ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.78
Committed: Wed Dec 31 09:37:20 2014 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.77: +0 -3 lines
Log Message:
remove unused/redundant imports

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Queue;
14 import java.util.Spliterator;
15 import java.util.Spliterators;
16 import java.util.concurrent.locks.LockSupport;
17 import java.util.function.Consumer;
18
19 /**
20 * An unbounded {@link TransferQueue} based on linked nodes.
21 * This queue orders elements FIFO (first-in-first-out) with respect
22 * to any given producer. The <em>head</em> of the queue is that
23 * element that has been on the queue the longest time for some
24 * producer. The <em>tail</em> of the queue is that element that has
25 * been on the queue the shortest time for some producer.
26 *
27 * <p>Beware that, unlike in most collections, the {@code size} method
28 * is <em>NOT</em> a constant-time operation. Because of the
29 * asynchronous nature of these queues, determining the current number
30 * of elements requires a traversal of the elements, and so may report
31 * inaccurate results if this collection is modified during traversal.
32 * Additionally, the bulk operations {@code addAll},
33 * {@code removeAll}, {@code retainAll}, {@code containsAll},
34 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
35 * to be performed atomically. For example, an iterator operating
36 * concurrently with an {@code addAll} operation might view only some
37 * of the added elements.
38 *
39 * <p>This class and its iterator implement all of the
40 * <em>optional</em> methods of the {@link Collection} and {@link
41 * Iterator} interfaces.
42 *
43 * <p>Memory consistency effects: As with other concurrent
44 * collections, actions in a thread prior to placing an object into a
45 * {@code LinkedTransferQueue}
46 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
47 * actions subsequent to the access or removal of that element from
48 * the {@code LinkedTransferQueue} in another thread.
49 *
50 * <p>This class is a member of the
51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
52 * Java Collections Framework</a>.
53 *
54 * @since 1.7
55 * @author Doug Lea
56 * @param <E> the type of elements held in this queue
57 */
58 public class LinkedTransferQueue<E> extends AbstractQueue<E>
59 implements TransferQueue<E>, java.io.Serializable {
60 private static final long serialVersionUID = -3223113410248163686L;
61
62 /*
63 * *** Overview of Dual Queues with Slack ***
64 *
65 * Dual Queues, introduced by Scherer and Scott
66 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
67 * (linked) queues in which nodes may represent either data or
68 * requests. When a thread tries to enqueue a data node, but
69 * encounters a request node, it instead "matches" and removes it;
70 * and vice versa for enqueuing requests. Blocking Dual Queues
71 * arrange that threads enqueuing unmatched requests block until
72 * other threads provide the match. Dual Synchronous Queues (see
73 * Scherer, Lea, & Scott
74 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
75 * additionally arrange that threads enqueuing unmatched data also
76 * block. Dual Transfer Queues support all of these modes, as
77 * dictated by callers.
78 *
79 * A FIFO dual queue may be implemented using a variation of the
80 * Michael & Scott (M&S) lock-free queue algorithm
81 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
82 * It maintains two pointer fields, "head", pointing to a
83 * (matched) node that in turn points to the first actual
84 * (unmatched) queue node (or null if empty); and "tail" that
85 * points to the last node on the queue (or again null if
86 * empty). For example, here is a possible queue with four data
87 * elements:
88 *
89 * head tail
90 * | |
91 * v v
92 * M -> U -> U -> U -> U
93 *
94 * The M&S queue algorithm is known to be prone to scalability and
95 * overhead limitations when maintaining (via CAS) these head and
96 * tail pointers. This has led to the development of
97 * contention-reducing variants such as elimination arrays (see
98 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
99 * optimistic back pointers (see Ladan-Mozes & Shavit
100 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
101 * However, the nature of dual queues enables a simpler tactic for
102 * improving M&S-style implementations when dual-ness is needed.
103 *
104 * In a dual queue, each node must atomically maintain its match
105 * status. While there are other possible variants, we implement
106 * this here as: for a data-mode node, matching entails CASing an
107 * "item" field from a non-null data value to null upon match, and
108 * vice-versa for request nodes, CASing from null to a data
109 * value. (Note that the linearization properties of this style of
110 * queue are easy to verify -- elements are made available by
111 * linking, and unavailable by matching.) Compared to plain M&S
112 * queues, this property of dual queues requires one additional
113 * successful atomic operation per enq/deq pair. But it also
114 * enables lower cost variants of queue maintenance mechanics. (A
115 * variation of this idea applies even for non-dual queues that
116 * support deletion of interior elements, such as
117 * j.u.c.ConcurrentLinkedQueue.)
118 *
119 * Once a node is matched, its match status can never again
120 * change. We may thus arrange that the linked list of them
121 * contain a prefix of zero or more matched nodes, followed by a
122 * suffix of zero or more unmatched nodes. (Note that we allow
123 * both the prefix and suffix to be zero length, which in turn
124 * means that we do not use a dummy header.) If we were not
125 * concerned with either time or space efficiency, we could
126 * correctly perform enqueue and dequeue operations by traversing
127 * from a pointer to the initial node; CASing the item of the
128 * first unmatched node on match and CASing the next field of the
129 * trailing node on appends. (Plus some special-casing when
130 * initially empty). While this would be a terrible idea in
131 * itself, it does have the benefit of not requiring ANY atomic
132 * updates on head/tail fields.
133 *
134 * We introduce here an approach that lies between the extremes of
135 * never versus always updating queue (head and tail) pointers.
136 * This offers a tradeoff between sometimes requiring extra
137 * traversal steps to locate the first and/or last unmatched
138 * nodes, versus the reduced overhead and contention of fewer
139 * updates to queue pointers. For example, a possible snapshot of
140 * a queue is:
141 *
142 * head tail
143 * | |
144 * v v
145 * M -> M -> U -> U -> U -> U
146 *
147 * The best value for this "slack" (the targeted maximum distance
148 * between the value of "head" and the first unmatched node, and
149 * similarly for "tail") is an empirical matter. We have found
150 * that using very small constants in the range of 1-3 work best
151 * over a range of platforms. Larger values introduce increasing
152 * costs of cache misses and risks of long traversal chains, while
153 * smaller values increase CAS contention and overhead.
