ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.86
Committed: Tue May 26 20:20:31 2015 UTC (9 years ago) by jsr166
Branch: MAIN
Changes since 1.85: +3 -2 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15 import java.util.Spliterator;
16 import java.util.Spliterators;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.function.Consumer;
19
20 /**
21 * An unbounded {@link TransferQueue} based on linked nodes.
22 * This queue orders elements FIFO (first-in-first-out) with respect
23 * to any given producer. The <em>head</em> of the queue is that
24 * element that has been on the queue the longest time for some
25 * producer. The <em>tail</em> of the queue is that element that has
26 * been on the queue the shortest time for some producer.
27 *
28 * <p>Beware that, unlike in most collections, the {@code size} method
29 * is <em>NOT</em> a constant-time operation. Because of the
30 * asynchronous nature of these queues, determining the current number
31 * of elements requires a traversal of the elements, and so may report
32 * inaccurate results if this collection is modified during traversal.
33 * Additionally, the bulk operations {@code addAll},
34 * {@code removeAll}, {@code retainAll}, {@code containsAll},
35 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
36 * to be performed atomically. For example, an iterator operating
37 * concurrently with an {@code addAll} operation might view only some
38 * of the added elements.
39 *
40 * <p>This class and its iterator implement all of the
41 * <em>optional</em> methods of the {@link Collection} and {@link
42 * Iterator} interfaces.
43 *
44 * <p>Memory consistency effects: As with other concurrent
45 * collections, actions in a thread prior to placing an object into a
46 * {@code LinkedTransferQueue}
47 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
48 * actions subsequent to the access or removal of that element from
49 * the {@code LinkedTransferQueue} in another thread.
50 *
51 * <p>This class is a member of the
52 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
53 * Java Collections Framework</a>.
54 *
55 * @since 1.7
56 * @author Doug Lea
57 * @param <E> the type of elements held in this queue
58 */
59 public class LinkedTransferQueue<E> extends AbstractQueue<E>
60 implements TransferQueue<E>, java.io.Serializable {
61 private static final long serialVersionUID = -3223113410248163686L;
62
63 /*
64 * *** Overview of Dual Queues with Slack ***
65 *
66 * Dual Queues, introduced by Scherer and Scott
67 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
68 * (linked) queues in which nodes may represent either data or
69 * requests. When a thread tries to enqueue a data node, but
70 * encounters a request node, it instead "matches" and removes it;
71 * and vice versa for enqueuing requests. Blocking Dual Queues
72 * arrange that threads enqueuing unmatched requests block until
73 * other threads provide the match. Dual Synchronous Queues (see
74 * Scherer, Lea, & Scott
75 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
76 * additionally arrange that threads enqueuing unmatched data also
77 * block. Dual Transfer Queues support all of these modes, as
78 * dictated by callers.
79 *
80 * A FIFO dual queue may be implemented using a variation of the
81 * Michael & Scott (M&S) lock-free queue algorithm
82 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
83 * It maintains two pointer fields, "head", pointing to a
84 * (matched) node that in turn points to the first actual
85 * (unmatched) queue node (or null if empty); and "tail" that
86 * points to the last node on the queue (or again null if
87 * empty). For example, here is a possible queue with four data
88 * elements:
89 *
90 * head tail
91 * | |
92 * v v
93 * M -> U -> U -> U -> U
94 *
95 * The M&S queue algorithm is known to be prone to scalability and
96 * overhead limitations when maintaining (via CAS) these head and
97 * tail pointers. This has led to the development of
98 * contention-reducing variants such as elimination arrays (see
99 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
100 * optimistic back pointers (see Ladan-Mozes & Shavit
101 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
102 * However, the nature of dual queues enables a simpler tactic for
103 * improving M&S-style implementations when dual-ness is needed.
104 *
105 * In a dual queue, each node must atomically maintain its match
106 * status. While there are other possible variants, we implement
107 * this here as: for a data-mode node, matching entails CASing an
108 * "item" field from a non-null data value to null upon match, and
109 * vice-versa for request nodes, CASing from null to a data
110 * value. (Note that the linearization properties of this style of
111 * queue are easy to verify -- elements are made available by
112 * linking, and unavailable by matching.) Compared to plain M&S
113 * queues, this property of dual queues requires one additional
114 * successful atomic operation per enq/deq pair. But it also
115 * enables lower cost variants of queue maintenance mechanics. (A
116 * variation of this idea applies even for non-dual queues that
117 * support deletion of interior elements, such as
118 * j.u.c.ConcurrentLinkedQueue.)
119 *
120 * Once a node is matched, its match status can never again
121 * change. We may thus arrange that the linked list of them
122 * contain a prefix of zero or more matched nodes, followed by a
123 * suffix of zero or more unmatched nodes. (Note that we allow
124 * both the prefix and suffix to be zero length, which in turn
125 * means that we do not use a dummy header.) If we were not
126 * concerned with either time or space efficiency, we could
127 * correctly perform enqueue and dequeue operations by traversing
128 * from a pointer to the initial node; CASing the item of the
129 * first unmatched node on match and CASing the next field of the
130 * trailing node on appends. (Plus some special-casing when
131 * initially empty). While this would be a terrible idea in
132 * itself, it does have the benefit of not requiring ANY atomic
133 * updates on head/tail fields.
134 *
135 * We introduce here an approach that lies between the extremes of
136 * never versus always updating queue (head and tail) pointers.
