ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.81
Committed: Wed Feb 18 06:39:40 2015 UTC (9 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.80: +1 -3 lines
Log Message:
use "standard" if (p == (p = p.next)) idiom

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Queue;
14 import java.util.Spliterator;
15 import java.util.Spliterators;
16 import java.util.concurrent.locks.LockSupport;
17 import java.util.function.Consumer;
18
19 /**
20 * An unbounded {@link TransferQueue} based on linked nodes.
21 * This queue orders elements FIFO (first-in-first-out) with respect
22 * to any given producer. The <em>head</em> of the queue is that
23 * element that has been on the queue the longest time for some
24 * producer. The <em>tail</em> of the queue is that element that has
25 * been on the queue the shortest time for some producer.
26 *
27 * <p>Beware that, unlike in most collections, the {@code size} method
28 * is <em>NOT</em> a constant-time operation. Because of the
29 * asynchronous nature of these queues, determining the current number
30 * of elements requires a traversal of the elements, and so may report
31 * inaccurate results if this collection is modified during traversal.
32 * Additionally, the bulk operations {@code addAll},
33 * {@code removeAll}, {@code retainAll}, {@code containsAll},
34 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
35 * to be performed atomically. For example, an iterator operating
36 * concurrently with an {@code addAll} operation might view only some
37 * of the added elements.
38 *
39 * <p>This class and its iterator implement all of the
40 * <em>optional</em> methods of the {@link Collection} and {@link
41 * Iterator} interfaces.
42 *
43 * <p>Memory consistency effects: As with other concurrent
44 * collections, actions in a thread prior to placing an object into a
45 * {@code LinkedTransferQueue}
46 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
47 * actions subsequent to the access or removal of that element from
48 * the {@code LinkedTransferQueue} in another thread.
49 *
50 * <p>This class is a member of the
51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
52 * Java Collections Framework</a>.
53 *
54 * @since 1.7
55 * @author Doug Lea
56 * @param <E> the type of elements held in this queue
57 */
58 public class LinkedTransferQueue<E> extends AbstractQueue<E>
59 implements TransferQueue<E>, java.io.Serializable {
60 private static final long serialVersionUID = -3223113410248163686L;
61
62 /*
63 * *** Overview of Dual Queues with Slack ***
64 *
65 * Dual Queues, introduced by Scherer and Scott
66 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
67 * (linked) queues in which nodes may represent either data or
68 * requests. When a thread tries to enqueue a data node, but
69 * encounters a request node, it instead "matches" and removes it;
70 * and vice versa for enqueuing requests. Blocking Dual Queues
71 * arrange that threads enqueuing unmatched requests block until
72 * other threads provide the match. Dual Synchronous Queues (see
73 * Scherer, Lea, & Scott
74 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
75 * additionally arrange that threads enqueuing unmatched data also
76 * block. Dual Transfer Queues support all of these modes, as
77 * dictated by callers.
78 *
79 * A FIFO dual queue may be implemented using a variation of the
80 * Michael & Scott (M&S) lock-free queue algorithm
81 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
82 * It maintains two pointer fields, "head", pointing to a
83 * (matched) node that in turn points to the first actual
84 * (unmatched) queue node (or null if empty); and "tail" that
85 * points to the last node on the queue (or again null if
86 * empty). For example, here is a possible queue with four data
87 * elements:
88 *
89 * head tail
90 * | |
91 * v v
92 * M -> U -> U -> U -> U
93 *
94 * The M&S queue algorithm is known to be prone to scalability and
95 * overhead limitations when maintaining (via CAS) these head and
96 * tail pointers. This has led to the development of
97 * contention-reducing variants such as elimination arrays (see
98 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
99 * optimistic back pointers (see Ladan-Mozes & Shavit
100 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
101 * However, the nature of dual queues enables a simpler tactic for
102 * improving M&S-style implementations when dual-ness is needed.
103 *
104 * In a dual queue, each node must atomically maintain its match
105 * status. While there are other possible variants, we implement
106 * this here as: for a data-mode node, matching entails CASing an
107 * "item" field from a non-null data value to null upon match, and
108 * vice-versa for request nodes, CASing from null to a data
109 * value. (Note that the linearization properties of this style of
110 * queue are easy to verify -- elements are made available by
111 * linking, and unavailable by matching.) Compared to plain M&S
112 * queues, this property of dual queues requires one additional
113 * successful atomic operation per enq/deq pair. But it also
114 * enables lower cost variants of queue maintenance mechanics. (A
115 * variation of this idea applies even for non-dual queues that
116 * support deletion of interior elements, such as
117 * j.u.c.ConcurrentLinkedQueue.)
118 *
119 * Once a node is matched, its match status can never again
120 * change. We may thus arrange that the linked list of them
121 * contain a prefix of zero or more matched nodes, followed by a
122 * suffix of zero or more unmatched nodes. (Note that we allow
123 * both the prefix and suffix to be zero length, which in turn
124 * means that we do not use a dummy header.) If we were not
125 * concerned with either time or space efficiency, we could
126 * correctly perform enqueue and dequeue operations by traversing
127 * from a pointer to the initial node; CASing the item of the
128 * first unmatched node on match and CASing the next field of the
129 * trailing node on appends. (Plus some special-casing when
130 * initially empty). While this would be a terrible idea in
131 * itself, it does have the benefit of not requiring ANY atomic
132 * updates on head/tail fields.
133 *
134 * We introduce here an approach that lies between the extremes of
135 * never versus always updating queue (head and tail) pointers.
136 * This offers a tradeoff between sometimes requiring extra
137 * traversal steps to locate the first and/or last unmatched
138 * nodes, versus the reduced overhead and contention of fewer
139 * updates to queue pointers. For example, a possible snapshot of
140 * a queue is:
141 *
142 * head tail
143 * | |
144 * v v
145 * M -> M -> U -> U -> U -> U
146 *
147 * The best value for this "slack" (the targeted maximum distance
148 * between the value of "head" and the first unmatched node, and
149 * similarly for "tail") is an empirical matter. We have found
150 * that using very small constants in the range of 1-3 work best
151 * over a range of platforms. Larger values introduce increasing
152 * costs of cache misses and risks of long traversal chains, while
153 * smaller values increase CAS contention and overhead.
