ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.76
Committed: Wed Dec 31 07:54:14 2014 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.75: +2 -3 lines
Log Message:
standardize import statement order

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Queue;
16 import java.util.Spliterator;
17 import java.util.Spliterators;
18 import java.util.concurrent.locks.LockSupport;
19 import java.util.function.Consumer;
20 import java.util.stream.Stream;
21
22 /**
23 * An unbounded {@link TransferQueue} based on linked nodes.
24 * This queue orders elements FIFO (first-in-first-out) with respect
25 * to any given producer. The <em>head</em> of the queue is that
26 * element that has been on the queue the longest time for some
27 * producer. The <em>tail</em> of the queue is that element that has
28 * been on the queue the shortest time for some producer.
29 *
30 * <p>Beware that, unlike in most collections, the {@code size} method
31 * is <em>NOT</em> a constant-time operation. Because of the
32 * asynchronous nature of these queues, determining the current number
33 * of elements requires a traversal of the elements, and so may report
34 * inaccurate results if this collection is modified during traversal.
35 * Additionally, the bulk operations {@code addAll},
36 * {@code removeAll}, {@code retainAll}, {@code containsAll},
37 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
38 * to be performed atomically. For example, an iterator operating
39 * concurrently with an {@code addAll} operation might view only some
40 * of the added elements.
41 *
42 * <p>This class and its iterator implement all of the
43 * <em>optional</em> methods of the {@link Collection} and {@link
44 * Iterator} interfaces.
45 *
46 * <p>Memory consistency effects: As with other concurrent
47 * collections, actions in a thread prior to placing an object into a
48 * {@code LinkedTransferQueue}
49 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
50 * actions subsequent to the access or removal of that element from
51 * the {@code LinkedTransferQueue} in another thread.
52 *
53 * <p>This class is a member of the
54 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
55 * Java Collections Framework</a>.
56 *
57 * @since 1.7
58 * @author Doug Lea
59 * @param <E> the type of elements held in this queue
60 */
61 public class LinkedTransferQueue<E> extends AbstractQueue<E>
62 implements TransferQueue<E>, java.io.Serializable {
63 private static final long serialVersionUID = -3223113410248163686L;
64
65 /*
66 * *** Overview of Dual Queues with Slack ***
67 *
68 * Dual Queues, introduced by Scherer and Scott
69 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
70 * (linked) queues in which nodes may represent either data or
71 * requests. When a thread tries to enqueue a data node, but
72 * encounters a request node, it instead "matches" and removes it;
73 * and vice versa for enqueuing requests. Blocking Dual Queues
74 * arrange that threads enqueuing unmatched requests block until
75 * other threads provide the match. Dual Synchronous Queues (see
76 * Scherer, Lea, & Scott
77 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
78 * additionally arrange that threads enqueuing unmatched data also
79 * block. Dual Transfer Queues support all of these modes, as
80 * dictated by callers.
81 *
82 * A FIFO dual queue may be implemented using a variation of the
83 * Michael & Scott (M&S) lock-free queue algorithm
84 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
85 * It maintains two pointer fields, "head", pointing to a
86 * (matched) node that in turn points to the first actual
87 * (unmatched) queue node (or null if empty); and "tail" that
88 * points to the last node on the queue (or again null if
89 * empty). For example, here is a possible queue with four data
90 * elements:
91 *
92 * head tail
93 * | |
94 * v v
95 * M -> U -> U -> U -> U
96 *
97 * The M&S queue algorithm is known to be prone to scalability and
98 * overhead limitations when maintaining (via CAS) these head and
99 * tail pointers. This has led to the development of
100 * contention-reducing variants such as elimination arrays (see
101 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
102 * optimistic back pointers (see Ladan-Mozes & Shavit
103 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
104 * However, the nature of dual queues enables a simpler tactic for
105 * improving M&S-style implementations when dual-ness is needed.
106 *
107 * In a dual queue, each node must atomically maintain its match
108 * status. While there are other possible variants, we implement
109 * this here as: for a data-mode node, matching entails CASing an
110 * "item" field from a non-null data value to null upon match, and
111 * vice-versa for request nodes, CASing from null to a data
112 * value. (Note that the linearization properties of this style of
113 * queue are easy to verify -- elements are made available by
114 * linking, and unavailable by matching.) Compared to plain M&S
115 * queues, this property of dual queues requires one additional
116 * successful atomic operation per enq/deq pair. But it also
117 * enables lower cost variants of queue maintenance mechanics. (A
118 * variation of this idea applies even for non-dual queues that
119 * support deletion of interior elements, such as
120 * j.u.c.ConcurrentLinkedQueue.)
121 *
122 * Once a node is matched, its match status can never again
123 * change. We may thus arrange that the linked list of them
124 * contain a prefix of zero or more matched nodes, followed by a
125 * suffix of zero or more unmatched nodes. (Note that we allow
126 * both the prefix and suffix to be zero length, which in turn
127 * means that we do not use a dummy header.) If we were not
128 * concerned with either time or space efficiency, we could
129 * correctly perform enqueue and dequeue operations by traversing
130 * from a pointer to the initial node; CASing the item of the
131 * first unmatched node on match and CASing the next field of the
132 * trailing node on appends. (Plus some special-casing when
133 * initially empty). While this would be a terrible idea in
134 * itself, it does have the benefit of not requiring ANY atomic
135 * updates on head/tail fields.
136 *
137 * We introduce here an approach that lies between the extremes of
138 * never versus always updating queue (head and tail) pointers.
139 * This offers a tradeoff between sometimes requiring extra
140 * traversal steps to locate the first and/or last unmatched
141 * nodes, versus the reduced overhead and contention of fewer
142 * updates to queue pointers. For example, a possible snapshot of
143 * a queue is:
144 *
145 * head tail
146 * | |
147 * v v
148 * M -> M -> U -> U -> U -> U
149 *
150 * The best value for this "slack" (the targeted maximum distance
151 * between the value of "head" and the first unmatched node, and
152 * similarly for "tail") is an empirical matter. We have found
153 * that using very small constants in the range of 1-3 work best
154 * over a range of platforms. Larger values introduce increasing
155 * costs of cache misses and risks of long traversal chains, while
156 * smaller values increase CAS contention and overhead.