137 * This offers a tradeoff between sometimes requiring extra
138 * traversal steps to locate the first and/or last unmatched
139 * nodes, versus the reduced overhead and contention of fewer
140 * updates to queue pointers. For example, a possible snapshot of
141 * a queue is:
142 *
143 * head tail
144 * | |
145 * v v
146 * M -> M -> U -> U -> U -> U
147 *
148 * The best value for this "slack" (the targeted maximum distance
149 * between the value of "head" and the first unmatched node, and
150 * similarly for "tail") is an empirical matter. We have found
151 * that using very small constants in the range of 1-3 work best
152 * over a range of platforms. Larger values introduce increasing
153 * costs of cache misses and risks of long traversal chains, while
154 * smaller values increase CAS contention and overhead.
155 *
156 * Dual queues with slack differ from plain M&S dual queues by
157 * virtue of only sometimes updating head or tail pointers when
158 * matching, appending, or even traversing nodes; in order to
159 * maintain a targeted slack. The idea of "sometimes" may be
160 * operationalized in several ways. The simplest is to use a
161 * per-operation counter incremented on each traversal step, and
162 * to try (via CAS) to update the associated queue pointer
163 * whenever the count exceeds a threshold. Another, that requires
164 * more overhead, is to use random number generators to update
165 * with a given probability per traversal step.
166 *
167 * In any strategy along these lines, because CASes updating
168 * fields may fail, the actual slack may exceed targeted
169 * slack. However, they may be retried at any time to maintain
170 * targets. Even when using very small slack values, this
171 * approach works well for dual queues because it allows all
172 * operations up to the point of matching or appending an item
173 * (hence potentially allowing progress by another thread) to be
174 * read-only, thus not introducing any further contention. As
175 * described below, we implement this by performing slack
176 * maintenance retries only after these points.
177 *
178 * As an accompaniment to such techniques, traversal overhead can
179 * be further reduced without increasing contention of head
180 * pointer updates: Threads may sometimes shortcut the "next" link
181 * path from the current "head" node to be closer to the currently
182 * known first unmatched node, and similarly for tail. Again, this
183 * may be triggered with using thresholds or randomization.
184 *
185 * These ideas must be further extended to avoid unbounded amounts
186 * of costly-to-reclaim garbage caused by the sequential "next"
187 * links of nodes starting at old forgotten head nodes: As first
188 * described in detail by Boehm
189 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
190 * delays noticing that any arbitrarily old node has become
191 * garbage, all newer dead nodes will also be unreclaimed.
192 * (Similar issues arise in non-GC environments.) To cope with
193 * this in our implementation, upon CASing to advance the head
194 * pointer, we set the "next" link of the previous head to point
195 * only to itself; thus limiting the length of connected dead lists.
196 * (We also take similar care to wipe out possibly garbage
197 * retaining values held in other Node fields.) However, doing so
198 * adds some further complexity to traversal: If any "next"
199 * pointer links to itself, it indicates that the current thread
200 * has lagged behind a head-update, and so the traversal must
201 * continue from the "head". Traversals trying to find the
202 * current tail starting from "tail" may also encounter
203 * self-links, in which case they also continue at "head".
204 *
205 * It is tempting in slack-based scheme to not even use CAS for
206 * updates (similarly to Ladan-Mozes & Shavit). However, this
207 * cannot be done for head updates under the above link-forgetting
208 * mechanics because an update may leave head at a detached node.
209 * And while direct writes are possible for tail updates, they
210 * increase the risk of long retraversals, and hence long garbage
211 * chains, which can be much more costly than is worthwhile
212 * considering that the cost difference of performing a CAS vs
213 * write is smaller when they are not triggered on each operation
214 * (especially considering that writes and CASes equally require
215 * additional GC bookkeeping ("write barriers") that are sometimes
216 * more costly than the writes themselves because of contention).
217 *
218 * *** Overview of implementation ***
219 *
220 * We use a threshold-based approach to updates, with a slack
221 * threshold of two -- that is, we update head/tail when the
222 * current pointer appears to be two or more steps away from the
223 * first/last node. The slack value is hard-wired: a path greater
224 * than one is naturally implemented by checking equality of
225 * traversal pointers except when the list has only one element,
226 * in which case we keep slack threshold at one. Avoiding tracking
227 * explicit counts across method calls slightly simplifies an
228 * already-messy implementation. Using randomization would
229 * probably work better if there were a low-quality dirt-cheap
230 * per-thread one available, but even ThreadLocalRandom is too
231 * heavy for these purposes.
232 *
233 * With such a small slack threshold value, it is not worthwhile
234 * to augment this with path short-circuiting (i.e., unsplicing
235 * interior nodes) except in the case of cancellation/removal (see
236 * below).
237 *
238 * We allow both the head and tail fields to be null before any
239 * nodes are enqueued; initializing upon first append. This
240 * simplifies some other logic, as well as providing more
241 * efficient explicit control paths instead of letting JVMs insert
242 * implicit NullPointerExceptions when they are null. While not
243 * currently fully implemented, we also leave open the possibility
244 * of re-nulling these fields when empty (which is complicated to
245 * arrange, for little benefit.)
246 *
247 * All enqueue/dequeue operations are handled by the single method
248 * "xfer" with parameters indicating whether to act as some form
249 * of offer, put, poll, take, or transfer (each possibly with
250 * timeout). The relative complexity of using one monolithic
251 * method outweighs the code bulk and maintenance problems of
252 * using separate methods for each case.
253 *
254 * Operation consists of up to three phases. The first is
255 * implemented within method xfer, the second in tryAppend, and
256 * the third in method awaitMatch.