154 *
155 * Dual queues with slack differ from plain M&S dual queues by
156 * virtue of only sometimes updating head or tail pointers when
157 * matching, appending, or even traversing nodes; in order to
158 * maintain a targeted slack. The idea of "sometimes" may be
159 * operationalized in several ways. The simplest is to use a
160 * per-operation counter incremented on each traversal step, and
161 * to try (via CAS) to update the associated queue pointer
162 * whenever the count exceeds a threshold. Another, that requires
163 * more overhead, is to use random number generators to update
164 * with a given probability per traversal step.
165 *
166 * In any strategy along these lines, because CASes updating
167 * fields may fail, the actual slack may exceed targeted
168 * slack. However, they may be retried at any time to maintain
169 * targets. Even when using very small slack values, this
170 * approach works well for dual queues because it allows all
171 * operations up to the point of matching or appending an item
172 * (hence potentially allowing progress by another thread) to be
173 * read-only, thus not introducing any further contention. As
174 * described below, we implement this by performing slack
175 * maintenance retries only after these points.
176 *
177 * As an accompaniment to such techniques, traversal overhead can
178 * be further reduced without increasing contention of head
179 * pointer updates: Threads may sometimes shortcut the "next" link
180 * path from the current "head" node to be closer to the currently
181 * known first unmatched node, and similarly for tail. Again, this
182 * may be triggered with using thresholds or randomization.
183 *
184 * These ideas must be further extended to avoid unbounded amounts
185 * of costly-to-reclaim garbage caused by the sequential "next"
186 * links of nodes starting at old forgotten head nodes: As first
187 * described in detail by Boehm
188 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
189 * delays noticing that any arbitrarily old node has become
190 * garbage, all newer dead nodes will also be unreclaimed.
191 * (Similar issues arise in non-GC environments.) To cope with
192 * this in our implementation, upon CASing to advance the head
193 * pointer, we set the "next" link of the previous head to point
194 * only to itself; thus limiting the length of connected dead lists.
195 * (We also take similar care to wipe out possibly garbage
196 * retaining values held in other Node fields.) However, doing so
197 * adds some further complexity to traversal: If any "next"
198 * pointer links to itself, it indicates that the current thread
199 * has lagged behind a head-update, and so the traversal must
200 * continue from the "head". Traversals trying to find the
201 * current tail starting from "tail" may also encounter
202 * self-links, in which case they also continue at "head".
203 *
204 * It is tempting in slack-based scheme to not even use CAS for
205 * updates (similarly to Ladan-Mozes & Shavit). However, this
206 * cannot be done for head updates under the above link-forgetting
207 * mechanics because an update may leave head at a detached node.
208 * And while direct writes are possible for tail updates, they
209 * increase the risk of long retraversals, and hence long garbage
210 * chains, which can be much more costly than is worthwhile
211 * considering that the cost difference of performing a CAS vs
212 * write is smaller when they are not triggered on each operation
213 * (especially considering that writes and CASes equally require
214 * additional GC bookkeeping ("write barriers") that are sometimes
215 * more costly than the writes themselves because of contention).
216 *
217 * *** Overview of implementation ***
218 *
219 * We use a threshold-based approach to updates, with a slack
220 * threshold of two -- that is, we update head/tail when the
221 * current pointer appears to be two or more steps away from the
222 * first/last node. The slack value is hard-wired: a path greater
223 * than one is naturally implemented by checking equality of
224 * traversal pointers except when the list has only one element,
225 * in which case we keep slack threshold at one. Avoiding tracking
226 * explicit counts across method calls slightly simplifies an
227 * already-messy implementation. Using randomization would
228 * probably work better if there were a low-quality dirt-cheap
229 * per-thread one available, but even ThreadLocalRandom is too
230 * heavy for these purposes.
231 *
232 * With such a small slack threshold value, it is not worthwhile
233 * to augment this with path short-circuiting (i.e., unsplicing
234 * interior nodes) except in the case of cancellation/removal (see
235 * below).
236 *
237 * We allow both the head and tail fields to be null before any
238 * nodes are enqueued; initializing upon first append. This
239 * simplifies some other logic, as well as providing more
240 * efficient explicit control paths instead of letting JVMs insert
241 * implicit NullPointerExceptions when they are null. While not
242 * currently fully implemented, we also leave open the possibility
243 * of re-nulling these fields when empty (which is complicated to
244 * arrange, for little benefit.)
245 *
246 * All enqueue/dequeue operations are handled by the single method
247 * "xfer" with parameters indicating whether to act as some form
248 * of offer, put, poll, take, or transfer (each possibly with
249 * timeout). The relative complexity of using one monolithic
250 * method outweighs the code bulk and maintenance problems of
251 * using separate methods for each case.
252 *
253 * Operation consists of up to three phases. The first is
254 * implemented within method xfer, the second in tryAppend, and
255 * the third in method awaitMatch.
256 *
257 * 1. Try to match an existing node
258 *
259 * Starting at head, skip already-matched nodes until finding
260 * an unmatched node of opposite mode, if one exists, in which
261 * case matching it and returning, also if necessary updating
262 * head to one past the matched node (or the node itself if the
263 * list has no other unmatched nodes). If the CAS misses, then
264 * a loop retries advancing head by two steps until either
265 * success or the slack is at most two. By requiring that each
266 * attempt advances head by two (if applicable), we ensure that
267 * the slack does not grow without bound. Traversals also check
268 * if the initial head is now off-list, in which case they
269 * start at the new head.
270 *
271 * If no candidates are found and the call was untimed
272 * poll/offer, (argument "how" is NOW) return.
273 *
274 * 2. Try to append a new node (method tryAppend)
275 *
276 * Starting at current tail pointer, find the actual last node
277 * and try to append a new node (or if head was null, establish
278 * the first node). Nodes can be appended only if their
279 * predecessors are either already matched or are of the same
280 * mode. If we detect otherwise, then a new node with opposite
281 * mode must have been appended during traversal, so we must
282 * restart at phase 1. The traversal and update steps are
283 * otherwise similar to phase 1: Retrying upon CAS misses and
284 * checking for staleness. In particular, if a self-link is
285 * encountered, then we can safely jump to a node on the list
286 * by continuing the traversal at current head.
287 *
288 * On successful append, if the call was ASYNC, return.