157 *
158 * Dual queues with slack differ from plain M&S dual queues by
159 * virtue of only sometimes updating head or tail pointers when
160 * matching, appending, or even traversing nodes; in order to
161 * maintain a targeted slack. The idea of "sometimes" may be
162 * operationalized in several ways. The simplest is to use a
163 * per-operation counter incremented on each traversal step, and
164 * to try (via CAS) to update the associated queue pointer
165 * whenever the count exceeds a threshold. Another, that requires
166 * more overhead, is to use random number generators to update
167 * with a given probability per traversal step.
168 *
169 * In any strategy along these lines, because CASes updating
170 * fields may fail, the actual slack may exceed targeted
171 * slack. However, they may be retried at any time to maintain
172 * targets. Even when using very small slack values, this
173 * approach works well for dual queues because it allows all
174 * operations up to the point of matching or appending an item
175 * (hence potentially allowing progress by another thread) to be
176 * read-only, thus not introducing any further contention. As
177 * described below, we implement this by performing slack
178 * maintenance retries only after these points.
179 *
180 * As an accompaniment to such techniques, traversal overhead can
181 * be further reduced without increasing contention of head
182 * pointer updates: Threads may sometimes shortcut the "next" link
183 * path from the current "head" node to be closer to the currently
184 * known first unmatched node, and similarly for tail. Again, this
185 * may be triggered with using thresholds or randomization.
186 *
187 * These ideas must be further extended to avoid unbounded amounts
188 * of costly-to-reclaim garbage caused by the sequential "next"
189 * links of nodes starting at old forgotten head nodes: As first
190 * described in detail by Boehm
191 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 * delays noticing that any arbitrarily old node has become
193 * garbage, all newer dead nodes will also be unreclaimed.
194 * (Similar issues arise in non-GC environments.) To cope with
195 * this in our implementation, upon CASing to advance the head
196 * pointer, we set the "next" link of the previous head to point
197 * only to itself; thus limiting the length of connected dead lists.
198 * (We also take similar care to wipe out possibly garbage
199 * retaining values held in other Node fields.) However, doing so
200 * adds some further complexity to traversal: If any "next"
201 * pointer links to itself, it indicates that the current thread
202 * has lagged behind a head-update, and so the traversal must
203 * continue from the "head". Traversals trying to find the
204 * current tail starting from "tail" may also encounter
205 * self-links, in which case they also continue at "head".
206 *
207 * It is tempting in slack-based scheme to not even use CAS for
208 * updates (similarly to Ladan-Mozes & Shavit). However, this
209 * cannot be done for head updates under the above link-forgetting
210 * mechanics because an update may leave head at a detached node.
211 * And while direct writes are possible for tail updates, they
212 * increase the risk of long retraversals, and hence long garbage
213 * chains, which can be much more costly than is worthwhile
214 * considering that the cost difference of performing a CAS vs
215 * write is smaller when they are not triggered on each operation
216 * (especially considering that writes and CASes equally require
217 * additional GC bookkeeping ("write barriers") that are sometimes
218 * more costly than the writes themselves because of contention).
219 *
220 * *** Overview of implementation ***
221 *
222 * We use a threshold-based approach to updates, with a slack
223 * threshold of two -- that is, we update head/tail when the
224 * current pointer appears to be two or more steps away from the
225 * first/last node. The slack value is hard-wired: a path greater
226 * than one is naturally implemented by checking equality of
227 * traversal pointers except when the list has only one element,
228 * in which case we keep slack threshold at one. Avoiding tracking
229 * explicit counts across method calls slightly simplifies an
230 * already-messy implementation. Using randomization would
231 * probably work better if there were a low-quality dirt-cheap
232 * per-thread one available, but even ThreadLocalRandom is too
233 * heavy for these purposes.
234 *
235 * With such a small slack threshold value, it is not worthwhile
236 * to augment this with path short-circuiting (i.e., unsplicing
237 * interior nodes) except in the case of cancellation/removal (see
238 * below).
239 *
240 * We allow both the head and tail fields to be null before any
241 * nodes are enqueued; initializing upon first append. This
242 * simplifies some other logic, as well as providing more
243 * efficient explicit control paths instead of letting JVMs insert
244 * implicit NullPointerExceptions when they are null. While not
245 * currently fully implemented, we also leave open the possibility
246 * of re-nulling these fields when empty (which is complicated to
247 * arrange, for little benefit.)
248 *
249 * All enqueue/dequeue operations are handled by the single method
250 * "xfer" with parameters indicating whether to act as some form
251 * of offer, put, poll, take, or transfer (each possibly with
252 * timeout). The relative complexity of using one monolithic
253 * method outweighs the code bulk and maintenance problems of
254 * using separate methods for each case.
255 *
256 * Operation consists of up to three phases. The first is
257 * implemented within method xfer, the second in tryAppend, and
258 * the third in method awaitMatch.
259 *
260 * 1. Try to match an existing node
261 *
262 * Starting at head, skip already-matched nodes until finding
263 * an unmatched node of opposite mode, if one exists, in which
264 * case matching it and returning, also if necessary updating
265 * head to one past the matched node (or the node itself if the
266 * list has no other unmatched nodes). If the CAS misses, then
267 * a loop retries advancing head by two steps until either
268 * success or the slack is at most two. By requiring that each
269 * attempt advances head by two (if applicable), we ensure that
270 * the slack does not grow without bound. Traversals also check
271 * if the initial head is now off-list, in which case they
272 * start at the new head.
273 *
274 * If no candidates are found and the call was untimed
275 * poll/offer, (argument "how" is NOW) return.
276 *
277 * 2. Try to append a new node (method tryAppend)
278 *
279 * Starting at current tail pointer, find the actual last node
280 * and try to append a new node (or if head was null, establish
281 * the first node). Nodes can be appended only if their
282 * predecessors are either already matched or are of the same
283 * mode. If we detect otherwise, then a new node with opposite
284 * mode must have been appended during traversal, so we must
285 * restart at phase 1. The traversal and update steps are
286 * otherwise similar to phase 1: Retrying upon CAS misses and
287 * checking for staleness. In particular, if a self-link is
288 * encountered, then we can safely jump to a node on the list
289 * by continuing the traversal at current head.
290 *
291 * On successful append, if the call was ASYNC, return.
