObject();
1392 for (E e : this)
1393 s.writeObject(e);
1394 // Use trailing null as sentinel
1395 s.writeObject(null);
1396 }
1397
1398 /**
1399 * Reconstitutes this queue from a stream (that is, deserializes it).
1400 * @param s the stream
1401 */
1402 private void readObject(java.io.ObjectInputStream s)
1403 throws java.io.IOException, ClassNotFoundException {
1404 s.defaultReadObject();
1405 for (;;) {
1406 @SuppressWarnings("unchecked")
1407 E item = (E) s.readObject();
1408 if (item == null)
1409 break;
1410 else
1411 offer(item);
1412 }
1413 }
1414
1415 // Unsafe mechanics
1416
1417 private static final sun.misc.Unsafe UNSAFE;
1418 private static final long headOffset;
1419 private static final long tailOffset;
1420 private static final long sweepVotesOffset;
1421 static {
1422 try {
1423 UNSAFE = sun.misc.Unsafe.getUnsafe();
1424 Class<?> k = LinkedTransferQueue.class;
1425 headOffset = UNSAFE.objectFieldOffset
1426 (k.getDeclaredField("head"));
1427 tailOffset = UNSAFE.objectFieldOffset
1428 (k.getDeclaredField("tail"));
1429 sweepVotesOffset = UNSAFE.objectFieldOffset
1430 (k.getDeclaredField("sweepVotes"));
1431 } catch (Exception e) {
1432 throw new Error(e);
1433 }
1434 }
1435 }