154 *
155 * Dual queues with slack differ from plain M&S dual queues by
156 * virtue of only sometimes updating head or tail pointers when
157 * matching, appending, or even traversing nodes; in order to
158 * maintain a targeted slack. The idea of "sometimes" may be
159 * operationalized in several ways. The simplest is to use a
160 * per-operation counter incremented on each traversal step, and
161 * to try (via CAS) to update the associated queue pointer
162 * whenever the count exceeds a threshold. Another, that requires
163 * more overhead, is to use random number generators to update
164 * with a given probability per traversal step.
165 *
166 * In any strategy along these lines, because CASes updating
167 * fields may fail, the actual slack may exceed targeted
168 * slack. However, they may be retried at any time to maintain
169 * targets. Even when using very small slack values, this
170 * approach works well for dual queues because it allows all
171 * operations up to the point of matching or appending an item
172 * (hence potentially allowing progress by another thread) to be
173 * read-only, thus not introducing any further contention. As
174 * described below, we implement this by performing slack
175 * maintenance retries only after these points.
176 *
177 * As an accompaniment to such techniques, traversal overhead can
178 * be further reduced without increasing contention of head
179 * pointer updates: Threads may sometimes shortcut the "next" link
180 * path from the current "head" node to be closer to the currently
181 * known first unmatched node, and similarly for tail. Again, this
182 * may be triggered with using thresholds or randomization.
183 *
184 * These ideas must be further extended to avoid unbounded amounts
185 * of costly-to-reclaim garbage caused by the sequential "next"
186 * links of nodes starting at old forgotten head nodes: As first
187 * described in detail by Boehm
188 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
189 * delays noticing that any arbitrarily old node has become
190 * garbage, all newer dead nodes will also be unreclaimed.
191 * (Similar issues arise in non-GC environments.) To cope with
192 * this in our implementation, upon CASing to advance the head
193 * pointer, we set the "next" link of the previous head to point
194 * only to itself; thus limiting the length of connected dead lists.
195 * (We also take similar care to wipe out possibly garbage
196 * retaining values held in other Node fields.) However, doing so
197 * adds some further complexity to traversal: If any "next"
198 * pointer links to itself, it indicates that the current thread
199 * has lagged behind a head-update, and so the traversal must
200 * continue from the "head". Traversals trying to find the
201 * current tail starting from "tail" may also encounter
202 * self-links, in which case they also continue at "head".
203 *
204 * It is tempting in slack-based scheme to not even use CAS for
205 * updates (similarly to Ladan-Mozes & Shavit). However, this
206 * cannot be done for head updates under the above link-forgetting
207 * mechanics because an update may leave head at a detached node.
208 * And while direct writes are possible for tail updates, they
209 * increase the risk of long retraversals, and hence long garbage
210 * chains, which can be much more costly than is worthwhile
211 * considering that the cost difference of performing a CAS vs
212 * write is smaller when they are not triggered on each operation
213 * (especially considering that writes and CASes equally require
214 * additional GC bookkeeping ("write barriers") that are sometimes
215 * more costly than the writes themselves because of contention).
216 *
217 * *** Overview of implementation ***
218 *
219 * We use a threshold-based approach to updates, with a slack
220 * threshold of two -- that is, we update head/tail when the
221 * current pointer appears to be two or more steps away from the
222 * first/last node. The slack value is hard-wired: a path greater
223 * than one is naturally implemented by checking equality of
224 * traversal pointers except when the list has only one element,
225 * in which case we keep slack threshold at one. Avoiding tracking
226 * explicit counts across method calls slightly simplifies an
227 * already-messy implementation. Using randomization would
228 * probably work better if there were a low-quality dirt-cheap
229 * per-thread one available, but even ThreadLocalRandom is too
230 * heavy for these purposes.
231 *
232 * With such a small slack threshold value, it is not worthwhile
233 * to augment this with path short-circuiting (i.e., unsplicing
234 * interior nodes) except in the case of cancellation/removal (see
235 * below).
236 *
237 * We allow both the head and tail fields to be null before any
238 * nodes are enqueued; initializing upon first append. This
239 * simplifies some other logic, as well as providing more
240 * efficient explicit control paths instead of letting JVMs insert
241 * implicit NullPointerExceptions when they are null. While not
242 * currently fully implemented, we also leave open the possibility
243 * of re-nulling these fields when empty (which is complicated to
244 * arrange, for little benefit.)
245 *
246 * All enqueue/dequeue operations are handled by the single method
247 * "xfer" with parameters indicating whether to act as some form
248 * of offer, put, poll, take, or transfer (each possibly with
249 * timeout). The relative complexity of using one monolithic
250 * method outweighs the code bulk and maintenance problems of
251 * using separate methods for each case.
252 *
253 * Operation consists of up to three phases. The first is
254 * implemented within method xfer, the second in tryAppend, and
255 * the third in method awaitMatch.
256 *
257 * 1. Try to match an existing node
258 *
259 * Starting at head, skip already-matched nodes until finding
260 * an unmatched node of opposite mode, if one exists, in which
261 * case matching it and returning, also if necessary updating
262 * head to one past the matched node (or the node itself if the
263 * list has no other unmatched nodes). If the CAS misses, then
264 * a loop retries advancing head by two steps until either
265 * success or the slack is at most two. By requiring that each
266 * attempt advances head by two (if applicable), we ensure that
267 * the slack does not grow without bound. Traversals also check
268 * if the initial head is now off-list, in which case they
269 * start at the new head.
270 *
271 * If no candidates are found and the call was untimed
272 * poll/offer, (argument "how" is NOW) return.
273 *
274 * 2. Try to append a new node (method tryAppend)
275 *
276 * Starting at current tail pointer, find the actual last node
277 * and try to append a new node (or if head was null, establish
278 * the first node). Nodes can be appended only if their
279 * predecessors are either already matched or are of the same
280 * mode. If we detect otherwise, then a new node with opposite
281 * mode must have been appended during traversal, so we must
282 * restart at phase 1. The traversal and update steps are
283 * otherwise similar to phase 1: Retrying upon CAS misses and
284 * checking for staleness. In particular, if a self-link is
285 * encountered, then we can safely jump to a node on the list
286 * by continuing the traversal at current head.
287 *
288 * On successful append, if the call was ASYNC, return.