292 *
293 * 3. Await match or cancellation (method awaitMatch)
294 *
295 * Wait for another thread to match node; instead cancelling if
296 * the current thread was interrupted or the wait timed out. On
297 * multiprocessors, we use front-of-queue spinning: If a node
298 * appears to be the first unmatched node in the queue, it
299 * spins a bit before blocking. In either case, before blocking
300 * it tries to unsplice any nodes between the current "head"
301 * and the first unmatched node.
302 *
303 * Front-of-queue spinning vastly improves performance of
304 * heavily contended queues. And so long as it is relatively
305 * brief and "quiet", spinning does not much impact performance
306 * of less-contended queues. During spins threads check their
307 * interrupt status and generate a thread-local random number
308 * to decide to occasionally perform a Thread.yield. While
309 * yield has underdefined specs, we assume that it might help,
310 * and will not hurt, in limiting impact of spinning on busy
311 * systems. We also use smaller (1/2) spins for nodes that are
312 * not known to be front but whose predecessors have not
313 * blocked -- these "chained" spins avoid artifacts of
314 * front-of-queue rules which otherwise lead to alternating
315 * nodes spinning vs blocking. Further, front threads that
316 * represent phase changes (from data to request node or vice
317 * versa) compared to their predecessors receive additional
318 * chained spins, reflecting longer paths typically required to
319 * unblock threads during phase changes.
320 *
321 *
322 * ** Unlinking removed interior nodes **
323 *
324 * In addition to minimizing garbage retention via self-linking
325 * described above, we also unlink removed interior nodes. These
326 * may arise due to timed out or interrupted waits, or calls to
327 * remove(x) or Iterator.remove. Normally, given a node that was
328 * at one time known to be the predecessor of some node s that is
329 * to be removed, we can unsplice s by CASing the next field of
330 * its predecessor if it still points to s (otherwise s must
331 * already have been removed or is now offlist). But there are two
332 * situations in which we cannot guarantee to make node s
333 * unreachable in this way: (1) If s is the trailing node of list
334 * (i.e., with null next), then it is pinned as the target node
335 * for appends, so can only be removed later after other nodes are
336 * appended. (2) We cannot necessarily unlink s given a
337 * predecessor node that is matched (including the case of being
338 * cancelled): the predecessor may already be unspliced, in which
339 * case some previous reachable node may still point to s.
340 * (For further explanation see Herlihy & Shavit "The Art of
341 * Multiprocessor Programming" chapter 9). Although, in both
342 * cases, we can rule out the need for further action if either s
343 * or its predecessor are (or can be made to be) at, or fall off
344 * from, the head of list.
345 *
346 * Without taking these into account, it would be possible for an
347 * unbounded number of supposedly removed nodes to remain
348 * reachable. Situations leading to such buildup are uncommon but
349 * can occur in practice; for example when a series of short timed
350 * calls to poll repeatedly time out but never otherwise fall off
351 * the list because of an untimed call to take at the front of the
352 * queue.
353 *
354 * When these cases arise, rather than always retraversing the
355 * entire list to find an actual predecessor to unlink (which
356 * won't help for case (1) anyway), we record a conservative
357 * estimate of possible unsplice failures (in "sweepVotes").
358 * We trigger a full sweep when the estimate exceeds a threshold
359 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
360 * removal failures to tolerate before sweeping through, unlinking
361 * cancelled nodes that were not unlinked upon initial removal.
362 * We perform sweeps by the thread hitting threshold (rather than
363 * background threads or by spreading work to other threads)
364 * because in the main contexts in which removal occurs, the
365 * caller is already timed-out, cancelled, or performing a
366 * potentially O(n) operation (e.g. remove(x)), none of which are
367 * time-critical enough to warrant the overhead that alternatives
368 * would impose on other threads.
369 *
370 * Because the sweepVotes estimate is conservative, and because
371 * nodes become unlinked "naturally" as they fall off the head of
372 * the queue, and because we allow votes to accumulate even while
373 * sweeps are in progress, there are typically significantly fewer
374 * such nodes than estimated. Choice of a threshold value
375 * balances the likelihood of wasted effort and contention, versus
376 * providing a worst-case bound on retention of interior nodes in
377 * quiescent queues. The value defined below was chosen
378 * empirically to balance these under various timeout scenarios.
379 *
380 * Note that we cannot self-link unlinked interior nodes during
381 * sweeps. However, the associated garbage chains terminate when
382 * some successor ultimately falls off the head of the list and is
383 * self-linked.
384 */
385
386 /** True if on multiprocessor */
387 private static final boolean MP =
388 Runtime.getRuntime().availableProcessors() > 1;
389
390 /**
391 * The number of times to spin (with randomly interspersed calls
392 * to Thread.yield) on multiprocessor before blocking when a node
393 * is apparently the first waiter in the queue. See above for
394 * explanation. Must be a power of two. The value is empirically
395 * derived -- it works pretty well across a variety of processors,
396 * numbers of CPUs, and OSes.
397 */
398 private static final int FRONT_SPINS = 1 << 7;
399
400 /**
401 * The number of times to spin before blocking when a node is
402 * preceded by another node that is apparently spinning. Also
403 * serves as an increment to FRONT_SPINS on phase changes, and as
404 * base average frequency for yielding during spins. Must be a
405 * power of two.
406 */
407 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
408
409 /**
410 * The maximum number of estimated removal failures (sweepVotes)
411 * to tolerate before sweeping through the queue unlinking
412 * cancelled nodes that were not unlinked upon initial
413 * removal. See above for explanation. The value must be at least
414 * two to avoid useless sweeps when removing trailing nodes.
415 */
416 static final int SWEEP_THRESHOLD = 32;
417
418 /**
419 * Queue nodes. Uses Object, not E, for items to allow forgetting
420 * them after use. Relies heavily on Unsafe mechanics to minimize
421 * unnecessary ordering constraints: Writes that are intrinsically
422 * ordered wrt other accesses or CASes use simple relaxed forms.
423 */
424 static final class Node {
425 final boolean isData; // false if this is a request node
426 volatile Object item; // initially non-null if isData; CASed to match
427 volatile Node next;
428 volatile Thread waiter; // null until waiting
429
430 // CAS methods for fields
431 final boolean casNext(Node cmp, Node val) {
432 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
433 }
434
435 final boolean casItem(Object cmp, Object val) {
436 // assert cmp == null || cmp.getClass() != Node.class;
437 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
438 }
439
440 /**
441 * Constructs a new node. Uses relaxed write because item can
442 * only be seen after publication via casNext.