289 *
290 * 3. Await match or cancellation (method awaitMatch)
291 *
292 * Wait for another thread to match node; instead cancelling if
293 * the current thread was interrupted or the wait timed out. On
294 * multiprocessors, we use front-of-queue spinning: If a node
295 * appears to be the first unmatched node in the queue, it
296 * spins a bit before blocking. In either case, before blocking
297 * it tries to unsplice any nodes between the current "head"
298 * and the first unmatched node.
299 *
300 * Front-of-queue spinning vastly improves performance of
301 * heavily contended queues. And so long as it is relatively
302 * brief and "quiet", spinning does not much impact performance
303 * of less-contended queues. During spins threads check their
304 * interrupt status and generate a thread-local random number
305 * to decide to occasionally perform a Thread.yield. While
306 * yield has underdefined specs, we assume that it might help,
307 * and will not hurt, in limiting impact of spinning on busy
308 * systems. We also use smaller (1/2) spins for nodes that are
309 * not known to be front but whose predecessors have not
310 * blocked -- these "chained" spins avoid artifacts of
311 * front-of-queue rules which otherwise lead to alternating
312 * nodes spinning vs blocking. Further, front threads that
313 * represent phase changes (from data to request node or vice
314 * versa) compared to their predecessors receive additional
315 * chained spins, reflecting longer paths typically required to
316 * unblock threads during phase changes.
317 *
318 *
319 * ** Unlinking removed interior nodes **
320 *
321 * In addition to minimizing garbage retention via self-linking
322 * described above, we also unlink removed interior nodes. These
323 * may arise due to timed out or interrupted waits, or calls to
324 * remove(x) or Iterator.remove. Normally, given a node that was
325 * at one time known to be the predecessor of some node s that is
326 * to be removed, we can unsplice s by CASing the next field of
327 * its predecessor if it still points to s (otherwise s must
328 * already have been removed or is now offlist). But there are two
329 * situations in which we cannot guarantee to make node s
330 * unreachable in this way: (1) If s is the trailing node of list
331 * (i.e., with null next), then it is pinned as the target node
332 * for appends, so can only be removed later after other nodes are
333 * appended. (2) We cannot necessarily unlink s given a
334 * predecessor node that is matched (including the case of being
335 * cancelled): the predecessor may already be unspliced, in which
336 * case some previous reachable node may still point to s.
337 * (For further explanation see Herlihy & Shavit "The Art of
338 * Multiprocessor Programming" chapter 9). Although, in both
339 * cases, we can rule out the need for further action if either s
340 * or its predecessor are (or can be made to be) at, or fall off
341 * from, the head of list.
342 *
343 * Without taking these into account, it would be possible for an
344 * unbounded number of supposedly removed nodes to remain
345 * reachable. Situations leading to such buildup are uncommon but
346 * can occur in practice; for example when a series of short timed
347 * calls to poll repeatedly time out but never otherwise fall off
348 * the list because of an untimed call to take at the front of the
349 * queue.
350 *
351 * When these cases arise, rather than always retraversing the
352 * entire list to find an actual predecessor to unlink (which
353 * won't help for case (1) anyway), we record a conservative
354 * estimate of possible unsplice failures (in "sweepVotes").
355 * We trigger a full sweep when the estimate exceeds a threshold
356 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
357 * removal failures to tolerate before sweeping through, unlinking
358 * cancelled nodes that were not unlinked upon initial removal.
359 * We perform sweeps by the thread hitting threshold (rather than
360 * background threads or by spreading work to other threads)
361 * because in the main contexts in which removal occurs, the
362 * caller is already timed-out, cancelled, or performing a
363 * potentially O(n) operation (e.g. remove(x)), none of which are
364 * time-critical enough to warrant the overhead that alternatives
365 * would impose on other threads.
366 *
367 * Because the sweepVotes estimate is conservative, and because
368 * nodes become unlinked "naturally" as they fall off the head of
369 * the queue, and because we allow votes to accumulate even while
370 * sweeps are in progress, there are typically significantly fewer
371 * such nodes than estimated. Choice of a threshold value
372 * balances the likelihood of wasted effort and contention, versus
373 * providing a worst-case bound on retention of interior nodes in
374 * quiescent queues. The value defined below was chosen
375 * empirically to balance these under various timeout scenarios.
376 *
377 * Note that we cannot self-link unlinked interior nodes during
378 * sweeps. However, the associated garbage chains terminate when
379 * some successor ultimately falls off the head of the list and is
380 * self-linked.
381 */
382
383 /** True if on multiprocessor */
384 private static final boolean MP =
385 Runtime.getRuntime().availableProcessors() > 1;
386
387 /**
388 * The number of times to spin (with randomly interspersed calls
389 * to Thread.yield) on multiprocessor before blocking when a node
390 * is apparently the first waiter in the queue. See above for
391 * explanation. Must be a power of two. The value is empirically
392 * derived -- it works pretty well across a variety of processors,
393 * numbers of CPUs, and OSes.
394 */
395 private static final int FRONT_SPINS = 1 << 7;
396
397 /**
398 * The number of times to spin before blocking when a node is
399 * preceded by another node that is apparently spinning. Also
400 * serves as an increment to FRONT_SPINS on phase changes, and as
401 * base average frequency for yielding during spins. Must be a
402 * power of two.
403 */
404 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
405
406 /**
407 * The maximum number of estimated removal failures (sweepVotes)
408 * to tolerate before sweeping through the queue unlinking
409 * cancelled nodes that were not unlinked upon initial
410 * removal. See above for explanation. The value must be at least
411 * two to avoid useless sweeps when removing trailing nodes.
412 */
413 static final int SWEEP_THRESHOLD = 32;
414
415 /**
416 * Queue nodes. Uses Object, not E, for items to allow forgetting
417 * them after use. Relies heavily on Unsafe mechanics to minimize
418 * unnecessary ordering constraints: Writes that are intrinsically
419 * ordered wrt other accesses or CASes use simple relaxed forms.
420 */
421 static final class Node {
422 final boolean isData; // false if this is a request node
423 volatile Object item; // initially non-null if isData; CASed to match
424 volatile Node next;
425 volatile Thread waiter; // null until waiting
426
427 // CAS methods for fields
428 final boolean casNext(Node cmp, Node val) {
429 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
430 }
431
432 final boolean casItem(Object cmp, Object val) {
433 // assert cmp == null || cmp.getClass() != Node.class;
434 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
435 }
436
437 /**
438 * Constructs a new node. Uses relaxed write because item can
439 * only be seen after publication via casNext.