257 *
258 * 1. Try to match an existing node
259 *
260 * Starting at head, skip already-matched nodes until finding
261 * an unmatched node of opposite mode, if one exists, in which
262 * case matching it and returning, also if necessary updating
263 * head to one past the matched node (or the node itself if the
264 * list has no other unmatched nodes). If the CAS misses, then
265 * a loop retries advancing head by two steps until either
266 * success or the slack is at most two. By requiring that each
267 * attempt advances head by two (if applicable), we ensure that
268 * the slack does not grow without bound. Traversals also check
269 * if the initial head is now off-list, in which case they
270 * start at the new head.
271 *
272 * If no candidates are found and the call was untimed
273 * poll/offer, (argument "how" is NOW) return.
274 *
275 * 2. Try to append a new node (method tryAppend)
276 *
277 * Starting at current tail pointer, find the actual last node
278 * and try to append a new node (or if head was null, establish
279 * the first node). Nodes can be appended only if their
280 * predecessors are either already matched or are of the same
281 * mode. If we detect otherwise, then a new node with opposite
282 * mode must have been appended during traversal, so we must
283 * restart at phase 1. The traversal and update steps are
284 * otherwise similar to phase 1: Retrying upon CAS misses and
285 * checking for staleness. In particular, if a self-link is
286 * encountered, then we can safely jump to a node on the list
287 * by continuing the traversal at current head.
288 *
289 * On successful append, if the call was ASYNC, return.
290 *
291 * 3. Await match or cancellation (method awaitMatch)
292 *
293 * Wait for another thread to match node; instead cancelling if
294 * the current thread was interrupted or the wait timed out. On
295 * multiprocessors, we use front-of-queue spinning: If a node
296 * appears to be the first unmatched node in the queue, it
297 * spins a bit before blocking. In either case, before blocking
298 * it tries to unsplice any nodes between the current "head"
299 * and the first unmatched node.
300 *
301 * Front-of-queue spinning vastly improves performance of
302 * heavily contended queues. And so long as it is relatively
303 * brief and "quiet", spinning does not much impact performance
304 * of less-contended queues. During spins threads check their
305 * interrupt status and generate a thread-local random number
306 * to decide to occasionally perform a Thread.yield. While
307 * yield has underdefined specs, we assume that it might help,
308 * and will not hurt, in limiting impact of spinning on busy
309 * systems. We also use smaller (1/2) spins for nodes that are
310 * not known to be front but whose predecessors have not
311 * blocked -- these "chained" spins avoid artifacts of
312 * front-of-queue rules which otherwise lead to alternating
313 * nodes spinning vs blocking. Further, front threads that
314 * represent phase changes (from data to request node or vice
315 * versa) compared to their predecessors receive additional
316 * chained spins, reflecting longer paths typically required to
317 * unblock threads during phase changes.
318 *
319 *
320 * ** Unlinking removed interior nodes **
321 *
322 * In addition to minimizing garbage retention via self-linking
323 * described above, we also unlink removed interior nodes. These
324 * may arise due to timed out or interrupted waits, or calls to
325 * remove(x) or Iterator.remove. Normally, given a node that was
326 * at one time known to be the predecessor of some node s that is
327 * to be removed, we can unsplice s by CASing the next field of
328 * its predecessor if it still points to s (otherwise s must
329 * already have been removed or is now offlist). But there are two
330 * situations in which we cannot guarantee to make node s
331 * unreachable in this way: (1) If s is the trailing node of list
332 * (i.e., with null next), then it is pinned as the target node
333 * for appends, so can only be removed later after other nodes are
334 * appended. (2) We cannot necessarily unlink s given a
335 * predecessor node that is matched (including the case of being
336 * cancelled): the predecessor may already be unspliced, in which
337 * case some previous reachable node may still point to s.
338 * (For further explanation see Herlihy & Shavit "The Art of
339 * Multiprocessor Programming" chapter 9). Although, in both
340 * cases, we can rule out the need for further action if either s
341 * or its predecessor are (or can be made to be) at, or fall off
342 * from, the head of list.
343 *
344 * Without taking these into account, it would be possible for an
345 * unbounded number of supposedly removed nodes to remain
346 * reachable. Situations leading to such buildup are uncommon but
347 * can occur in practice; for example when a series of short timed
348 * calls to poll repeatedly time out but never otherwise fall off
349 * the list because of an untimed call to take at the front of the
350 * queue.
351 *
352 * When these cases arise, rather than always retraversing the
353 * entire list to find an actual predecessor to unlink (which
354 * won't help for case (1) anyway), we record a conservative
355 * estimate of possible unsplice failures (in "sweepVotes").
356 * We trigger a full sweep when the estimate exceeds a threshold
357 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
358 * removal failures to tolerate before sweeping through, unlinking
359 * cancelled nodes that were not unlinked upon initial removal.
360 * We perform sweeps by the thread hitting threshold (rather than
361 * background threads or by spreading work to other threads)
362 * because in the main contexts in which removal occurs, the
363 * caller is already timed-out, cancelled, or performing a
364 * potentially O(n) operation (e.g. remove(x)), none of which are
365 * time-critical enough to warrant the overhead that alternatives
366 * would impose on other threads.
367 *
368 * Because the sweepVotes estimate is conservative, and because
369 * nodes become unlinked "naturally" as they fall off the head of
370 * the queue, and because we allow votes to accumulate even while
371 * sweeps are in progress, there are typically significantly fewer
372 * such nodes than estimated. Choice of a threshold value
373 * balances the likelihood of wasted effort and contention, versus
374 * providing a worst-case bound on retention of interior nodes in
375 * quiescent queues. The value defined below was chosen
376 * empirically to balance these under various timeout scenarios.