443 */
444 Node(Object item, boolean isData) {
445 UNSAFE.putObject(this, itemOffset, item); // relaxed write
446 this.isData = isData;
447 }
448
449 /**
450 * Links node to itself to avoid garbage retention. Called
451 * only after CASing head field, so uses relaxed write.
452 */
453 final void forgetNext() {
454 UNSAFE.putObject(this, nextOffset, this);
455 }
456
457 /**
458 * Sets item to self and waiter to null, to avoid garbage
459 * retention after matching or cancelling. Uses relaxed writes
460 * because order is already constrained in the only calling
461 * contexts: item is forgotten only after volatile/atomic
462 * mechanics that extract items. Similarly, clearing waiter
463 * follows either CAS or return from park (if ever parked;
464 * else we don't care).
465 */
466 final void forgetContents() {
467 UNSAFE.putObject(this, itemOffset, this);
468 UNSAFE.putObject(this, waiterOffset, null);
469 }
470
471 /**
472 * Returns true if this node has been matched, including the
473 * case of artificial matches due to cancellation.
474 */
475 final boolean isMatched() {
476 Object x = item;
477 return (x == this) || ((x == null) == isData);
478 }
479
480 /**
481 * Returns true if this is an unmatched request node.
482 */
483 final boolean isUnmatchedRequest() {
484 return !isData && item == null;
485 }
486
487 /**
488 * Returns true if a node with the given mode cannot be
489 * appended to this node because this node is unmatched and
490 * has opposite data mode.
491 */
492 final boolean cannotPrecede(boolean haveData) {
493 boolean d = isData;
494 Object x;
495 return d != haveData && (x = item) != this && (x != null) == d;
496 }
497
498 /**
499 * Tries to artificially match a data node -- used by remove.
500 */
501 final boolean tryMatchData() {
502 // assert isData;
503 Object x = item;
504 if (x != null && x != this && casItem(x, null)) {
505 LockSupport.unpark(waiter);
506 return true;
507 }
508 return false;
509 }
510
511 private static final long serialVersionUID = -3375979862319811754L;
512
513 // Unsafe mechanics
514 private static final sun.misc.Unsafe UNSAFE;
515 private static final long itemOffset;
516 private static final long nextOffset;
517 private static final long waiterOffset;
518 static {
519 try {
520 UNSAFE = sun.misc.Unsafe.getUnsafe();
521 Class<?> k = Node.class;
522 itemOffset = UNSAFE.objectFieldOffset
523 (k.getDeclaredField("item"));
524 nextOffset = UNSAFE.objectFieldOffset
525 (k.getDeclaredField("next"));
526 waiterOffset = UNSAFE.objectFieldOffset
527 (k.getDeclaredField("waiter"));
528 } catch (Exception e) {
529 throw new Error(e);
530 }
531 }
532 }
533
534 /** head of the queue; null until first enqueue */
535 transient volatile Node head;
536
537 /** tail of the queue; null until first append */
538 private transient volatile Node tail;
539
540 /** The number of apparent failures to unsplice removed nodes */
541 private transient volatile int sweepVotes;
542
543 // CAS methods for fields
544 private boolean casTail(Node cmp, Node val) {
545 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
546 }
547
548 private boolean casHead(Node cmp, Node val) {
549 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
550 }
551
552 private boolean casSweepVotes(int cmp, int val) {
553 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
554 }
555
556 /*
557 * Possible values for "how" argument in xfer method.
558 */
559 private static final int NOW = 0; // for untimed poll, tryTransfer
560 private static final int ASYNC = 1; // for offer, put, add
561 private static final int SYNC = 2; // for transfer, take
562 private static final int TIMED = 3; // for timed poll, tryTransfer
563
564 /**
565 * Implements all queuing methods. See above for explanation.
566 *
567 * @param e the item or null for take
568 * @param haveData true if this is a put, else a take
569 * @param how NOW, ASYNC, SYNC, or TIMED
570 * @param nanos timeout in nanosecs, used only if mode is TIMED
571 * @return an item if matched, else e
572 * @throws NullPointerException if haveData mode but e is null
573 */
574 private E xfer(E e, boolean haveData, int how, long nanos) {
575 if (haveData && (e == null))
576 throw new NullPointerException();
577 Node s = null; // the node to append, if needed
578
579 retry:
580 for (;;) { // restart on append race
581
582 for (Node h = head, p = h; p != null;) { // find & match first node
583 boolean isData = p.isData;
584 Object item = p.item;
585 if (item != p && (item != null) == isData) { // unmatched
586 if (isData == haveData) // can't match
587 break;
588 if (p.casItem(item, e)) { // match
589 for (Node q = p; q != h;) {
590 Node n = q.next; // update by 2 unless singleton
591 if (head == h && casHead(h, n == null ? q : n)) {
592 h.forgetNext();
593 break;
594 } // advance and retry
595 if ((h = head) == null ||
596 (q = h.next) == null || !q.isMatched())
597 break; // unless slack < 2
598 }
599 LockSupport.unpark(p.waiter);
600 @SuppressWarnings("unchecked") E itemE = (E) item;
601 return itemE;
602 }
603 }
604 Node n = p.next;
605 p = (p != n) ? n : (h = head); // Use head if p offlist
606 }
607
608 if (how != NOW) { // No matches available
609 if (s == null)
610 s = new Node(e, haveData);
611 Node pred = tryAppend(s, haveData);
612 if (pred == null)
613 continue retry; // lost race vs opposite mode
614 if (how != ASYNC)
615 return awaitMatch(s, pred, e, (how == TIMED), nanos);
616 }
617 return e; // not waiting
618 }
619 }
620
621 /**
622 * Tries to append node s as tail.