289 *
290 * 3. Await match or cancellation (method awaitMatch)
291 *
292 * Wait for another thread to match node; instead cancelling if
293 * the current thread was interrupted or the wait timed out. On
294 * multiprocessors, we use front-of-queue spinning: If a node
295 * appears to be the first unmatched node in the queue, it
296 * spins a bit before blocking. In either case, before blocking
297 * it tries to unsplice any nodes between the current "head"
298 * and the first unmatched node.
299 *
300 * Front-of-queue spinning vastly improves performance of
301 * heavily contended queues. And so long as it is relatively
302 * brief and "quiet", spinning does not much impact performance
303 * of less-contended queues. During spins threads check their
304 * interrupt status and generate a thread-local random number
305 * to decide to occasionally perform a Thread.yield. While
306 * yield has underdefined specs, we assume that it might help,
307 * and will not hurt, in limiting impact of spinning on busy
308 * systems. We also use smaller (1/2) spins for nodes that are
309 * not known to be front but whose predecessors have not
310 * blocked -- these "chained" spins avoid artifacts of
311 * front-of-queue rules which otherwise lead to alternating
312 * nodes spinning vs blocking. Further, front threads that
313 * represent phase changes (from data to request node or vice
314 * versa) compared to their predecessors receive additional
315 * chained spins, reflecting longer paths typically required to
316 * unblock threads during phase changes.
317 *
318 *
319 * ** Unlinking removed interior nodes **
320 *
321 * In addition to minimizing garbage retention via self-linking
322 * described above, we also unlink removed interior nodes. These
323 * may arise due to timed out or interrupted waits, or calls to
324 * remove(x) or Iterator.remove. Normally, given a node that was
325 * at one time known to be the predecessor of some node s that is
326 * to be removed, we can unsplice s by CASing the next field of
327 * its predecessor if it still points to s (otherwise s must
328 * already have been removed or is now offlist). But there are two
329 * situations in which we cannot guarantee to make node s
330 * unreachable in this way: (1) If s is the trailing node of list
331 * (i.e., with null next), then it is pinned as the target node
332 * for appends, so can only be removed later after other nodes are
333 * appended. (2) We cannot necessarily unlink s given a
334 * predecessor node that is matched (including the case of being
335 * cancelled): the predecessor may already be unspliced, in which
336 * case some previous reachable node may still point to s.
337 * (For further explanation see Herlihy & Shavit "The Art of
338 * Multiprocessor Programming" chapter 9). Although, in both
339 * cases, we can rule out the need for further action if either s
340 * or its predecessor are (or can be made to be) at, or fall off
341 * from, the head of list.
342 *
343 * Without taking these into account, it would be possible for an
344 * unbounded number of supposedly removed nodes to remain
345 * reachable. Situations leading to such buildup are uncommon but
346 * can occur in practice; for example when a series of short timed
347 * calls to poll repeatedly time out but never otherwise fall off
348 * the list because of an untimed call to take at the front of the
349 * queue.
350 *
351 * When these cases arise, rather than always retraversing the
352 * entire list to find an actual predecessor to unlink (which
353 * won't help for case (1) anyway), we record a conservative
354 * estimate of possible unsplice failures (in "sweepVotes").
355 * We trigger a full sweep when the estimate exceeds a threshold
356 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
357 * removal failures to tolerate before sweeping through, unlinking
358 * cancelled nodes that were not unlinked upon initial removal.
359 * We perform sweeps by the thread hitting threshold (rather than
360 * background threads or by spreading work to other threads)
361 * because in the main contexts in which removal occurs, the
362 * caller is already timed-out, cancelled, or performing a
363 * potentially O(n) operation (e.g. remove(x)), none of which are
364 * time-critical enough to warrant the overhead that alternatives
365 * would impose on other threads.
366 *
367 * Because the sweepVotes estimate is conservative, and because
368 * nodes become unlinked "naturally" as they fall off the head of
369 * the queue, and because we allow votes to accumulate even while
370 * sweeps are in progress, there are typically significantly fewer
371 * such nodes than estimated. Choice of a threshold value
372 * balances the likelihood of wasted effort and contention, versus
373 * providing a worst-case bound on retention of interior nodes in
374 * quiescent queues. The value defined below was chosen
375 * empirically to balance these under various timeout scenarios.
376 *
377 * Note that we cannot self-link unlinked interior nodes during
378 * sweeps. However, the associated garbage chains terminate when
379 * some successor ultimately falls off the head of the list and is
380 * self-linked.
381 */
382
383 /** True if on multiprocessor */
384 private static final boolean MP =
385 Runtime.getRuntime().availableProcessors() > 1;
386
387 /**
388 * The number of times to spin (with randomly interspersed calls
389 * to Thread.yield) on multiprocessor before blocking when a node
390 * is apparently the first waiter in the queue. See above for
391 * explanation. Must be a power of two. The value is empirically
392 * derived -- it works pretty well across a variety of processors,
393 * numbers of CPUs, and OSes.
394 */
395 private static final int FRONT_SPINS = 1 << 7;
396
397 /**
398 * The number of times to spin before blocking when a node is
399 * preceded by another node that is apparently spinning. Also
400 * serves as an increment to FRONT_SPINS on phase changes, and as
401 * base average frequency for yielding during spins. Must be a
402 * power of two.
403 */
404 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
405
406 /**
407 * The maximum number of estimated removal failures (sweepVotes)
408 * to tolerate before sweeping through the queue unlinking
409 * cancelled nodes that were not unlinked upon initial
410 * removal. See above for explanation. The value must be at least
411 * two to avoid useless sweeps when removing trailing nodes.
412 */
413 static final int SWEEP_THRESHOLD = 32;
414
415 /**
416 * Queue nodes. Uses Object, not E, for items to allow forgetting
417 * them after use. Relies heavily on Unsafe mechanics to minimize
418 * unnecessary ordering constraints: Writes that are intrinsically
419 * ordered wrt other accesses or CASes use simple relaxed forms.
420 */
421 static final class Node {
422 final boolean isData; // false if this is a request node
423 volatile Object item; // initially non-null if isData; CASed to match
424 volatile Node next;
425 volatile Thread waiter; // null until waiting
426
427 // CAS methods for fields
428 final boolean casNext(Node cmp, Node val) {
429 return U.compareAndSwapObject(this, NEXT, cmp, val);
430 }
431
432 final boolean casItem(Object cmp, Object val) {
433 // assert cmp == null || cmp.getClass() != Node.class;
434 return U.compareAndSwapObject(this, ITEM, cmp, val);
435 }
436
437 /**
438 * Constructs a new node. Uses relaxed write because item can
439 * only be seen after publication via casNext.