377 *
378 * Note that we cannot self-link unlinked interior nodes during
379 * sweeps. However, the associated garbage chains terminate when
380 * some successor ultimately falls off the head of the list and is
381 * self-linked.
382 */
383
384 /** True if on multiprocessor */
385 private static final boolean MP =
386 Runtime.getRuntime().availableProcessors() > 1;
387
388 /**
389 * The number of times to spin (with randomly interspersed calls
390 * to Thread.yield) on multiprocessor before blocking when a node
391 * is apparently the first waiter in the queue. See above for
392 * explanation. Must be a power of two. The value is empirically
393 * derived -- it works pretty well across a variety of processors,
394 * numbers of CPUs, and OSes.
395 */
396 private static final int FRONT_SPINS = 1 << 7;
397
398 /**
399 * The number of times to spin before blocking when a node is
400 * preceded by another node that is apparently spinning. Also
401 * serves as an increment to FRONT_SPINS on phase changes, and as
402 * base average frequency for yielding during spins. Must be a
403 * power of two.
404 */
405 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
406
407 /**
408 * The maximum number of estimated removal failures (sweepVotes)
409 * to tolerate before sweeping through the queue unlinking
410 * cancelled nodes that were not unlinked upon initial
411 * removal. See above for explanation. The value must be at least
412 * two to avoid useless sweeps when removing trailing nodes.
413 */
414 static final int SWEEP_THRESHOLD = 32;
415
416 /**
417 * Queue nodes. Uses Object, not E, for items to allow forgetting
418 * them after use. Relies heavily on Unsafe mechanics to minimize
419 * unnecessary ordering constraints: Writes that are intrinsically
420 * ordered wrt other accesses or CASes use simple relaxed forms.
421 */
422 static final class Node {
423 final boolean isData; // false if this is a request node
424 volatile Object item; // initially non-null if isData; CASed to match
425 volatile Node next;
426 volatile Thread waiter; // null until waiting
427
428 // CAS methods for fields
429 final boolean casNext(Node cmp, Node val) {
430 return U.compareAndSwapObject(this, NEXT, cmp, val);
431 }
432
433 final boolean casItem(Object cmp, Object val) {
434 // assert cmp == null || cmp.getClass() != Node.class;
435 return U.compareAndSwapObject(this, ITEM, cmp, val);
436 }
437
438 /**
439 * Constructs a new node. Uses relaxed write because item can
440 * only be seen after publication via casNext.
441 */
442 Node(Object item, boolean isData) {
443 U.putObject(this, ITEM, item); // relaxed write
444 this.isData = isData;
445 }
446
447 /**
448 * Links node to itself to avoid garbage retention. Called
449 * only after CASing head field, so uses relaxed write.
450 */
451 final void forgetNext() {
452 U.putObject(this, NEXT, this);
453 }
454
455 /**
456 * Sets item to self and waiter to null, to avoid garbage
457 * retention after matching or cancelling. Uses relaxed writes
458 * because order is already constrained in the only calling
459 * contexts: item is forgotten only after volatile/atomic
460 * mechanics that extract items. Similarly, clearing waiter
461 * follows either CAS or return from park (if ever parked;
462 * else we don't care).
463 */
464 final void forgetContents() {
465 U.putObject(this, ITEM, this);
466 U.putObject(this, WAITER, null);
467 }
468
469 /**
470 * Returns true if this node has been matched, including the
471 * case of artificial matches due to cancellation.
472 */
473 final boolean isMatched() {
474 Object x = item;
475 return (x == this) || ((x == null) == isData);
476 }
477
478 /**
479 * Returns true if this is an unmatched request node.
480 */
481 final boolean isUnmatchedRequest() {
482 return !isData && item == null;
483 }
484
485 /**
486 * Returns true if a node with the given mode cannot be
487 * appended to this node because this node is unmatched and
488 * has opposite data mode.
489 */
490 final boolean cannotPrecede(boolean haveData) {
491 boolean d = isData;
492 Object x;
493 return d != haveData && (x = item) != this && (x != null) == d;
494 }
495
496 /**
497 * Tries to artificially match a data node -- used by remove.
498 */
499 final boolean tryMatchData() {
500 // assert isData;
501 Object x = item;
502 if (x != null && x != this && casItem(x, null)) {
503 LockSupport.unpark(waiter);
504 return true;
505 }
506 return false;
507 }
508
509 private static final long serialVersionUID = -3375979862319811754L;
510
511 // Unsafe mechanics
512 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
513 private static final long ITEM;
514 private static final long NEXT;
515 private static final long WAITER;
516 static {
517 try {
518 ITEM = U.objectFieldOffset
519 (Node.class.getDeclaredField("item"));
520 NEXT = U.objectFieldOffset
521 (Node.class.getDeclaredField("next"));
522 WAITER = U.objectFieldOffset
523 (Node.class.getDeclaredField("waiter"));
524 } catch (ReflectiveOperationException e) {
525 throw new Error(e);
526 }
527 }
528 }
529
530 /** head of the queue; null until first enqueue */
531 transient volatile Node head;
532
533 /** tail of the queue; null until first append */
534 private transient volatile Node tail;
535
536 /** The number of apparent failures to unsplice removed nodes */
537 private transient volatile int sweepVotes;
538
539 // CAS methods for fields
540 private boolean casTail(Node cmp, Node val) {
541 return U.compareAndSwapObject(this, TAIL, cmp, val);
542 }
543
544 private boolean casHead(Node cmp, Node val) {
545 return U.compareAndSwapObject(this, HEAD, cmp, val);
546 }
547
548 private boolean casSweepVotes(int cmp, int val) {
549 return U.compareAndSwapInt(this, SWEEPVOTES, cmp, val);
550 }
551
552 /*
553 * Possible values for "how" argument in xfer method.