623 *
624 * @param s the node to append
625 * @param haveData true if appending in data mode
626 * @return null on failure due to losing race with append in
627 * different mode, else s's predecessor, or s itself if no
628 * predecessor
629 */
630 private Node tryAppend(Node s, boolean haveData) {
631 for (Node t = tail, p = t;;) { // move p to last node and append
632 Node n, u; // temps for reads of next & tail
633 if (p == null && (p = head) == null) {
634 if (casHead(null, s))
635 return s; // initialize
636 }
637 else if (p.cannotPrecede(haveData))
638 return null; // lost race vs opposite mode
639 else if ((n = p.next) != null) // not last; keep traversing
640 p = p != t && t != (u = tail) ? (t = u) : // stale tail
641 (p != n) ? n : null; // restart if off list
642 else if (!p.casNext(null, s))
643 p = p.next; // re-read on CAS failure
644 else {
645 if (p != t) { // update if slack now >= 2
646 while ((tail != t || !casTail(t, s)) &&
647 (t = tail) != null &&
648 (s = t.next) != null && // advance and retry
649 (s = s.next) != null && s != t);
650 }
651 return p;
652 }
653 }
654 }
655
656 /**
657 * Spins/yields/blocks until node s is matched or caller gives up.
658 *
659 * @param s the waiting node
660 * @param pred the predecessor of s, or s itself if it has no
661 * predecessor, or null if unknown (the null case does not occur
662 * in any current calls but may in possible future extensions)
663 * @param e the comparison value for checking match
664 * @param timed if true, wait only until timeout elapses
665 * @param nanos timeout in nanosecs, used only if timed is true
666 * @return matched item, or e if unmatched on interrupt or timeout
667 */
668 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
669 final long deadline = timed ? System.nanoTime() + nanos : 0L;
670 Thread w = Thread.currentThread();
671 int spins = -1; // initialized after first item and cancel checks
672 ThreadLocalRandom randomYields = null; // bound if needed
673
674 for (;;) {
675 Object item = s.item;
676 if (item != e) { // matched
677 // assert item != s;
678 s.forgetContents(); // avoid garbage
679 @SuppressWarnings("unchecked") E itemE = (E) item;
680 return itemE;
681 }
682 else if (w.isInterrupted() || (timed && nanos <= 0)) {
683 unsplice(pred, s); // try to unlink and cancel
684 if (s.casItem(e, s)) // return normally if lost CAS
685 return e;
686 }
687 else if (spins < 0) { // establish spins at/near front
688 if ((spins = spinsFor(pred, s.isData)) > 0)
689 randomYields = ThreadLocalRandom.current();
690 }
691 else if (spins > 0) { // spin
692 --spins;
693 if (randomYields.nextInt(CHAINED_SPINS) == 0)
694 Thread.yield(); // occasionally yield
695 }
696 else if (s.waiter == null) {
697 s.waiter = w; // request unpark then recheck
698 }
699 else if (timed) {
700 nanos = deadline - System.nanoTime();
701 if (nanos > 0L)
702 LockSupport.parkNanos(this, nanos);
703 }
704 else {
705 LockSupport.park(this);
706 }
707 }
708 }
709
710 /**
711 * Returns spin/yield value for a node with given predecessor and
712 * data mode. See above for explanation.
713 */
714 private static int spinsFor(Node pred, boolean haveData) {
715 if (MP && pred != null) {
716 if (pred.isData != haveData) // phase change
717 return FRONT_SPINS + CHAINED_SPINS;
718 if (pred.isMatched()) // probably at front
719 return FRONT_SPINS;
720 if (pred.waiter == null) // pred apparently spinning
721 return CHAINED_SPINS;
722 }
723 return 0;
724 }
725
726 /* -------------- Traversal methods -------------- */
727
728 /**
729 * Returns the successor of p, or the head node if p.next has been
730 * linked to self, which will only be true if traversing with a
731 * stale pointer that is now off the list.
732 */
733 final Node succ(Node p) {
734 Node next = p.next;
735 return (p == next) ? head : next;
736 }
737
738 /**
739 * Returns the first unmatched node of the given mode, or null if
740 * none. Used by methods isEmpty, hasWaitingConsumer.
741 */
742 private Node firstOfMode(boolean isData) {
743 for (Node p = head; p != null; p = succ(p)) {
744 if (!p.isMatched())
745 return (p.isData == isData) ? p : null;
746 }
747 return null;
748 }
749
750 /**
751 * Version of firstOfMode used by Spliterator
752 */
753 final Node firstDataNode() {
754 for (Node p = head; p != null;) {
755 Object item = p.item;
756 if (p.isData) {
757 if (item != null && item != p)
758 return p;
759 }
760 else if (item == null)
761 break;
762 if (p == (p = p.next))
763 p = head;
764 }
765 return null;
766 }
767
768 /**
769 * Returns the item in the first unmatched node with isData; or
770 * null if none. Used by peek.
771 */
772 private E firstDataItem() {
773 for (Node p = head; p != null; p = succ(p)) {
774 Object item = p.item;
775 if (p.isData) {
776 if (item != null && item != p) {
777 @SuppressWarnings("unchecked") E itemE = (E) item;
778 return itemE;
779 }
780 }
781 else if (item == null)
782 return null;
783 }
784 return null;
785 }
786
787 /**
788 * Traverses and counts unmatched nodes of the given mode.
789 * Used by methods size and getWaitingConsumerCount.
790 */
791 private int countOfMode(boolean data) {
792 restartFromHead: for (;;) {
793 int count = 0;
794 for (Node p = head; p != null;) {
795 if (!p.isMatched()) {
796 if (p.isData != data)
797 return 0;
798 if (++count == Integer.MAX_VALUE)
799 break; // @see Collection.size()
800 }
801 Node next = p.next;
802 if (p == next)
803 continue restartFromHead;
804 p = next;
805 }
806 return count;
807 }
808 }
809
810 final class Itr implements Iterator<E> {
811 private Node nextNode; // next node to return item for
812 private E nextItem; // the corresponding item
813 private Node lastRet; // last returned node, to support remove
814 private Node lastPred; // predecessor to unlink lastRet
815
816 /**
817 * Moves to next node after prev, or first node if prev null.
818 */
819 private void advance(Node prev) {
820 /*
821 * To track and avoid buildup of deleted nodes in the face
822 * of calls to both Queue.remove and Itr.remove, we must
823 * include variants of unsplice and sweep upon each
824 * advance: Upon Itr.remove, we may need to catch up links
825 * from lastPred, and upon other removes, we might need to
826 * skip ahead from stale nodes and unsplice deleted ones
827 * found while advancing.