440 */
441 Node(Object item, boolean isData) {
442 UNSAFE.putObject(this, itemOffset, item); // relaxed write
443 this.isData = isData;
444 }
445
446 /**
447 * Links node to itself to avoid garbage retention. Called
448 * only after CASing head field, so uses relaxed write.
449 */
450 final void forgetNext() {
451 UNSAFE.putObject(this, nextOffset, this);
452 }
453
454 /**
455 * Sets item to self and waiter to null, to avoid garbage
456 * retention after matching or cancelling. Uses relaxed writes
457 * because order is already constrained in the only calling
458 * contexts: item is forgotten only after volatile/atomic
459 * mechanics that extract items. Similarly, clearing waiter
460 * follows either CAS or return from park (if ever parked;
461 * else we don't care).
462 */
463 final void forgetContents() {
464 UNSAFE.putObject(this, itemOffset, this);
465 UNSAFE.putObject(this, waiterOffset, null);
466 }
467
468 /**
469 * Returns true if this node has been matched, including the
470 * case of artificial matches due to cancellation.
471 */
472 final boolean isMatched() {
473 Object x = item;
474 return (x == this) || ((x == null) == isData);
475 }
476
477 /**
478 * Returns true if this is an unmatched request node.
479 */
480 final boolean isUnmatchedRequest() {
481 return !isData && item == null;
482 }
483
484 /**
485 * Returns true if a node with the given mode cannot be
486 * appended to this node because this node is unmatched and
487 * has opposite data mode.
488 */
489 final boolean cannotPrecede(boolean haveData) {
490 boolean d = isData;
491 Object x;
492 return d != haveData && (x = item) != this && (x != null) == d;
493 }
494
495 /**
496 * Tries to artificially match a data node -- used by remove.
497 */
498 final boolean tryMatchData() {
499 // assert isData;
500 Object x = item;
501 if (x != null && x != this && casItem(x, null)) {
502 LockSupport.unpark(waiter);
503 return true;
504 }
505 return false;
506 }
507
508 private static final long serialVersionUID = -3375979862319811754L;
509
510 // Unsafe mechanics
511 private static final sun.misc.Unsafe UNSAFE;
512 private static final long itemOffset;
513 private static final long nextOffset;
514 private static final long waiterOffset;
515 static {
516 try {
517 UNSAFE = sun.misc.Unsafe.getUnsafe();
518 Class<?> k = Node.class;
519 itemOffset = UNSAFE.objectFieldOffset
520 (k.getDeclaredField("item"));
521 nextOffset = UNSAFE.objectFieldOffset
522 (k.getDeclaredField("next"));
523 waiterOffset = UNSAFE.objectFieldOffset
524 (k.getDeclaredField("waiter"));
525 } catch (Exception e) {
526 throw new Error(e);
527 }
528 }
529 }
530
531 /** head of the queue; null until first enqueue */
532 transient volatile Node head;
533
534 /** tail of the queue; null until first append */
535 private transient volatile Node tail;
536
537 /** The number of apparent failures to unsplice removed nodes */
538 private transient volatile int sweepVotes;
539
540 // CAS methods for fields
541 private boolean casTail(Node cmp, Node val) {
542 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
543 }
544
545 private boolean casHead(Node cmp, Node val) {
546 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
547 }
548
549 private boolean casSweepVotes(int cmp, int val) {
550 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
551 }
552
553 /*
554 * Possible values for "how" argument in xfer method.
555 */
556 private static final int NOW = 0; // for untimed poll, tryTransfer
557 private static final int ASYNC = 1; // for offer, put, add
558 private static final int SYNC = 2; // for transfer, take
559 private static final int TIMED = 3; // for timed poll, tryTransfer
560
561 /**
562 * Implements all queuing methods. See above for explanation.
563 *
564 * @param e the item or null for take
565 * @param haveData true if this is a put, else a take
566 * @param how NOW, ASYNC, SYNC, or TIMED
567 * @param nanos timeout in nanosecs, used only if mode is TIMED
568 * @return an item if matched, else e
569 * @throws NullPointerException if haveData mode but e is null
570 */
571 private E xfer(E e, boolean haveData, int how, long nanos) {
572 if (haveData && (e == null))
573 throw new NullPointerException();
574 Node s = null; // the node to append, if needed
575
576 retry:
577 for (;;) { // restart on append race
578
579 for (Node h = head, p = h; p != null;) { // find & match first node
580 boolean isData = p.isData;
581 Object item = p.item;
582 if (item != p && (item != null) == isData) { // unmatched
583 if (isData == haveData) // can't match
584 break;
585 if (p.casItem(item, e)) { // match
586 for (Node q = p; q != h;) {
587 Node n = q.next; // update by 2 unless singleton
588 if (head == h && casHead(h, n == null ? q : n)) {
589 h.forgetNext();
590 break;
591 } // advance and retry
592 if ((h = head) == null ||
593 (q = h.next) == null || !q.isMatched())
594 break; // unless slack < 2
595 }
596 LockSupport.unpark(p.waiter);
597 @SuppressWarnings("unchecked") E itemE = (E) item;
598 return itemE;
599 }
600 }
601 Node n = p.next;
602 p = (p != n) ? n : (h = head); // Use head if p offlist
603 }
604
605 if (how != NOW) { // No matches available
606 if (s == null)
607 s = new Node(e, haveData);
608 Node pred = tryAppend(s, haveData);
609 if (pred == null)
610 continue retry; // lost race vs opposite mode
611 if (how != ASYNC)
612 return awaitMatch(s, pred, e, (how == TIMED), nanos);
613 }
614 return e; // not waiting
615 }
616 }
617
618 /**
619 * Tries to append node s as tail.