554 */
555 private static final int NOW = 0; // for untimed poll, tryTransfer
556 private static final int ASYNC = 1; // for offer, put, add
557 private static final int SYNC = 2; // for transfer, take
558 private static final int TIMED = 3; // for timed poll, tryTransfer
559
560 /**
561 * Implements all queuing methods. See above for explanation.
562 *
563 * @param e the item or null for take
564 * @param haveData true if this is a put, else a take
565 * @param how NOW, ASYNC, SYNC, or TIMED
566 * @param nanos timeout in nanosecs, used only if mode is TIMED
567 * @return an item if matched, else e
568 * @throws NullPointerException if haveData mode but e is null
569 */
570 private E xfer(E e, boolean haveData, int how, long nanos) {
571 if (haveData && (e == null))
572 throw new NullPointerException();
573 Node s = null; // the node to append, if needed
574
575 retry:
576 for (;;) { // restart on append race
577
578 for (Node h = head, p = h; p != null;) { // find & match first node
579 boolean isData = p.isData;
580 Object item = p.item;
581 if (item != p && (item != null) == isData) { // unmatched
582 if (isData == haveData) // can't match
583 break;
584 if (p.casItem(item, e)) { // match
585 for (Node q = p; q != h;) {
586 Node n = q.next; // update by 2 unless singleton
587 if (head == h && casHead(h, n == null ? q : n)) {
588 h.forgetNext();
589 break;
590 } // advance and retry
591 if ((h = head) == null ||
592 (q = h.next) == null || !q.isMatched())
593 break; // unless slack < 2
594 }
595 LockSupport.unpark(p.waiter);
596 @SuppressWarnings("unchecked") E itemE = (E) item;
597 return itemE;
598 }
599 }
600 Node n = p.next;
601 p = (p != n) ? n : (h = head); // Use head if p offlist
602 }
603
604 if (how != NOW) { // No matches available
605 if (s == null)
606 s = new Node(e, haveData);
607 Node pred = tryAppend(s, haveData);
608 if (pred == null)
609 continue retry; // lost race vs opposite mode
610 if (how != ASYNC)
611 return awaitMatch(s, pred, e, (how == TIMED), nanos);
612 }
613 return e; // not waiting
614 }
615 }
616
617 /**
618 * Tries to append node s as tail.
619 *
620 * @param s the node to append
621 * @param haveData true if appending in data mode
622 * @return null on failure due to losing race with append in
623 * different mode, else s's predecessor, or s itself if no
624 * predecessor
625 */
626 private Node tryAppend(Node s, boolean haveData) {
627 for (Node t = tail, p = t;;) { // move p to last node and append
628 Node n, u; // temps for reads of next & tail
629 if (p == null && (p = head) == null) {
630 if (casHead(null, s))
631 return s; // initialize
632 }
633 else if (p.cannotPrecede(haveData))
634 return null; // lost race vs opposite mode
635 else if ((n = p.next) != null) // not last; keep traversing
636 p = p != t && t != (u = tail) ? (t = u) : // stale tail
637 (p != n) ? n : null; // restart if off list
638 else if (!p.casNext(null, s))
639 p = p.next; // re-read on CAS failure
640 else {
641 if (p != t) { // update if slack now >= 2
642 while ((tail != t || !casTail(t, s)) &&
643 (t = tail) != null &&
644 (s = t.next) != null && // advance and retry
645 (s = s.next) != null && s != t);
646 }
647 return p;
648 }
649 }
650 }
651
652 /**
653 * Spins/yields/blocks until node s is matched or caller gives up.
654 *
655 * @param s the waiting node
656 * @param pred the predecessor of s, or s itself if it has no
657 * predecessor, or null if unknown (the null case does not occur
658 * in any current calls but may in possible future extensions)
659 * @param e the comparison value for checking match
660 * @param timed if true, wait only until timeout elapses
661 * @param nanos timeout in nanosecs, used only if timed is true
662 * @return matched item, or e if unmatched on interrupt or timeout
663 */
664 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
665 final long deadline = timed ? System.nanoTime() + nanos : 0L;
666 Thread w = Thread.currentThread();
667 int spins = -1; // initialized after first item and cancel checks
668 ThreadLocalRandom randomYields = null; // bound if needed
669
670 for (;;) {
671 Object item = s.item;
672 if (item != e) { // matched
673 // assert item != s;
674 s.forgetContents(); // avoid garbage
675 @SuppressWarnings("unchecked") E itemE = (E) item;
676 return itemE;
677 }
678 else if (w.isInterrupted() || (timed && nanos <= 0)) {
679 unsplice(pred, s); // try to unlink and cancel
680 if (s.casItem(e, s)) // return normally if lost CAS
681 return e;
682 }
683 else if (spins < 0) { // establish spins at/near front
684 if ((spins = spinsFor(pred, s.isData)) > 0)
685 randomYields = ThreadLocalRandom.current();
686 }
687 else if (spins > 0) { // spin
688 --spins;
689 if (randomYields.nextInt(CHAINED_SPINS) == 0)
690 Thread.yield(); // occasionally yield
691 }
692 else if (s.waiter == null) {
693 s.waiter = w; // request unpark then recheck
694 }
695 else if (timed) {
696 nanos = deadline - System.nanoTime();
697 if (nanos > 0L)
698 LockSupport.parkNanos(this, nanos);
699 }
700 else {
701 LockSupport.park(this);
702 }
703 }
704 }
705
706 /**
707 * Returns spin/yield value for a node with given predecessor and
708 * data mode. See above for explanation.