828 */
829
830 Node r, b; // reset lastPred upon possible deletion of lastRet
831 if ((r = lastRet) != null && !r.isMatched())
832 lastPred = r; // next lastPred is old lastRet
833 else if ((b = lastPred) == null || b.isMatched())
834 lastPred = null; // at start of list
835 else {
836 Node s, n; // help with removal of lastPred.next
837 while ((s = b.next) != null &&
838 s != b && s.isMatched() &&
839 (n = s.next) != null && n != s)
840 b.casNext(s, n);
841 }
842
843 this.lastRet = prev;
844
845 for (Node p = prev, s, n;;) {
846 s = (p == null) ? head : p.next;
847 if (s == null)
848 break;
849 else if (s == p) {
850 p = null;
851 continue;
852 }
853 Object item = s.item;
854 if (s.isData) {
855 if (item != null && item != s) {
856 @SuppressWarnings("unchecked") E itemE = (E) item;
857 nextItem = itemE;
858 nextNode = s;
859 return;
860 }
861 }
862 else if (item == null)
863 break;
864 // assert s.isMatched();
865 if (p == null)
866 p = s;
867 else if ((n = s.next) == null)
868 break;
869 else if (s == n)
870 p = null;
871 else
872 p.casNext(s, n);
873 }
874 nextNode = null;
875 nextItem = null;
876 }
877
878 Itr() {
879 advance(null);
880 }
881
882 public final boolean hasNext() {
883 return nextNode != null;
884 }
885
886 public final E next() {
887 Node p = nextNode;
888 if (p == null) throw new NoSuchElementException();
889 E e = nextItem;
890 advance(p);
891 return e;
892 }
893
894 public final void remove() {
895 final Node lastRet = this.lastRet;
896 if (lastRet == null)
897 throw new IllegalStateException();
898 this.lastRet = null;
899 if (lastRet.tryMatchData())
900 unsplice(lastPred, lastRet);
901 }
902 }
903
904 /** A customized variant of Spliterators.IteratorSpliterator */
905 static final class LTQSpliterator<E> implements Spliterator<E> {
906 static final int MAX_BATCH = 1 << 25; // max batch array size;
907 final LinkedTransferQueue<E> queue;
908 Node current; // current node; null until initialized
909 int batch; // batch size for splits
910 boolean exhausted; // true when no more nodes
911 LTQSpliterator(LinkedTransferQueue<E> queue) {
912 this.queue = queue;
913 }
914
915 public Spliterator<E> trySplit() {
916 Node p;
917 final LinkedTransferQueue<E> q = this.queue;
918 int b = batch;
919 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
920 if (!exhausted &&
921 ((p = current) != null || (p = q.firstDataNode()) != null) &&
922 p.next != null) {
923 Object[] a = new Object[n];
924 int i = 0;
925 do {
926 if ((a[i] = p.item) != null)
927 ++i;
928 if (p == (p = p.next))
929 p = q.firstDataNode();
930 } while (p != null && i < n);
931 if ((current = p) == null)
932 exhausted = true;
933 if (i > 0) {
934 batch = i;
935 return Spliterators.spliterator
936 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
937 Spliterator.CONCURRENT);
938 }
939 }
940 return null;
941 }
942
943 @SuppressWarnings("unchecked")
944 public void forEachRemaining(Consumer<? super E> action) {
945 Node p;
946 if (action == null) throw new NullPointerException();
947 final LinkedTransferQueue<E> q = this.queue;
948 if (!exhausted &&
949 ((p = current) != null || (p = q.firstDataNode()) != null)) {
950 exhausted = true;
951 do {
952 Object e = p.item;
953 if (p == (p = p.next))
954 p = q.firstDataNode();
955 if (e != null)
956 action.accept((E)e);
957 } while (p != null);
958 }
959 }
960
961 @SuppressWarnings("unchecked")
962 public boolean tryAdvance(Consumer<? super E> action) {
963 Node p;
964 if (action == null) throw new NullPointerException();
965 final LinkedTransferQueue<E> q = this.queue;
966 if (!exhausted &&
967 ((p = current) != null || (p = q.firstDataNode()) != null)) {
968 Object e;
969 do {
970 e = p.item;
971 if (p == (p = p.next))
972 p = q.firstDataNode();
973 } while (e == null && p != null);
974 if ((current = p) == null)
975 exhausted = true;
976 if (e != null) {
977 action.accept((E)e);
978 return true;
979 }
980 }
981 return false;
982 }
983
984 public long estimateSize() { return Long.MAX_VALUE; }
985
986 public int characteristics() {
987 return Spliterator.ORDERED | Spliterator.NONNULL |
988 Spliterator.CONCURRENT;
989 }
990 }
991
992 /**
993 * Returns a {@link Spliterator} over the elements in this queue.
994 *
995 * <p>The returned spliterator is
996 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
997 *
998 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
999 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1000 *
1001 * @implNote
1002 * The {@code Spliterator} implements {@code trySplit} to permit limited
1003 * parallelism.
1004 *
1005 * @return a {@code Spliterator} over the elements in this queue
1006 * @since 1.8
1007 */
1008 public Spliterator<E> spliterator() {
1009 return new LTQSpliterator<E>(this);
1010 }
1011
1012 /* -------------- Removal methods -------------- */
1013
1014 /**
1015 * Unsplices (now or later) the given deleted/cancelled node with
1016 * the given predecessor.
1017 *
1018 * @param pred a node that was at one time known to be the
1019 * predecessor of s, or null or s itself if s is/was at head
1020 * @param s the node to be unspliced
1021 */
1022 final void unsplice(Node pred, Node s) {
1023 s.waiter = null; // disable signals
1024 /*
1025 * See above for rationale. Briefly: if pred still points to
1026 * s, try to unlink s. If s cannot be unlinked, because it is
1027 * trailing node or pred might be unlinked, and neither pred
1028 * nor s are head or offlist, add to sweepVotes, and if enough
1029 * votes have accumulated, sweep.