620 *
621 * @param s the node to append
622 * @param haveData true if appending in data mode
623 * @return null on failure due to losing race with append in
624 * different mode, else s's predecessor, or s itself if no
625 * predecessor
626 */
627 private Node tryAppend(Node s, boolean haveData) {
628 for (Node t = tail, p = t;;) { // move p to last node and append
629 Node n, u; // temps for reads of next & tail
630 if (p == null && (p = head) == null) {
631 if (casHead(null, s))
632 return s; // initialize
633 }
634 else if (p.cannotPrecede(haveData))
635 return null; // lost race vs opposite mode
636 else if ((n = p.next) != null) // not last; keep traversing
637 p = p != t && t != (u = tail) ? (t = u) : // stale tail
638 (p != n) ? n : null; // restart if off list
639 else if (!p.casNext(null, s))
640 p = p.next; // re-read on CAS failure
641 else {
642 if (p != t) { // update if slack now >= 2
643 while ((tail != t || !casTail(t, s)) &&
644 (t = tail) != null &&
645 (s = t.next) != null && // advance and retry
646 (s = s.next) != null && s != t);
647 }
648 return p;
649 }
650 }
651 }
652
653 /**
654 * Spins/yields/blocks until node s is matched or caller gives up.
655 *
656 * @param s the waiting node
657 * @param pred the predecessor of s, or s itself if it has no
658 * predecessor, or null if unknown (the null case does not occur
659 * in any current calls but may in possible future extensions)
660 * @param e the comparison value for checking match
661 * @param timed if true, wait only until timeout elapses
662 * @param nanos timeout in nanosecs, used only if timed is true
663 * @return matched item, or e if unmatched on interrupt or timeout
664 */
665 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
666 final long deadline = timed ? System.nanoTime() + nanos : 0L;
667 Thread w = Thread.currentThread();
668 int spins = -1; // initialized after first item and cancel checks
669 ThreadLocalRandom randomYields = null; // bound if needed
670
671 for (;;) {
672 Object item = s.item;
673 if (item != e) { // matched
674 // assert item != s;
675 s.forgetContents(); // avoid garbage
676 @SuppressWarnings("unchecked") E itemE = (E) item;
677 return itemE;
678 }
679 else if (w.isInterrupted() || (timed && nanos <= 0)) {
680 unsplice(pred, s); // try to unlink and cancel
681 if (s.casItem(e, s)) // return normally if lost CAS
682 return e;
683 }
684 else if (spins < 0) { // establish spins at/near front
685 if ((spins = spinsFor(pred, s.isData)) > 0)
686 randomYields = ThreadLocalRandom.current();
687 }
688 else if (spins > 0) { // spin
689 --spins;
690 if (randomYields.nextInt(CHAINED_SPINS) == 0)
691 Thread.yield(); // occasionally yield
692 }
693 else if (s.waiter == null) {
694 s.waiter = w; // request unpark then recheck
695 }
696 else if (timed) {
697 nanos = deadline - System.nanoTime();
698 if (nanos > 0L)
699 LockSupport.parkNanos(this, nanos);
700 }
701 else {
702 LockSupport.park(this);
703 }
704 }
705 }
706
707 /**
708 * Returns spin/yield value for a node with given predecessor and
709 * data mode. See above for explanation.
710 */
711 private static int spinsFor(Node pred, boolean haveData) {
712 if (MP && pred != null) {
713 if (pred.isData != haveData) // phase change
714 return FRONT_SPINS + CHAINED_SPINS;
715 if (pred.isMatched()) // probably at front
716 return FRONT_SPINS;
717 if (pred.waiter == null) // pred apparently spinning
718 return CHAINED_SPINS;
719 }
720 return 0;
721 }
722
723 /* -------------- Traversal methods -------------- */
724
725 /**
726 * Returns the successor of p, or the head node if p.next has been
727 * linked to self, which will only be true if traversing with a
728 * stale pointer that is now off the list.
729 */
730 final Node succ(Node p) {
731 Node next = p.next;
732 return (p == next) ? head : next;
733 }
734
735 /**
736 * Returns the first unmatched node of the given mode, or null if
737 * none. Used by methods isEmpty, hasWaitingConsumer.
738 */
739 private Node firstOfMode(boolean isData) {
740 for (Node p = head; p != null; p = succ(p)) {
741 if (!p.isMatched())
742 return (p.isData == isData) ? p : null;
743 }
744 return null;
745 }
746
747 /**
748 * Version of firstOfMode used by Spliterator
749 */
750 final Node firstDataNode() {
751 for (Node p = head; p != null;) {
752 Object item = p.item;
753 if (p.isData) {
754 if (item != null && item != p)
755 return p;
756 }
757 else if (item == null)
758 break;
759 if (p == (p = p.next))
760 p = head;
761 }
762 return null;
763 }
764
765 /**
766 * Returns the item in the first unmatched node with isData; or
767 * null if none. Used by peek.
768 */
769 private E firstDataItem() {
770 for (Node p = head; p != null; p = succ(p)) {
771 Object item = p.item;
772 if (p.isData) {
773 if (item != null && item != p) {
774 @SuppressWarnings("unchecked") E itemE = (E) item;
775 return itemE;
776 }
777 }
778 else if (item == null)
779 return null;
780 }
781 return null;
782 }
783
784 /**
785 * Traverses and counts unmatched nodes of the given mode.
786 * Used by methods size and getWaitingConsumerCount.
787 */
788 private int countOfMode(boolean data) {
789 restartFromHead: for (;;) {
790 int count = 0;
791 for (Node p = head; p != null;) {
792 if (!p.isMatched()) {
793 if (p.isData != data)
794 return 0;
795 if (++count == Integer.MAX_VALUE)
796 break; // @see Collection.size()
797 }
798 Node next = p.next;
799 if (p == next)
800 continue restartFromHead;
801 p = next;
802 }
803 return count;
804 }
805 }
806
807 final class Itr implements Iterator<E> {
808 private Node nextNode; // next node to return item for
809 private E nextItem; // the corresponding item
810 private Node lastRet; // last returned node, to support remove
811 private Node lastPred; // predecessor to unlink lastRet
812
813 /**
814 * Moves to next node after prev, or first node if prev null.
815 */
816 private void advance(Node prev) {
817 /*
818 * To track and avoid buildup of deleted nodes in the face
819 * of calls to both Queue.remove and Itr.remove, we must
820 * include variants of unsplice and sweep upon each
821 * advance: Upon Itr.remove, we may need to catch up links
822 * from lastPred, and upon other removes, we might need to
823 * skip ahead from stale nodes and unsplice deleted ones
824 * found while advancing.