709 */
710 private static int spinsFor(Node pred, boolean haveData) {
711 if (MP && pred != null) {
712 if (pred.isData != haveData) // phase change
713 return FRONT_SPINS + CHAINED_SPINS;
714 if (pred.isMatched()) // probably at front
715 return FRONT_SPINS;
716 if (pred.waiter == null) // pred apparently spinning
717 return CHAINED_SPINS;
718 }
719 return 0;
720 }
721
722 /* -------------- Traversal methods -------------- */
723
724 /**
725 * Returns the successor of p, or the head node if p.next has been
726 * linked to self, which will only be true if traversing with a
727 * stale pointer that is now off the list.
728 */
729 final Node succ(Node p) {
730 Node next = p.next;
731 return (p == next) ? head : next;
732 }
733
734 /**
735 * Returns the first unmatched node of the given mode, or null if
736 * none. Used by methods isEmpty, hasWaitingConsumer.
737 */
738 private Node firstOfMode(boolean isData) {
739 for (Node p = head; p != null; p = succ(p)) {
740 if (!p.isMatched())
741 return (p.isData == isData) ? p : null;
742 }
743 return null;
744 }
745
746 /**
747 * Version of firstOfMode used by Spliterator
748 */
749 final Node firstDataNode() {
750 for (Node p = head; p != null;) {
751 Object item = p.item;
752 if (p.isData) {
753 if (item != null && item != p)
754 return p;
755 }
756 else if (item == null)
757 break;
758 if (p == (p = p.next))
759 p = head;
760 }
761 return null;
762 }
763
764 /**
765 * Returns the item in the first unmatched node with isData; or
766 * null if none. Used by peek.
767 */
768 private E firstDataItem() {
769 for (Node p = head; p != null; p = succ(p)) {
770 Object item = p.item;
771 if (p.isData) {
772 if (item != null && item != p) {
773 @SuppressWarnings("unchecked") E itemE = (E) item;
774 return itemE;
775 }
776 }
777 else if (item == null)
778 return null;
779 }
780 return null;
781 }
782
783 /**
784 * Traverses and counts unmatched nodes of the given mode.
785 * Used by methods size and getWaitingConsumerCount.
786 */
787 private int countOfMode(boolean data) {
788 restartFromHead: for (;;) {
789 int count = 0;
790 for (Node p = head; p != null;) {
791 if (!p.isMatched()) {
792 if (p.isData != data)
793 return 0;
794 if (++count == Integer.MAX_VALUE)
795 break; // @see Collection.size()
796 }
797 if (p == (p = p.next))
798 continue restartFromHead;
799 }
800 return count;
801 }
802 }
803
804 public String toString() {
805 String[] a = null;
806 restartFromHead: for (;;) {
807 int charLength = 0;
808 int size = 0;
809 for (Node p = head; p != null;) {
810 Object item = p.item;
811 if (p.isData) {
812 if (item != null && item != p) {
813 if (a == null)
814 a = new String[4];
815 else if (size == a.length)
816 a = Arrays.copyOf(a, 2 * size);
817 String s = item.toString();
818 a[size++] = s;
819 charLength += s.length();
820 }
821 } else if (item == null)
822 break;
823 if (p == (p = p.next))
824 continue restartFromHead;
825 }
826
827 if (size == 0)
828 return "[]";
829
830 return Helpers.toString(a, size, charLength);
831 }
832 }
833
834 private Object[] toArrayInternal(Object[] a) {
835 Object[] x = a;
836 restartFromHead: for (;;) {
837 int size = 0;
838 for (Node p = head; p != null;) {
839 Object item = p.item;
840 if (p.isData) {
841 if (item != null && item != p) {
842 if (x == null)
843 x = new Object[4];
844 else if (size == x.length)
845 x = Arrays.copyOf(x, 2 * (size + 4));
846 x[size++] = item;
847 }
848 } else if (item == null)
849 break;
850 if (p == (p = p.next))
851 continue restartFromHead;
852 }
853 if (x == null)
854 return new Object[0];
855 else if (a != null && size <= a.length) {
856 if (a != x)
857 System.arraycopy(x, 0, a, 0, size);
858 if (size < a.length)
859 a[size] = null;
860 return a;
861 }
862 return (size == x.length) ? x : Arrays.copyOf(x, size);
863 }
864 }
865
866 /**
867 * Returns an array containing all of the elements in this queue, in
868 * proper sequence.
869 *
870 * <p>The returned array will be "safe" in that no references to it are
871 * maintained by this queue. (In other words, this method must allocate
872 * a new array). The caller is thus free to modify the returned array.
873 *
874 * <p>This method acts as bridge between array-based and collection-based
875 * APIs.
876 *
877 * @return an array containing all of the elements in this queue
878 */
879 public Object[] toArray() {
880 return toArrayInternal(null);
881 }
882
883 /**
884 * Returns an array containing all of the elements in this queue, in
885 * proper sequence; the runtime type of the returned array is that of
886 * the specified array. If the queue fits in the specified array, it
887 * is returned therein. Otherwise, a new array is allocated with the
888 * runtime type of the specified array and the size of this queue.
889 *
890 * <p>If this queue fits in the specified array with room to spare
891 * (i.e., the array has more elements than this queue), the element in
892 * the array immediately following the end of the queue is set to
893 * {@code null}.