1030 */
1031 if (pred != null && pred != s && pred.next == s) {
1032 Node n = s.next;
1033 if (n == null ||
1034 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1035 for (;;) { // check if at, or could be, head
1036 Node h = head;
1037 if (h == pred || h == s || h == null)
1038 return; // at head or list empty
1039 if (!h.isMatched())
1040 break;
1041 Node hn = h.next;
1042 if (hn == null)
1043 return; // now empty
1044 if (hn != h && casHead(h, hn))
1045 h.forgetNext(); // advance head
1046 }
1047 if (pred.next != pred && s.next != s) { // recheck if offlist
1048 for (;;) { // sweep now if enough votes
1049 int v = sweepVotes;
1050 if (v < SWEEP_THRESHOLD) {
1051 if (casSweepVotes(v, v + 1))
1052 break;
1053 }
1054 else if (casSweepVotes(v, 0)) {
1055 sweep();
1056 break;
1057 }
1058 }
1059 }
1060 }
1061 }
1062 }
1063
1064 /**
1065 * Unlinks matched (typically cancelled) nodes encountered in a
1066 * traversal from head.
1067 */
1068 private void sweep() {
1069 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1070 if (!s.isMatched())
1071 // Unmatched nodes are never self-linked
1072 p = s;
1073 else if ((n = s.next) == null) // trailing node is pinned
1074 break;
1075 else if (s == n) // stale
1076 // No need to also check for p == s, since that implies s == n
1077 p = head;
1078 else
1079 p.casNext(s, n);
1080 }
1081 }
1082
1083 /**
1084 * Main implementation of remove(Object)
1085 */
1086 private boolean findAndRemove(Object e) {
1087 if (e != null) {
1088 for (Node pred = null, p = head; p != null; ) {
1089 Object item = p.item;
1090 if (p.isData) {
1091 if (item != null && item != p && e.equals(item) &&
1092 p.tryMatchData()) {
1093 unsplice(pred, p);
1094 return true;
1095 }
1096 }
1097 else if (item == null)
1098 break;
1099 pred = p;
1100 if ((p = p.next) == pred) { // stale
1101 pred = null;
1102 p = head;
1103 }
1104 }
1105 }
1106 return false;
1107 }
1108
1109 /**
1110 * Creates an initially empty {@code LinkedTransferQueue}.
1111 */
1112 public LinkedTransferQueue() {
1113 }
1114
1115 /**
1116 * Creates a {@code LinkedTransferQueue}
1117 * initially containing the elements of the given collection,
1118 * added in traversal order of the collection's iterator.
1119 *
1120 * @param c the collection of elements to initially contain
1121 * @throws NullPointerException if the specified collection or any
1122 * of its elements are null
1123 */
1124 public LinkedTransferQueue(Collection<? extends E> c) {
1125 this();
1126 addAll(c);
1127 }
1128
1129 /**
1130 * Inserts the specified element at the tail of this queue.
1131 * As the queue is unbounded, this method will never block.
1132 *
1133 * @throws NullPointerException if the specified element is null
1134 */
1135 public void put(E e) {
1136 xfer(e, true, ASYNC, 0);
1137 }
1138
1139 /**
1140 * Inserts the specified element at the tail of this queue.
1141 * As the queue is unbounded, this method will never block or
1142 * return {@code false}.
1143 *
1144 * @return {@code true} (as specified by
1145 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1146 * BlockingQueue.offer})
1147 * @throws NullPointerException if the specified element is null
1148 */
1149 public boolean offer(E e, long timeout, TimeUnit unit) {
1150 xfer(e, true, ASYNC, 0);
1151 return true;
1152 }
1153
1154 /**
1155 * Inserts the specified element at the tail of this queue.
1156 * As the queue is unbounded, this method will never return {@code false}.
1157 *
1158 * @return {@code true} (as specified by {@link Queue#offer})
1159 * @throws NullPointerException if the specified element is null
1160 */
1161 public boolean offer(E e) {
1162 xfer(e, true, ASYNC, 0);
1163 return true;
1164 }
1165
1166 /**
1167 * Inserts the specified element at the tail of this queue.
1168 * As the queue is unbounded, this method will never throw
1169 * {@link IllegalStateException} or return {@code false}.
1170 *
1171 * @return {@code true} (as specified by {@link Collection#add})
1172 * @throws NullPointerException if the specified element is null
1173 */
1174 public boolean add(E e) {
1175 xfer(e, true, ASYNC, 0);
1176 return true;
1177 }
1178
1179 /**
1180 * Transfers the element to a waiting consumer immediately, if possible.
1181 *
1182 * <p>More precisely, transfers the specified element immediately
1183 * if there exists a consumer already waiting to receive it (in
1184 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1185 * otherwise returning {@code false} without enqueuing the element.
1186 *
1187 * @throws NullPointerException if the specified element is null
1188 */
1189 public boolean tryTransfer(E e) {
1190 return xfer(e, true, NOW, 0) == null;
1191 }
1192
1193 /**
1194 * Transfers the element to a consumer, waiting if necessary to do so.
1195 *
1196 * <p>More precisely, transfers the specified element immediately
1197 * if there exists a consumer already waiting to receive it (in
1198 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1199 * else inserts the specified element at the tail of this queue
1200 * and waits until the element is received by a consumer.
1201 *
1202 * @throws NullPointerException if the specified element is null
1203 */
1204 public void transfer(E e) throws InterruptedException {
1205 if (xfer(e, true, SYNC, 0) != null) {
1206 Thread.interrupted(); // failure possible only due to interrupt
1207 throw new InterruptedException();
1208 }
1209 }
1210
1211 /**
1212 * Transfers the element to a consumer if it is possible to do so
1213 * before the timeout elapses.
1214 *
1215 * <p>More precisely, transfers the specified element immediately
1216 * if there exists a consumer already waiting to receive it (in
1217 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1218 * else inserts the specified element at the tail of this queue
1219 * and waits until the element is received by a consumer,
1220 * returning {@code false} if the specified wait time elapses
1221 * before the element can be transferred.