825 */
826
827 Node r, b; // reset lastPred upon possible deletion of lastRet
828 if ((r = lastRet) != null && !r.isMatched())
829 lastPred = r; // next lastPred is old lastRet
830 else if ((b = lastPred) == null || b.isMatched())
831 lastPred = null; // at start of list
832 else {
833 Node s, n; // help with removal of lastPred.next
834 while ((s = b.next) != null &&
835 s != b && s.isMatched() &&
836 (n = s.next) != null && n != s)
837 b.casNext(s, n);
838 }
839
840 this.lastRet = prev;
841
842 for (Node p = prev, s, n;;) {
843 s = (p == null) ? head : p.next;
844 if (s == null)
845 break;
846 else if (s == p) {
847 p = null;
848 continue;
849 }
850 Object item = s.item;
851 if (s.isData) {
852 if (item != null && item != s) {
853 @SuppressWarnings("unchecked") E itemE = (E) item;
854 nextItem = itemE;
855 nextNode = s;
856 return;
857 }
858 }
859 else if (item == null)
860 break;
861 // assert s.isMatched();
862 if (p == null)
863 p = s;
864 else if ((n = s.next) == null)
865 break;
866 else if (s == n)
867 p = null;
868 else
869 p.casNext(s, n);
870 }
871 nextNode = null;
872 nextItem = null;
873 }
874
875 Itr() {
876 advance(null);
877 }
878
879 public final boolean hasNext() {
880 return nextNode != null;
881 }
882
883 public final E next() {
884 Node p = nextNode;
885 if (p == null) throw new NoSuchElementException();
886 E e = nextItem;
887 advance(p);
888 return e;
889 }
890
891 public final void remove() {
892 final Node lastRet = this.lastRet;
893 if (lastRet == null)
894 throw new IllegalStateException();
895 this.lastRet = null;
896 if (lastRet.tryMatchData())
897 unsplice(lastPred, lastRet);
898 }
899 }
900
901 /** A customized variant of Spliterators.IteratorSpliterator */
902 static final class LTQSpliterator<E> implements Spliterator<E> {
903 static final int MAX_BATCH = 1 << 25; // max batch array size;
904 final LinkedTransferQueue<E> queue;
905 Node current; // current node; null until initialized
906 int batch; // batch size for splits
907 boolean exhausted; // true when no more nodes
908 LTQSpliterator(LinkedTransferQueue<E> queue) {
909 this.queue = queue;
910 }
911
912 public Spliterator<E> trySplit() {
913 Node p;
914 final LinkedTransferQueue<E> q = this.queue;
915 int b = batch;
916 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
917 if (!exhausted &&
918 ((p = current) != null || (p = q.firstDataNode()) != null) &&
919 p.next != null) {
920 Object[] a = new Object[n];
921 int i = 0;
922 do {
923 if ((a[i] = p.item) != null)
924 ++i;
925 if (p == (p = p.next))
926 p = q.firstDataNode();
927 } while (p != null && i < n);
928 if ((current = p) == null)
929 exhausted = true;
930 if (i > 0) {
931 batch = i;
932 return Spliterators.spliterator
933 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
934 Spliterator.CONCURRENT);
935 }
936 }
937 return null;
938 }
939
940 @SuppressWarnings("unchecked")
941 public void forEachRemaining(Consumer<? super E> action) {
942 Node p;
943 if (action == null) throw new NullPointerException();
944 final LinkedTransferQueue<E> q = this.queue;
945 if (!exhausted &&
946 ((p = current) != null || (p = q.firstDataNode()) != null)) {
947 exhausted = true;
948 do {
949 Object e = p.item;
950 if (p == (p = p.next))
951 p = q.firstDataNode();
952 if (e != null)
953 action.accept((E)e);
954 } while (p != null);
955 }
956 }
957
958 @SuppressWarnings("unchecked")
959 public boolean tryAdvance(Consumer<? super E> action) {
960 Node p;
961 if (action == null) throw new NullPointerException();
962 final LinkedTransferQueue<E> q = this.queue;
963 if (!exhausted &&
964 ((p = current) != null || (p = q.firstDataNode()) != null)) {
965 Object e;
966 do {
967 e = p.item;
968 if (p == (p = p.next))
969 p = q.firstDataNode();
970 } while (e == null && p != null);
971 if ((current = p) == null)
972 exhausted = true;
973 if (e != null) {
974 action.accept((E)e);
975 return true;
976 }
977 }
978 return false;
979 }
980
981 public long estimateSize() { return Long.MAX_VALUE; }
982
983 public int characteristics() {
984 return Spliterator.ORDERED | Spliterator.NONNULL |
985 Spliterator.CONCURRENT;
986 }
987 }
988
989 /**
990 * Returns a {@link Spliterator} over the elements in this queue.
991 *
992 * <p>The returned spliterator is
993 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
994 *
995 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
996 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
997 *
998 * @implNote
999 * The {@code Spliterator} implements {@code trySplit} to permit limited
1000 * parallelism.
1001 *
1002 * @return a {@code Spliterator} over the elements in this queue
1003 * @since 1.8
1004 */
1005 public Spliterator<E> spliterator() {
1006 return new LTQSpliterator<E>(this);
1007 }
1008
1009 /* -------------- Removal methods -------------- */
1010
1011 /**
1012 * Unsplices (now or later) the given deleted/cancelled node with
1013 * the given predecessor.
1014 *
1015 * @param pred a node that was at one time known to be the
1016 * predecessor of s, or null or s itself if s is/was at head
1017 * @param s the node to be unspliced
1018 */
1019 final void unsplice(Node pred, Node s) {
1020 s.waiter = null; // disable signals
1021 /*
1022 * See above for rationale. Briefly: if pred still points to
1023 * s, try to unlink s. If s cannot be unlinked, because it is
1024 * trailing node or pred might be unlinked, and neither pred
1025 * nor s are head or offlist, add to sweepVotes, and if enough
1026 * votes have accumulated, sweep.