894 *
895 * <p>Like the {@link #toArray()} method, this method acts as bridge between
896 * array-based and collection-based APIs. Further, this method allows
897 * precise control over the runtime type of the output array, and may,
898 * under certain circumstances, be used to save allocation costs.
899 *
900 * <p>Suppose {@code x} is a queue known to contain only strings.
901 * The following code can be used to dump the queue into a newly
902 * allocated array of {@code String}:
903 *
904 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
905 *
906 * Note that {@code toArray(new Object[0])} is identical in function to
907 * {@code toArray()}.
908 *
909 * @param a the array into which the elements of the queue are to
910 * be stored, if it is big enough; otherwise, a new array of the
911 * same runtime type is allocated for this purpose
912 * @return an array containing all of the elements in this queue
913 * @throws ArrayStoreException if the runtime type of the specified array
914 * is not a supertype of the runtime type of every element in
915 * this queue
916 * @throws NullPointerException if the specified array is null
917 */
918 @SuppressWarnings("unchecked")
919 public <T> T[] toArray(T[] a) {
920 if (a == null) throw new NullPointerException();
921 return (T[]) toArrayInternal(a);
922 }
923
924 final class Itr implements Iterator<E> {
925 private Node nextNode; // next node to return item for
926 private E nextItem; // the corresponding item
927 private Node lastRet; // last returned node, to support remove
928 private Node lastPred; // predecessor to unlink lastRet
929
930 /**
931 * Moves to next node after prev, or first node if prev null.
932 */
933 private void advance(Node prev) {
934 /*
935 * To track and avoid buildup of deleted nodes in the face
936 * of calls to both Queue.remove and Itr.remove, we must
937 * include variants of unsplice and sweep upon each
938 * advance: Upon Itr.remove, we may need to catch up links
939 * from lastPred, and upon other removes, we might need to
940 * skip ahead from stale nodes and unsplice deleted ones
941 * found while advancing.
942 */
943
944 Node r, b; // reset lastPred upon possible deletion of lastRet
945 if ((r = lastRet) != null && !r.isMatched())
946 lastPred = r; // next lastPred is old lastRet
947 else if ((b = lastPred) == null || b.isMatched())
948 lastPred = null; // at start of list
949 else {
950 Node s, n; // help with removal of lastPred.next
951 while ((s = b.next) != null &&
952 s != b && s.isMatched() &&
953 (n = s.next) != null && n != s)
954 b.casNext(s, n);
955 }
956
957 this.lastRet = prev;
958
959 for (Node p = prev, s, n;;) {
960 s = (p == null) ? head : p.next;
961 if (s == null)
962 break;
963 else if (s == p) {
964 p = null;
965 continue;
966 }
967 Object item = s.item;
968 if (s.isData) {
969 if (item != null && item != s) {
970 @SuppressWarnings("unchecked") E itemE = (E) item;
971 nextItem = itemE;
972 nextNode = s;
973 return;
974 }
975 }
976 else if (item == null)
977 break;
978 // assert s.isMatched();
979 if (p == null)
980 p = s;
981 else if ((n = s.next) == null)
982 break;
983 else if (s == n)
984 p = null;
985 else
986 p.casNext(s, n);
987 }
988 nextNode = null;
989 nextItem = null;
990 }
991
992 Itr() {
993 advance(null);
994 }
995
996 public final boolean hasNext() {
997 return nextNode != null;
998 }
999
1000 public final E next() {
1001 Node p = nextNode;
1002 if (p == null) throw new NoSuchElementException();
1003 E e = nextItem;
1004 advance(p);
1005 return e;
1006 }
1007
1008 public final void remove() {
1009 final Node lastRet = this.lastRet;
1010 if (lastRet == null)
1011 throw new IllegalStateException();
1012 this.lastRet = null;
1013 if (lastRet.tryMatchData())
1014 unsplice(lastPred, lastRet);
1015 }
1016 }
1017
1018 /** A customized variant of Spliterators.IteratorSpliterator */
1019 static final class LTQSpliterator<E> implements Spliterator<E> {
1020 static final int MAX_BATCH = 1 << 25; // max batch array size;
1021 final LinkedTransferQueue<E> queue;
1022 Node current; // current node; null until initialized
1023 int batch; // batch size for splits
1024 boolean exhausted; // true when no more nodes
1025 LTQSpliterator(LinkedTransferQueue<E> queue) {
1026 this.queue = queue;
1027 }
1028
1029 public Spliterator<E> trySplit() {
1030 Node p;
1031 final LinkedTransferQueue<E> q = this.queue;
1032 int b = batch;
1033 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1034 if (!exhausted &&
1035 ((p = current) != null || (p = q.firstDataNode()) != null) &&
1036 p.next != null) {
1037 Object[] a = new Object[n];
1038 int i = 0;
1039 do {
1040 if ((a[i] = p.item) != null)
1041 ++i;
1042 if (p == (p = p.next))
1043 p = q.firstDataNode();
1044 } while (p != null && i < n);
1045 if ((current = p) == null)
1046 exhausted = true;
1047 if (i > 0) {
1048 batch = i;
1049 return Spliterators.spliterator
1050 (a, 0, i, (Spliterator.ORDERED |
1051 Spliterator.NONNULL |
1052 Spliterator.CONCURRENT));
1053 }
1054 }
1055 return null;
1056 }
1057
1058 @SuppressWarnings("unchecked")
1059 public void forEachRemaining(Consumer<? super E> action) {
1060 Node p;
1061 if (action == null) throw new NullPointerException();
1062 final LinkedTransferQueue<E> q = this.queue;
1063 if (!exhausted &&
1064 ((p = current) != null || (p = q.firstDataNode()) != null)) {
1065 exhausted = true;
1066 do {
1067 Object e = p.item;
1068 if (p == (p = p.next))
1069 p = q.firstDataNode();
1070 if (e != null)
1071 action.accept((E)e);
1072 } while (p != null);
1073 }
1074 }
1075
1076 @SuppressWarnings("unchecked")
1077 public boolean tryAdvance(Consumer<? super E> action) {
1078 Node p;
1079 if (action == null) throw new NullPointerException();
1080 final LinkedTransferQueue<E> q = this.queue;
1081 if (!exhausted &&
1082 ((p = current) != null || (p = q.firstDataNode()) != null)) {
1083 Object e;
1084 do {
1085 e = p.item;
1086 if (p == (p = p.next))
1087 p = q.firstDataNode();
1088 } while (e == null && p != null);
1089 if ((current = p) == null)
1090 exhausted = true;
1091 if (e != null) {
1092 action.accept((E)e);
1093 return true;
1094 }
1095 }
1096 return false;
1097 }
1098
1099 public long estimateSize() { return Long.MAX_VALUE; }
1100
1101 public int characteristics() {
1102 return Spliterator.ORDERED | Spliterator.NONNULL |
1103 Spliterator.CONCURRENT;
1104 }
1105 }
1106
1107 /**
1108 * Returns a {@link Spliterator} over the elements in this queue.