440 */
441 Node(Object item, boolean isData) {
442 U.putObject(this, ITEM, item); // relaxed write
443 this.isData = isData;
444 }
445
446 /**
447 * Links node to itself to avoid garbage retention. Called
448 * only after CASing head field, so uses relaxed write.
449 */
450 final void forgetNext() {
451 U.putObject(this, NEXT, this);
452 }
453
454 /**
455 * Sets item to self and waiter to null, to avoid garbage
456 * retention after matching or cancelling. Uses relaxed writes
457 * because order is already constrained in the only calling
458 * contexts: item is forgotten only after volatile/atomic
459 * mechanics that extract items. Similarly, clearing waiter
460 * follows either CAS or return from park (if ever parked;
461 * else we don't care).
462 */
463 final void forgetContents() {
464 U.putObject(this, ITEM, this);
465 U.putObject(this, WAITER, null);
466 }
467
468 /**
469 * Returns true if this node has been matched, including the
470 * case of artificial matches due to cancellation.
471 */
472 final boolean isMatched() {
473 Object x = item;
474 return (x == this) || ((x == null) == isData);
475 }
476
477 /**
478 * Returns true if this is an unmatched request node.
479 */
480 final boolean isUnmatchedRequest() {
481 return !isData && item == null;
482 }
483
484 /**
485 * Returns true if a node with the given mode cannot be
486 * appended to this node because this node is unmatched and
487 * has opposite data mode.
488 */
489 final boolean cannotPrecede(boolean haveData) {
490 boolean d = isData;
491 Object x;
492 return d != haveData && (x = item) != this && (x != null) == d;
493 }
494
495 /**
496 * Tries to artificially match a data node -- used by remove.
497 */
498 final boolean tryMatchData() {
499 // assert isData;
500 Object x = item;
501 if (x != null && x != this && casItem(x, null)) {
502 LockSupport.unpark(waiter);
503 return true;
504 }
505 return false;
506 }
507
508 private static final long serialVersionUID = -3375979862319811754L;
509
510 // Unsafe mechanics
511 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
512 private static final long ITEM;
513 private static final long NEXT;
514 private static final long WAITER;
515 static {
516 try {
517 ITEM = U.objectFieldOffset
518 (Node.class.getDeclaredField("item"));
519 NEXT = U.objectFieldOffset
520 (Node.class.getDeclaredField("next"));
521 WAITER = U.objectFieldOffset
522 (Node.class.getDeclaredField("waiter"));
523 } catch (ReflectiveOperationException e) {
524 throw new Error(e);
525 }
526 }
527 }
528
529 /** head of the queue; null until first enqueue */
530 transient volatile Node head;
531
532 /** tail of the queue; null until first append */
533 private transient volatile Node tail;
534
535 /** The number of apparent failures to unsplice removed nodes */
536 private transient volatile int sweepVotes;
537
538 // CAS methods for fields
539 private boolean casTail(Node cmp, Node val) {
540 return U.compareAndSwapObject(this, TAIL, cmp, val);
541 }
542
543 private boolean casHead(Node cmp, Node val) {
544 return U.compareAndSwapObject(this, HEAD, cmp, val);
545 }
546
547 private boolean casSweepVotes(int cmp, int val) {
548 return U.compareAndSwapInt(this, SWEEPVOTES, cmp, val);
549 }
550
551 /*
552 * Possible values for "how" argument in xfer method.
553 */
554 private static final int NOW = 0; // for untimed poll, tryTransfer
555 private static final int ASYNC = 1; // for offer, put, add
556 private static final int SYNC = 2; // for transfer, take
557 private static final int TIMED = 3; // for timed poll, tryTransfer
558
559 /**
560 * Implements all queuing methods. See above for explanation.
561 *
562 * @param e the item or null for take
563 * @param haveData true if this is a put, else a take
564 * @param how NOW, ASYNC, SYNC, or TIMED
565 * @param nanos timeout in nanosecs, used only if mode is TIMED
566 * @return an item if matched, else e
567 * @throws NullPointerException if haveData mode but e is null
568 */
569 private E xfer(E e, boolean haveData, int how, long nanos) {
570 if (haveData && (e == null))
571 throw new NullPointerException();
572 Node s = null; // the node to append, if needed
573
574 retry:
575 for (;;) { // restart on append race
576
577 for (Node h = head, p = h; p != null;) { // find & match first node
578 boolean isData = p.isData;
579 Object item = p.item;
580 if (item != p && (item != null) == isData) { // unmatched
581 if (isData == haveData) // can't match
582 break;
583 if (p.casItem(item, e)) { // match
584 for (Node q = p; q != h;) {
585 Node n = q.next; // update by 2 unless singleton
586 if (head == h && casHead(h, n == null ? q : n)) {
587 h.forgetNext();
588 break;
589 } // advance and retry
590 if ((h = head) == null ||
591 (q = h.next) == null || !q.isMatched())
592 break; // unless slack < 2
593 }
594 LockSupport.unpark(p.waiter);
595 @SuppressWarnings("unchecked") E itemE = (E) item;
596 return itemE;
597 }
598 }
599 Node n = p.next;
600 p = (p != n) ? n : (h = head); // Use head if p offlist
601 }
602
603 if (how != NOW) { // No matches available
604 if (s == null)
605 s = new Node(e, haveData);
606 Node pred = tryAppend(s, haveData);
607 if (pred == null)
608 continue retry; // lost race vs opposite mode
609 if (how != ASYNC)
610 return awaitMatch(s, pred, e, (how == TIMED), nanos);
611 }
612 return e; // not waiting
613 }
614 }
615
616 /**
617 * Tries to append node s as tail.