1222 *
1223 * @throws NullPointerException if the specified element is null
1224 */
1225 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1226 throws InterruptedException {
1227 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1228 return true;
1229 if (!Thread.interrupted())
1230 return false;
1231 throw new InterruptedException();
1232 }
1233
1234 public E take() throws InterruptedException {
1235 E e = xfer(null, false, SYNC, 0);
1236 if (e != null)
1237 return e;
1238 Thread.interrupted();
1239 throw new InterruptedException();
1240 }
1241
1242 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1243 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1244 if (e != null || !Thread.interrupted())
1245 return e;
1246 throw new InterruptedException();
1247 }
1248
1249 public E poll() {
1250 return xfer(null, false, NOW, 0);
1251 }
1252
1253 /**
1254 * @throws NullPointerException {@inheritDoc}
1255 * @throws IllegalArgumentException {@inheritDoc}
1256 */
1257 public int drainTo(Collection<? super E> c) {
1258 if (c == null)
1259 throw new NullPointerException();
1260 if (c == this)
1261 throw new IllegalArgumentException();
1262 int n = 0;
1263 for (E e; (e = poll()) != null;) {
1264 c.add(e);
1265 ++n;
1266 }
1267 return n;
1268 }
1269
1270 /**
1271 * @throws NullPointerException {@inheritDoc}
1272 * @throws IllegalArgumentException {@inheritDoc}
1273 */
1274 public int drainTo(Collection<? super E> c, int maxElements) {
1275 if (c == null)
1276 throw new NullPointerException();
1277 if (c == this)
1278 throw new IllegalArgumentException();
1279 int n = 0;
1280 for (E e; n < maxElements && (e = poll()) != null;) {
1281 c.add(e);
1282 ++n;
1283 }
1284 return n;
1285 }
1286
1287 /**
1288 * Returns an iterator over the elements in this queue in proper sequence.
1289 * The elements will be returned in order from first (head) to last (tail).
1290 *
1291 * <p>The returned iterator is
1292 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1293 *
1294 * @return an iterator over the elements in this queue in proper sequence
1295 */
1296 public Iterator<E> iterator() {
1297 return new Itr();
1298 }
1299
1300 public E peek() {
1301 return firstDataItem();
1302 }
1303
1304 /**
1305 * Returns {@code true} if this queue contains no elements.
1306 *
1307 * @return {@code true} if this queue contains no elements
1308 */
1309 public boolean isEmpty() {
1310 for (Node p = head; p != null; p = succ(p)) {
1311 if (!p.isMatched())
1312 return !p.isData;
1313 }
1314 return true;
1315 }
1316
1317 public boolean hasWaitingConsumer() {
1318 return firstOfMode(false) != null;
1319 }
1320
1321 /**
1322 * Returns the number of elements in this queue. If this queue
1323 * contains more than {@code Integer.MAX_VALUE} elements, returns
1324 * {@code Integer.MAX_VALUE}.
1325 *
1326 * <p>Beware that, unlike in most collections, this method is
1327 * <em>NOT</em> a constant-time operation. Because of the
1328 * asynchronous nature of these queues, determining the current
1329 * number of elements requires an O(n) traversal.
1330 *
1331 * @return the number of elements in this queue
1332 */
1333 public int size() {
1334 return countOfMode(true);
1335 }
1336
1337 public int getWaitingConsumerCount() {
1338 return countOfMode(false);
1339 }
1340
1341 /**
1342 * Removes a single instance of the specified element from this queue,
1343 * if it is present. More formally, removes an element {@code e} such
1344 * that {@code o.equals(e)}, if this queue contains one or more such
1345 * elements.
1346 * Returns {@code true} if this queue contained the specified element
1347 * (or equivalently, if this queue changed as a result of the call).
1348 *
1349 * @param o element to be removed from this queue, if present
1350 * @return {@code true} if this queue changed as a result of the call
1351 */
1352 public boolean remove(Object o) {
1353 return findAndRemove(o);
1354 }
1355
1356 /**
1357 * Returns {@code true} if this queue contains the specified element.
1358 * More formally, returns {@code true} if and only if this queue contains
1359 * at least one element {@code e} such that {@code o.equals(e)}.
1360 *
1361 * @param o object to be checked for containment in this queue
1362 * @return {@code true} if this queue contains the specified element
1363 */
1364 public boolean contains(Object o) {
1365 if (o != null) {
1366 for (Node p = head; p != null; p = succ(p)) {
1367 Object item = p.item;
1368 if (p.isData) {
1369 if (item != null && item != p && o.equals(item))
1370 return true;
1371 }
1372 else if (item == null)
1373 break;
1374 }
1375 }
1376 return false;
1377 }
1378
1379 /**
1380 * Always returns {@code Integer.MAX_VALUE} because a
1381 * {@code LinkedTransferQueue} is not capacity constrained.
1382 *
1383 * @return {@code Integer.MAX_VALUE} (as specified by
1384 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1385 * BlockingQueue.remainingCapacity})
1386 */
1387 public int remainingCapacity() {
1388 return Integer.MAX_VALUE;
1389 }
1390
1391 /**
1392 * Saves this queue to a stream (that is, serializes it).
1393 *
1394 * @param s the stream
1395 * @throws java.io.IOException if an I/O error occurs
1396 * @serialData All of the elements (each an {@code E}) in
1397 * the proper order, followed by a null
1398 */
1399 private void writeObject(java.io.ObjectOutputStream s)
1400 throws java.io.IOException {
1401 s.defaultWriteObject();
1402 for (E e : this)
1403 s.writeObject(e);
1404 // Use trailing null as sentinel
1405 s.writeObject(null);
1406 }
1407
1408 /**
1409 * Reconstitutes this queue from a stream (that is, deserializes it).
1410 * @param s the stream
1411 * @throws ClassNotFoundException if the class of a serialized object
1412 * could not be found
1413 * @throws java.io.IOException if an I/O error occurs
1414 */
1415 private void readObject(java.io.ObjectInputStream s)
1416 throws java.io.IOException, ClassNotFoundException {
1417 s.defaultReadObject();
1418 for (;;) {
1419 @SuppressWarnings("unchecked")
1420 E item = (E) s.readObject();
1421 if (item == null)
1422 break;
1423 else
1424 offer(item);
1425 }
1426 }
1427
1428 // Unsafe mechanics
1429
1430 private static final sun.misc.Unsafe UNSAFE;
1431 private static final long headOffset;
1432 private static final long tailOffset;
1433 private static final long sweepVotesOffset;
1434 static {
1435 try {
1436 UNSAFE = sun.misc.Unsafe.getUnsafe();
1437 Class<?> k = LinkedTransferQueue.class;
1438 headOffset = UNSAFE.objectFieldOffset
1439 (k.getDeclaredField("head"));
1440 tailOffset = UNSAFE.objectFieldOffset
1441 (k.getDeclaredField("tail"));
1442 sweepVotesOffset = UNSAFE.objectFieldOffset
1443 (k.getDeclaredField("sweepVotes"));
1444 } catch (Exception e) {
1445 throw new Error(e);
1446 }
1447 }
1448 }