1027 */
1028 if (pred != null && pred != s && pred.next == s) {
1029 Node n = s.next;
1030 if (n == null ||
1031 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1032 for (;;) { // check if at, or could be, head
1033 Node h = head;
1034 if (h == pred || h == s || h == null)
1035 return; // at head or list empty
1036 if (!h.isMatched())
1037 break;
1038 Node hn = h.next;
1039 if (hn == null)
1040 return; // now empty
1041 if (hn != h && casHead(h, hn))
1042 h.forgetNext(); // advance head
1043 }
1044 if (pred.next != pred && s.next != s) { // recheck if offlist
1045 for (;;) { // sweep now if enough votes
1046 int v = sweepVotes;
1047 if (v < SWEEP_THRESHOLD) {
1048 if (casSweepVotes(v, v + 1))
1049 break;
1050 }
1051 else if (casSweepVotes(v, 0)) {
1052 sweep();
1053 break;
1054 }
1055 }
1056 }
1057 }
1058 }
1059 }
1060
1061 /**
1062 * Unlinks matched (typically cancelled) nodes encountered in a
1063 * traversal from head.
1064 */
1065 private void sweep() {
1066 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1067 if (!s.isMatched())
1068 // Unmatched nodes are never self-linked
1069 p = s;
1070 else if ((n = s.next) == null) // trailing node is pinned
1071 break;
1072 else if (s == n) // stale
1073 // No need to also check for p == s, since that implies s == n
1074 p = head;
1075 else
1076 p.casNext(s, n);
1077 }
1078 }
1079
1080 /**
1081 * Main implementation of remove(Object)
1082 */
1083 private boolean findAndRemove(Object e) {
1084 if (e != null) {
1085 for (Node pred = null, p = head; p != null; ) {
1086 Object item = p.item;
1087 if (p.isData) {
1088 if (item != null && item != p && e.equals(item) &&
1089 p.tryMatchData()) {
1090 unsplice(pred, p);
1091 return true;
1092 }
1093 }
1094 else if (item == null)
1095 break;
1096 pred = p;
1097 if ((p = p.next) == pred) { // stale
1098 pred = null;
1099 p = head;
1100 }
1101 }
1102 }
1103 return false;
1104 }
1105
1106 /**
1107 * Creates an initially empty {@code LinkedTransferQueue}.
1108 */
1109 public LinkedTransferQueue() {
1110 }
1111
1112 /**
1113 * Creates a {@code LinkedTransferQueue}
1114 * initially containing the elements of the given collection,
1115 * added in traversal order of the collection's iterator.
1116 *
1117 * @param c the collection of elements to initially contain
1118 * @throws NullPointerException if the specified collection or any
1119 * of its elements are null
1120 */
1121 public LinkedTransferQueue(Collection<? extends E> c) {
1122 this();
1123 addAll(c);
1124 }
1125
1126 /**
1127 * Inserts the specified element at the tail of this queue.
1128 * As the queue is unbounded, this method will never block.
1129 *
1130 * @throws NullPointerException if the specified element is null
1131 */
1132 public void put(E e) {
1133 xfer(e, true, ASYNC, 0);
1134 }
1135
1136 /**
1137 * Inserts the specified element at the tail of this queue.
1138 * As the queue is unbounded, this method will never block or
1139 * return {@code false}.
1140 *
1141 * @return {@code true} (as specified by
1142 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1143 * BlockingQueue.offer})
1144 * @throws NullPointerException if the specified element is null
1145 */
1146 public boolean offer(E e, long timeout, TimeUnit unit) {
1147 xfer(e, true, ASYNC, 0);
1148 return true;
1149 }
1150
1151 /**
1152 * Inserts the specified element at the tail of this queue.
1153 * As the queue is unbounded, this method will never return {@code false}.
1154 *
1155 * @return {@code true} (as specified by {@link Queue#offer})
1156 * @throws NullPointerException if the specified element is null
1157 */
1158 public boolean offer(E e) {
1159 xfer(e, true, ASYNC, 0);
1160 return true;
1161 }
1162
1163 /**
1164 * Inserts the specified element at the tail of this queue.
1165 * As the queue is unbounded, this method will never throw
1166 * {@link IllegalStateException} or return {@code false}.
1167 *
1168 * @return {@code true} (as specified by {@link Collection#add})
1169 * @throws NullPointerException if the specified element is null
1170 */
1171 public boolean add(E e) {
1172 xfer(e, true, ASYNC, 0);
1173 return true;
1174 }
1175
1176 /**
1177 * Transfers the element to a waiting consumer immediately, if possible.
1178 *
1179 * <p>More precisely, transfers the specified element immediately
1180 * if there exists a consumer already waiting to receive it (in
1181 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1182 * otherwise returning {@code false} without enqueuing the element.
1183 *
1184 * @throws NullPointerException if the specified element is null
1185 */
1186 public boolean tryTransfer(E e) {
1187 return xfer(e, true, NOW, 0) == null;
1188 }
1189
1190 /**
1191 * Transfers the element to a consumer, waiting if necessary to do so.
1192 *
1193 * <p>More precisely, transfers the specified element immediately
1194 * if there exists a consumer already waiting to receive it (in
1195 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1196 * else inserts the specified element at the tail of this queue
1197 * and waits until the element is received by a consumer.
1198 *
1199 * @throws NullPointerException if the specified element is null
1200 */
1201 public void transfer(E e) throws InterruptedException {
1202 if (xfer(e, true, SYNC, 0) != null) {
1203 Thread.interrupted(); // failure possible only due to interrupt
1204 throw new InterruptedException();
1205 }
1206 }
1207
1208 /**
1209 * Transfers the element to a consumer if it is possible to do so
1210 * before the timeout elapses.
1211 *
1212 * <p>More precisely, transfers the specified element immediately
1213 * if there exists a consumer already waiting to receive it (in
1214 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1215 * else inserts the specified element at the tail of this queue
1216 * and waits until the element is received by a consumer,
1217 * returning {@code false} if the specified wait time elapses
1218 * before the element can be transferred.