618 *
619 * @param s the node to append
620 * @param haveData true if appending in data mode
621 * @return null on failure due to losing race with append in
622 * different mode, else s's predecessor, or s itself if no
623 * predecessor
624 */
625 private Node tryAppend(Node s, boolean haveData) {
626 for (Node t = tail, p = t;;) { // move p to last node and append
627 Node n, u; // temps for reads of next & tail
628 if (p == null && (p = head) == null) {
629 if (casHead(null, s))
630 return s; // initialize
631 }
632 else if (p.cannotPrecede(haveData))
633 return null; // lost race vs opposite mode
634 else if ((n = p.next) != null) // not last; keep traversing
635 p = p != t && t != (u = tail) ? (t = u) : // stale tail
636 (p != n) ? n : null; // restart if off list
637 else if (!p.casNext(null, s))
638 p = p.next; // re-read on CAS failure
639 else {
640 if (p != t) { // update if slack now >= 2
641 while ((tail != t || !casTail(t, s)) &&
642 (t = tail) != null &&
643 (s = t.next) != null && // advance and retry
644 (s = s.next) != null && s != t);
645 }
646 return p;
647 }
648 }
649 }
650
651 /**
652 * Spins/yields/blocks until node s is matched or caller gives up.
653 *
654 * @param s the waiting node
655 * @param pred the predecessor of s, or s itself if it has no
656 * predecessor, or null if unknown (the null case does not occur
657 * in any current calls but may in possible future extensions)
658 * @param e the comparison value for checking match
659 * @param timed if true, wait only until timeout elapses
660 * @param nanos timeout in nanosecs, used only if timed is true
661 * @return matched item, or e if unmatched on interrupt or timeout
662 */
663 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
664 final long deadline = timed ? System.nanoTime() + nanos : 0L;
665 Thread w = Thread.currentThread();
666 int spins = -1; // initialized after first item and cancel checks
667 ThreadLocalRandom randomYields = null; // bound if needed
668
669 for (;;) {
670 Object item = s.item;
671 if (item != e) { // matched
672 // assert item != s;
673 s.forgetContents(); // avoid garbage
674 @SuppressWarnings("unchecked") E itemE = (E) item;
675 return itemE;
676 }
677 else if (w.isInterrupted() || (timed && nanos <= 0)) {
678 unsplice(pred, s); // try to unlink and cancel
679 if (s.casItem(e, s)) // return normally if lost CAS
680 return e;
681 }
682 else if (spins < 0) { // establish spins at/near front
683 if ((spins = spinsFor(pred, s.isData)) > 0)
684 randomYields = ThreadLocalRandom.current();
685 }
686 else if (spins > 0) { // spin
687 --spins;
688 if (randomYields.nextInt(CHAINED_SPINS) == 0)
689 Thread.yield(); // occasionally yield
690 }
691 else if (s.waiter == null) {
692 s.waiter = w; // request unpark then recheck
693 }
694 else if (timed) {
695 nanos = deadline - System.nanoTime();
696 if (nanos > 0L)
697 LockSupport.parkNanos(this, nanos);
698 }
699 else {
700 LockSupport.park(this);
701 }
702 }
703 }
704
705 /**
706 * Returns spin/yield value for a node with given predecessor and
707 * data mode. See above for explanation.
708 */
709 private static int spinsFor(Node pred, boolean haveData) {
710 if (MP && pred != null) {
711 if (pred.isData != haveData) // phase change
712 return FRONT_SPINS + CHAINED_SPINS;
713 if (pred.isMatched()) // probably at front
714 return FRONT_SPINS;
715 if (pred.waiter == null) // pred apparently spinning
716 return CHAINED_SPINS;
717 }
718 return 0;
719 }
720
721 /* -------------- Traversal methods -------------- */
722
723 /**
724 * Returns the successor of p, or the head node if p.next has been
725 * linked to self, which will only be true if traversing with a
726 * stale pointer that is now off the list.
727 */
728 final Node succ(Node p) {
729 Node next = p.next;
730 return (p == next) ? head : next;
731 }
732
733 /**
734 * Returns the first unmatched node of the given mode, or null if
735 * none. Used by methods isEmpty, hasWaitingConsumer.
736 */
737 private Node firstOfMode(boolean isData) {
738 for (Node p = head; p != null; p = succ(p)) {
739 if (!p.isMatched())
740 return (p.isData == isData) ? p : null;
741 }
742 return null;
743 }
744
745 /**
746 * Version of firstOfMode used by Spliterator
747 */
748 final Node firstDataNode() {
749 for (Node p = head; p != null;) {
750 Object item = p.item;
751 if (p.isData) {
752 if (item != null && item != p)
753 return p;
754 }
755 else if (item == null)
756 break;
757 if (p == (p = p.next))
758 p = head;
759 }
760 return null;
761 }
762
763 /**
764 * Returns the item in the first unmatched node with isData; or
765 * null if none. Used by peek.
766 */
767 private E firstDataItem() {
768 for (Node p = head; p != null; p = succ(p)) {
769 Object item = p.item;
770 if (p.isData) {
771 if (item != null && item != p) {
772 @SuppressWarnings("unchecked") E itemE = (E) item;
773 return itemE;
774 }
775 }
776 else if (item == null)
777 return null;
778 }
779 return null;
780 }
781
782 /**
783 * Traverses and counts unmatched nodes of the given mode.
784 * Used by methods size and getWaitingConsumerCount.
785 */
786 private int countOfMode(boolean data) {
787 restartFromHead: for (;;) {
788 int count = 0;
789 for (Node p = head; p != null;) {
790 if (!p.isMatched()) {
791 if (p.isData != data)
792 return 0;
793 if (++count == Integer.MAX_VALUE)
794 break; // @see Collection.size()
795 }
796 if (p == (p = p.next))
797 continue restartFromHead;
798 }
799 return count;
800 }
801 }
802
803 final class Itr implements Iterator<E> {
804 private Node nextNode; // next node to return item for
805 private E nextItem; // the corresponding item
806 private Node lastRet; // last returned node, to support remove
807 private Node lastPred; // predecessor to unlink lastRet
808
809 /**
810 * Moves to next node after prev, or first node if prev null.
811 */
812 private void advance(Node prev) {
813 /*
814 * To track and avoid buildup of deleted nodes in the face
815 * of calls to both Queue.remove and Itr.remove, we must
816 * include variants of unsplice and sweep upon each
817 * advance: Upon Itr.remove, we may need to catch up links
818 * from lastPred, and upon other removes, we might need to
819 * skip ahead from stale nodes and unsplice deleted ones
820 * found while advancing.
821 */
822
823 Node r, b; // reset lastPred upon possible deletion of lastRet
824 if ((r = lastRet) != null && !r.isMatched())
825 lastPred = r; // next lastPred is old lastRet
826 else if ((b = lastPred) == null || b.isMatched())
827 lastPred = null; // at start of list
828 else {
829 Node s, n; // help with removal of lastPred.next
830 while ((s = b.next) != null &&
831 s != b && s.isMatched() &&
832 (n = s.next) != null && n != s)
833 b.casNext(s, n);
834 }
835
836 this.lastRet = prev;
837
838 for (Node p = prev, s, n;;) {
839 s = (p == null) ? head : p.next;
840 if (s == null)
841 break;
842 else if (s == p) {
843 p = null;
844 continue;
845 }
846 Object item = s.item;
847 if (s.isData) {
848 if (item != null && item != s) {
849 @SuppressWarnings("unchecked") E itemE = (E) item;
850 nextItem = itemE;
851 nextNode = s;
852 return;
853 }
854 }
855 else if (item == null)
856 break;
857 // assert s.isMatched();
858 if (p == null)
859 p = s;
860 else if ((n = s.next) == null)
861 break;
862 else if (s == n)
863 p = null;
864 else
865 p.casNext(s, n);
866 }
867 nextNode = null;
868 nextItem = null;
869 }
870
871 Itr() {
872 advance(null);
873 }
874
875 public final boolean hasNext() {
876 return nextNode != null;
877 }
878
879 public final E next() {
880 Node p = nextNode;
881 if (p == null) throw new NoSuchElementException();
882 E e = nextItem;
883 advance(p);
884 return e;
885 }
886
887 public final void remove() {
888 final Node lastRet = this.lastRet;
889 if (lastRet == null)
890 throw new IllegalStateException();
891 this.lastRet = null;
892 if (lastRet.tryMatchData())
893 unsplice(lastPred, lastRet);
894 }
895 }
896
897 /** A customized variant of Spliterators.IteratorSpliterator */
898 static final class LTQSpliterator<E> implements Spliterator<E> {
899 static final int MAX_BATCH = 1 << 25; // max batch array size;
900 final LinkedTransferQueue<E> queue;
901 Node current; // current node; null until initialized
902 int batch; // batch size for splits
903 boolean exhausted; // true when no more nodes
904 LTQSpliterator(LinkedTransferQueue<E> queue) {
905 this.queue = queue;
906 }
907
908 public Spliterator<E> trySplit() {
909 Node p;
910 final LinkedTransferQueue<E> q = this.queue;
911 int b = batch;
912 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
913 if (!exhausted &&
914 ((p = current) != null || (p = q.firstDataNode()) != null) &&
915 p.next != null) {
916 Object[] a = new Object[n];
917 int i = 0;
918 do {
919 if ((a[i] = p.item) != null)
920 ++i;
921 if (p == (p = p.next))
922 p = q.firstDataNode();
923 } while (p != null && i < n);
924 if ((current = p) == null)
925 exhausted = true;
926 if (i > 0) {
927 batch = i;
928 return Spliterators.spliterator
929 (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
930 Spliterator.CONCURRENT);
931 }
932 }
933 return null;
934 }
935
936 @SuppressWarnings("unchecked")
937 public void forEachRemaining(Consumer<? super E> action) {
938 Node p;
939 if (action == null) throw new NullPointerException();
940 final LinkedTransferQueue<E> q = this.queue;
941 if (!exhausted &&
942 ((p = current) != null || (p = q.firstDataNode()) != null)) {
943 exhausted = true;
944 do {
945 Object e = p.item;
946 if (p == (p = p.next))
947 p = q.firstDataNode();
948 if (e != null)
949 action.accept((E)e);
950 } while (p != null);
951 }
952 }
953
954 @SuppressWarnings("unchecked")
955 public boolean tryAdvance(Consumer<? super E> action) {
956 Node p;
957 if (action == null) throw new NullPointerException();
958 final LinkedTransferQueue<E> q = this.queue;
959 if (!exhausted &&
960 ((p = current) != null || (p = q.firstDataNode()) != null)) {
961 Object e;
962 do {
963 e = p.item;
964 if (p == (p = p.next))
965 p = q.firstDataNode();
966 } while (e == null && p != null);
967 if ((current = p) == null)
968 exhausted = true;
969 if (e != null) {
970 action.accept((E)e);
971 return true;
972 }
973 }
974 return false;
975 }
976
977 public long estimateSize() { return Long.MAX_VALUE; }
978
979 public int characteristics() {
980 return Spliterator.ORDERED | Spliterator.NONNULL |
981 Spliterator.CONCURRENT;
982 }
983 }
984
985 /**
986 * Returns a {@link Spliterator} over the elements in this queue.
987 *
988 * <p>The returned spliterator is
989 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
990 *
991 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
992 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
993 *
994 * @implNote
995 * The {@code Spliterator} implements {@code trySplit} to permit limited
996 * parallelism.
997 *
998 * @return a {@code Spliterator} over the elements in this queue
999 * @since 1.8
1000 */
1001 public Spliterator<E> spliterator() {
1002 return new LTQSpliterator<E>(this);
1003 }
1004
1005 /* -------------- Removal methods -------------- */
1006
1007 /**
1008 * Unsplices (now or later) the given deleted/cancelled node with
1009 * the given predecessor.
1010 *
1011 * @param pred a node that was at one time known to be the
1012 * predecessor of s, or null or s itself if s is/was at head
1013 * @param s the node to be unspliced
1014 */
1015 final void unsplice(Node pred, Node s) {
1016 s.waiter = null; // disable signals
1017 /*
1018 * See above for rationale. Briefly: if pred still points to
1019 * s, try to unlink s. If s cannot be unlinked, because it is
1020 * trailing node or pred might be unlinked, and neither pred
1021 * nor s are head or offlist, add to sweepVotes, and if enough
1022 * votes have accumulated, sweep.