1219 *
1220 * @throws NullPointerException if the specified element is null
1221 */
1222 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1223 throws InterruptedException {
1224 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1225 return true;
1226 if (!Thread.interrupted())
1227 return false;
1228 throw new InterruptedException();
1229 }
1230
1231 public E take() throws InterruptedException {
1232 E e = xfer(null, false, SYNC, 0);
1233 if (e != null)
1234 return e;
1235 Thread.interrupted();
1236 throw new InterruptedException();
1237 }
1238
1239 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1240 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1241 if (e != null || !Thread.interrupted())
1242 return e;
1243 throw new InterruptedException();
1244 }
1245
1246 public E poll() {
1247 return xfer(null, false, NOW, 0);
1248 }
1249
1250 /**
1251 * @throws NullPointerException {@inheritDoc}
1252 * @throws IllegalArgumentException {@inheritDoc}
1253 */
1254 public int drainTo(Collection<? super E> c) {
1255 if (c == null)
1256 throw new NullPointerException();
1257 if (c == this)
1258 throw new IllegalArgumentException();
1259 int n = 0;
1260 for (E e; (e = poll()) != null;) {
1261 c.add(e);
1262 ++n;
1263 }
1264 return n;
1265 }
1266
1267 /**
1268 * @throws NullPointerException {@inheritDoc}
1269 * @throws IllegalArgumentException {@inheritDoc}
1270 */
1271 public int drainTo(Collection<? super E> c, int maxElements) {
1272 if (c == null)
1273 throw new NullPointerException();
1274 if (c == this)
1275 throw new IllegalArgumentException();
1276 int n = 0;
1277 for (E e; n < maxElements && (e = poll()) != null;) {
1278 c.add(e);
1279 ++n;
1280 }
1281 return n;
1282 }
1283
1284 /**
1285 * Returns an iterator over the elements in this queue in proper sequence.
1286 * The elements will be returned in order from first (head) to last (tail).
1287 *
1288 * <p>The returned iterator is
1289 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1290 *
1291 * @return an iterator over the elements in this queue in proper sequence
1292 */
1293 public Iterator<E> iterator() {
1294 return new Itr();
1295 }
1296
1297 public E peek() {
1298 return firstDataItem();
1299 }
1300
1301 /**
1302 * Returns {@code true} if this queue contains no elements.
1303 *
1304 * @return {@code true} if this queue contains no elements
1305 */
1306 public boolean isEmpty() {
1307 for (Node p = head; p != null; p = succ(p)) {
1308 if (!p.isMatched())
1309 return !p.isData;
1310 }
1311 return true;
1312 }
1313
1314 public boolean hasWaitingConsumer() {
1315 return firstOfMode(false) != null;
1316 }
1317
1318 /**
1319 * Returns the number of elements in this queue. If this queue
1320 * contains more than {@code Integer.MAX_VALUE} elements, returns
1321 * {@code Integer.MAX_VALUE}.
1322 *
1323 * <p>Beware that, unlike in most collections, this method is
1324 * <em>NOT</em> a constant-time operation. Because of the
1325 * asynchronous nature of these queues, determining the current
1326 * number of elements requires an O(n) traversal.
1327 *
1328 * @return the number of elements in this queue
1329 */
1330 public int size() {
1331 return countOfMode(true);
1332 }
1333
1334 public int getWaitingConsumerCount() {
1335 return countOfMode(false);
1336 }
1337
1338 /**
1339 * Removes a single instance of the specified element from this queue,
1340 * if it is present. More formally, removes an element {@code e} such
1341 * that {@code o.equals(e)}, if this queue contains one or more such
1342 * elements.
1343 * Returns {@code true} if this queue contained the specified element
1344 * (or equivalently, if this queue changed as a result of the call).
1345 *
1346 * @param o element to be removed from this queue, if present
1347 * @return {@code true} if this queue changed as a result of the call
1348 */
1349 public boolean remove(Object o) {
1350 return findAndRemove(o);
1351 }
1352
1353 /**
1354 * Returns {@code true} if this queue contains the specified element.
1355 * More formally, returns {@code true} if and only if this queue contains
1356 * at least one element {@code e} such that {@code o.equals(e)}.
1357 *
1358 * @param o object to be checked for containment in this queue
1359 * @return {@code true} if this queue contains the specified element
1360 */
1361 public boolean contains(Object o) {
1362 if (o != null) {
1363 for (Node p = head; p != null; p = succ(p)) {
1364 Object item = p.item;
1365 if (p.isData) {
1366 if (item != null && item != p && o.equals(item))
1367 return true;
1368 }
1369 else if (item == null)
1370 break;
1371 }
1372 }
1373 return false;
1374 }
1375
1376 /**
1377 * Always returns {@code Integer.MAX_VALUE} because a
1378 * {@code LinkedTransferQueue} is not capacity constrained.
1379 *
1380 * @return {@code Integer.MAX_VALUE} (as specified by
1381 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1382 * BlockingQueue.remainingCapacity})
1383 */
1384 public int remainingCapacity() {
1385 return Integer.MAX_VALUE;
1386 }
1387
1388 /**
1389 * Saves this queue to a stream (that is, serializes it).
1390 *
1391 * @param s the stream
1392 * @throws java.io.IOException if an I/O error occurs
1393 * @serialData All of the elements (each an {@code E}) in
1394 * the proper order, followed by a null
1395 */
1396 private void writeObject(java.io.ObjectOutputStream s)
1397 throws java.io.IOException {
1398 s.defaultWriteObject();
1399 for (E e : this)
1400 s.writeObject(e);
1401 // Use trailing null as sentinel
1402 s.writeObject(null);
1403 }
1404
1405 /**
1406 * Reconstitutes this queue from a stream (that is, deserializes it).
1407 * @param s the stream
1408 * @throws ClassNotFoundException if the class of a serialized object
1409 * could not be found
1410 * @throws java.io.IOException if an I/O error occurs
1411 */
1412 private void readObject(java.io.ObjectInputStream s)
1413 throws java.io.IOException, ClassNotFoundException {
1414 s.defaultReadObject();
1415 for (;;) {
1416 @SuppressWarnings("unchecked")
1417 E item = (E) s.readObject();
1418 if (item == null)
1419 break;
1420 else
1421 offer(item);
1422 }
1423 }
1424
1425 // Unsafe mechanics
1426
1427 private static final sun.misc.Unsafe UNSAFE;
1428 private static final long headOffset;
1429 private static final long tailOffset;
1430 private static final long sweepVotesOffset;
1431 static {
1432 try {
1433 UNSAFE = sun.misc.Unsafe.getUnsafe();
1434 Class<?> k = LinkedTransferQueue.class;
1435 headOffset = UNSAFE.objectFieldOffset
1436 (k.getDeclaredField("head"));
1437 tailOffset = UNSAFE.objectFieldOffset
1438 (k.getDeclaredField("tail"));
1439 sweepVotesOffset = UNSAFE.objectFieldOffset
1440 (k.getDeclaredField("sweepVotes"));
1441 } catch (Exception e) {
1442 throw new Error(e);
1443 }
1444 }
1445 }