1023 */
1024 if (pred != null && pred != s && pred.next == s) {
1025 Node n = s.next;
1026 if (n == null ||
1027 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1028 for (;;) { // check if at, or could be, head
1029 Node h = head;
1030 if (h == pred || h == s || h == null)
1031 return; // at head or list empty
1032 if (!h.isMatched())
1033 break;
1034 Node hn = h.next;
1035 if (hn == null)
1036 return; // now empty
1037 if (hn != h && casHead(h, hn))
1038 h.forgetNext(); // advance head
1039 }
1040 if (pred.next != pred && s.next != s) { // recheck if offlist
1041 for (;;) { // sweep now if enough votes
1042 int v = sweepVotes;
1043 if (v < SWEEP_THRESHOLD) {
1044 if (casSweepVotes(v, v + 1))
1045 break;
1046 }
1047 else if (casSweepVotes(v, 0)) {
1048 sweep();
1049 break;
1050 }
1051 }
1052 }
1053 }
1054 }
1055 }
1056
1057 /**
1058 * Unlinks matched (typically cancelled) nodes encountered in a
1059 * traversal from head.
1060 */
1061 private void sweep() {
1062 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1063 if (!s.isMatched())
1064 // Unmatched nodes are never self-linked
1065 p = s;
1066 else if ((n = s.next) == null) // trailing node is pinned
1067 break;
1068 else if (s == n) // stale
1069 // No need to also check for p == s, since that implies s == n
1070 p = head;
1071 else
1072 p.casNext(s, n);
1073 }
1074 }
1075
1076 /**
1077 * Main implementation of remove(Object)
1078 */
1079 private boolean findAndRemove(Object e) {
1080 if (e != null) {
1081 for (Node pred = null, p = head; p != null; ) {
1082 Object item = p.item;
1083 if (p.isData) {
1084 if (item != null && item != p && e.equals(item) &&
1085 p.tryMatchData()) {
1086 unsplice(pred, p);
1087 return true;
1088 }
1089 }
1090 else if (item == null)
1091 break;
1092 pred = p;
1093 if ((p = p.next) == pred) { // stale
1094 pred = null;
1095 p = head;
1096 }
1097 }
1098 }
1099 return false;
1100 }
1101
1102 /**
1103 * Creates an initially empty {@code LinkedTransferQueue}.
1104 */
1105 public LinkedTransferQueue() {
1106 }
1107
1108 /**
1109 * Creates a {@code LinkedTransferQueue}
1110 * initially containing the elements of the given collection,
1111 * added in traversal order of the collection's iterator.
1112 *
1113 * @param c the collection of elements to initially contain
1114 * @throws NullPointerException if the specified collection or any
1115 * of its elements are null
1116 */
1117 public LinkedTransferQueue(Collection<? extends E> c) {
1118 this();
1119 addAll(c);
1120 }
1121
1122 /**
1123 * Inserts the specified element at the tail of this queue.
1124 * As the queue is unbounded, this method will never block.
1125 *
1126 * @throws NullPointerException if the specified element is null
1127 */
1128 public void put(E e) {
1129 xfer(e, true, ASYNC, 0);
1130 }
1131
1132 /**
1133 * Inserts the specified element at the tail of this queue.
1134 * As the queue is unbounded, this method will never block or
1135 * return {@code false}.
1136 *
1137 * @return {@code true} (as specified by
1138 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1139 * BlockingQueue.offer})
1140 * @throws NullPointerException if the specified element is null
1141 */
1142 public boolean offer(E e, long timeout, TimeUnit unit) {
1143 xfer(e, true, ASYNC, 0);
1144 return true;
1145 }
1146
1147 /**
1148 * Inserts the specified element at the tail of this queue.
1149 * As the queue is unbounded, this method will never return {@code false}.
1150 *
1151 * @return {@code true} (as specified by {@link Queue#offer})
1152 * @throws NullPointerException if the specified element is null
1153 */
1154 public boolean offer(E e) {
1155 xfer(e, true, ASYNC, 0);
1156 return true;
1157 }
1158
1159 /**
1160 * Inserts the specified element at the tail of this queue.
1161 * As the queue is unbounded, this method will never throw
1162 * {@link IllegalStateException} or return {@code false}.
1163 *
1164 * @return {@code true} (as specified by {@link Collection#add})
1165 * @throws NullPointerException if the specified element is null
1166 */
1167 public boolean add(E e) {
1168 xfer(e, true, ASYNC, 0);
1169 return true;
1170 }
1171
1172 /**
1173 * Transfers the element to a waiting consumer immediately, if possible.
1174 *
1175 * <p>More precisely, transfers the specified element immediately
1176 * if there exists a consumer already waiting to receive it (in
1177 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1178 * otherwise returning {@code false} without enqueuing the element.
1179 *
1180 * @throws NullPointerException if the specified element is null
1181 */
1182 public boolean tryTransfer(E e) {
1183 return xfer(e, true, NOW, 0) == null;
1184 }
1185
1186 /**
1187 * Transfers the element to a consumer, waiting if necessary to do so.
1188 *
1189 * <p>More precisely, transfers the specified element immediately
1190 * if there exists a consumer already waiting to receive it (in
1191 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1192 * else inserts the specified element at the tail of this queue
1193 * and waits until the element is received by a consumer.
1194 *
1195 * @throws NullPointerException if the specified element is null
1196 */
1197 public void transfer(E e) throws InterruptedException {
1198 if (xfer(e, true, SYNC, 0) != null) {
1199 Thread.interrupted(); // failure possible only due to interrupt
1200 throw new InterruptedException();
1201 }
1202 }
1203
1204 /**
1205 * Transfers the element to a consumer if it is possible to do so
1206 * before the timeout elapses.
1207 *
1208 * <p>More precisely, transfers the specified element immediately
1209 * if there exists a consumer already waiting to receive it (in
1210 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1211 * else inserts the specified element at the tail of this queue
1212 * and waits until the element is received by a consumer,
1213 * returning {@code false} if the specified wait time elapses
1214 * before the element can be transferred.
1215 *
1216 * @throws NullPointerException if the specified element is null
1217 */
1218 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1219 throws InterruptedException {
1220 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1221 return true;
1222 if (!Thread.interrupted())
1223 return false;
1224 throw new InterruptedException();
1225 }
1226
1227 public E take() throws InterruptedException {
1228 E e = xfer(null, false, SYNC, 0);
1229 if (e != null)
1230 return e;
1231 Thread.interrupted();
1232 throw new InterruptedException();
1233 }
1234
1235 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1236 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1237 if (e != null || !Thread.interrupted())
1238 return e;
1239 throw new InterruptedException();
1240 }
1241
1242 public E poll() {
1243 return xfer(null, false, NOW, 0);
1244 }
1245
1246 /**
1247 * @throws NullPointerException {@inheritDoc}
1248 * @throws IllegalArgumentException {@inheritDoc}
1249 */
1250 public int drainTo(Collection<? super E> c) {
1251 if (c == null)
1252 throw new NullPointerException();
1253 if (c == this)
1254 throw new IllegalArgumentException();
1255 int n = 0;
1256 for (E e; (e = poll()) != null;) {
1257 c.add(e);
1258 ++n;
1259 }
1260 return n;
1261 }
1262
1263 /**
1264 * @throws NullPointerException {@inheritDoc}
1265 * @throws IllegalArgumentException {@inheritDoc}
1266 */
1267 public int drainTo(Collection<? super E> c, int maxElements) {
1268 if (c == null)
1269 throw new NullPointerException();
1270 if (c == this)
1271 throw new IllegalArgumentException();
1272 int n = 0;
1273 for (E e; n < maxElements && (e = poll()) != null;) {
1274 c.add(e);
1275 ++n;
1276 }
1277 return n;
1278 }
1279
1280 /**
1281 * Returns an iterator over the elements in this queue in proper sequence.
1282 * The elements will be returned in order from first (head) to last (tail).
1283 *
1284 * <p>The returned iterator is
1285 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1286 *
1287 * @return an iterator over the elements in this queue in proper sequence
1288 */
1289 public Iterator<E> iterator() {
1290 return new Itr();
1291 }
1292
1293 public E peek() {
1294 return firstDataItem();
1295 }
1296
1297 /**
1298 * Returns {@code true} if this queue contains no elements.
1299 *
1300 * @return {@code true} if this queue contains no elements
1301 */
1302 public boolean isEmpty() {
1303 for (Node p = head; p != null; p = succ(p)) {
1304 if (!p.isMatched())
1305 return !p.isData;
1306 }
1307 return true;
1308 }
1309
1310 public boolean hasWaitingConsumer() {
1311 return firstOfMode(false) != null;
1312 }
1313
1314 /**
1315 * Returns the number of elements in this queue. If this queue
1316 * contains more than {@code Integer.MAX_VALUE} elements, returns
1317 * {@code Integer.MAX_VALUE}.
1318 *
1319 * <p>Beware that, unlike in most collections, this method is
1320 * <em>NOT</em> a constant-time operation. Because of the
1321 * asynchronous nature of these queues, determining the current
1322 * number of elements requires an O(n) traversal.
1323 *
1324 * @return the number of elements in this queue
1325 */
1326 public int size() {
1327 return countOfMode(true);
1328 }
1329
1330 public int getWaitingConsumerCount() {
1331 return countOfMode(false);
1332 }
1333
1334 /**
1335 * Removes a single instance of the specified element from this queue,
1336 * if it is present. More formally, removes an element {@code e} such
1337 * that {@code o.equals(e)}, if this queue contains one or more such
1338 * elements.
1339 * Returns {@code true} if this queue contained the specified element
1340 * (or equivalently, if this queue changed as a result of the call).
1341 *
1342 * @param o element to be removed from this queue, if present
1343 * @return {@code true} if this queue changed as a result of the call
1344 */
1345 public boolean remove(Object o) {
1346 return findAndRemove(o);
1347 }
1348
1349 /**
1350 * Returns {@code true} if this queue contains the specified element.
1351 * More formally, returns {@code true} if and only if this queue contains
1352 * at least one element {@code e} such that {@code o.equals(e)}.
1353 *
1354 * @param o object to be checked for containment in this queue
1355 * @return {@code true} if this queue contains the specified element
1356 */
1357 public boolean contains(Object o) {
1358 if (o != null) {
1359 for (Node p = head; p != null; p = succ(p)) {
1360 Object item = p.item;
1361 if (p.isData) {
1362 if (item != null && item != p && o.equals(item))
1363 return true;
1364 }
1365 else if (item == null)
1366 break;
1367 }
1368 }
1369 return false;
1370 }
1371
1372 /**
1373 * Always returns {@code Integer.MAX_VALUE} because a
1374 * {@code LinkedTransferQueue} is not capacity constrained.
1375 *
1376 * @return {@code Integer.MAX_VALUE} (as specified by
1377 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1378 * BlockingQueue.remainingCapacity})
1379 */
1380 public int remainingCapacity() {
1381 return Integer.MAX_VALUE;
1382 }
1383
1384 /**
1385 * Saves this queue to a stream (that is, serializes it).
1386 *
1387 * @param s the stream
1388 * @throws java.io.IOException if an I/O error occurs
1389 * @serialData All of the elements (each an {@code E}) in
1390 * the proper order, followed by a null
1391 */
1392 private void writeObject(java.io.ObjectOutputStream s)
1393 throws java.io.IOException {
1394 s.defaultWriteObject();
1395 for (E e : this)
1396 s.writeObject(e);
1397 // Use trailing null as sentinel
1398 s.writeObject(null);
1399 }
1400
1401 /**
1402 * Reconstitutes this queue from a stream (that is, deserializes it).
1403 * @param s the stream
1404 * @throws ClassNotFoundException if the class of a serialized object
1405 * could not be found
1406 * @throws java.io.IOException if an I/O error occurs
1407 */
1408 private void readObject(java.io.ObjectInputStream s)
1409 throws java.io.IOException, ClassNotFoundException {
1410 s.defaultReadObject();
1411 for (;;) {
1412 @SuppressWarnings("unchecked")
1413 E item = (E) s.readObject();
1414 if (item == null)
1415 break;
1416 else
1417 offer(item);
1418 }
1419 }
1420
1421 // Unsafe mechanics
1422
1423 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1424 private static final long HEAD;
1425 private static final long TAIL;
1426 private static final long SWEEPVOTES;
1427 static {
1428 try {
1429 HEAD = U.objectFieldOffset
1430 (LinkedTransferQueue.class.getDeclaredField("head"));
1431 TAIL = U.objectFieldOffset
1432 (LinkedTransferQueue.class.getDeclaredField("tail"));
1433 SWEEPVOTES = U.objectFieldOffset
1434 (LinkedTransferQueue.class.getDeclaredField("sweepVotes"));
1435 } catch (ReflectiveOperationException e) {
1436 throw new Error(e);
1437 }
1438 }
1439 }