1109 *
1110 * <p>The returned spliterator is
1111 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1112 *
1113 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1114 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1115 *
1116 * @implNote
1117 * The {@code Spliterator} implements {@code trySplit} to permit limited
1118 * parallelism.
1119 *
1120 * @return a {@code Spliterator} over the elements in this queue
1121 * @since 1.8
1122 */
1123 public Spliterator<E> spliterator() {
1124 return new LTQSpliterator<E>(this);
1125 }
1126
1127 /* -------------- Removal methods -------------- */
1128
1129 /**
1130 * Unsplices (now or later) the given deleted/cancelled node with
1131 * the given predecessor.
1132 *
1133 * @param pred a node that was at one time known to be the
1134 * predecessor of s, or null or s itself if s is/was at head
1135 * @param s the node to be unspliced
1136 */
1137 final void unsplice(Node pred, Node s) {
1138 s.waiter = null; // disable signals
1139 /*
1140 * See above for rationale. Briefly: if pred still points to
1141 * s, try to unlink s. If s cannot be unlinked, because it is
1142 * trailing node or pred might be unlinked, and neither pred
1143 * nor s are head or offlist, add to sweepVotes, and if enough
1144 * votes have accumulated, sweep.
1145 */
1146 if (pred != null && pred != s && pred.next == s) {
1147 Node n = s.next;
1148 if (n == null ||
1149 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1150 for (;;) { // check if at, or could be, head
1151 Node h = head;
1152 if (h == pred || h == s || h == null)
1153 return; // at head or list empty
1154 if (!h.isMatched())
1155 break;
1156 Node hn = h.next;
1157 if (hn == null)
1158 return; // now empty
1159 if (hn != h && casHead(h, hn))
1160 h.forgetNext(); // advance head
1161 }
1162 if (pred.next != pred && s.next != s) { // recheck if offlist
1163 for (;;) { // sweep now if enough votes
1164 int v = sweepVotes;
1165 if (v < SWEEP_THRESHOLD) {
1166 if (casSweepVotes(v, v + 1))
1167 break;
1168 }
1169 else if (casSweepVotes(v, 0)) {
1170 sweep();
1171 break;
1172 }
1173 }
1174 }
1175 }
1176 }
1177 }
1178
1179 /**
1180 * Unlinks matched (typically cancelled) nodes encountered in a
1181 * traversal from head.
1182 */
1183 private void sweep() {
1184 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1185 if (!s.isMatched())
1186 // Unmatched nodes are never self-linked
1187 p = s;
1188 else if ((n = s.next) == null) // trailing node is pinned
1189 break;
1190 else if (s == n) // stale
1191 // No need to also check for p == s, since that implies s == n
1192 p = head;
1193 else
1194 p.casNext(s, n);
1195 }
1196 }
1197
1198 /**
1199 * Main implementation of remove(Object)
1200 */
1201 private boolean findAndRemove(Object e) {
1202 if (e != null) {
1203 for (Node pred = null, p = head; p != null; ) {
1204 Object item = p.item;
1205 if (p.isData) {
1206 if (item != null && item != p && e.equals(item) &&
1207 p.tryMatchData()) {
1208 unsplice(pred, p);
1209 return true;
1210 }
1211 }
1212 else if (item == null)
1213 break;
1214 pred = p;
1215 if ((p = p.next) == pred) { // stale
1216 pred = null;
1217 p = head;
1218 }
1219 }
1220 }
1221 return false;
1222 }
1223
1224 /**
1225 * Creates an initially empty {@code LinkedTransferQueue}.
1226 */
1227 public LinkedTransferQueue() {
1228 }
1229
1230 /**
1231 * Creates a {@code LinkedTransferQueue}
1232 * initially containing the elements of the given collection,
1233 * added in traversal order of the collection's iterator.
1234 *
1235 * @param c the collection of elements to initially contain
1236 * @throws NullPointerException if the specified collection or any
1237 * of its elements are null
1238 */
1239 public LinkedTransferQueue(Collection<? extends E> c) {
1240 this();
1241 addAll(c);
1242 }
1243
1244 /**
1245 * Inserts the specified element at the tail of this queue.
1246 * As the queue is unbounded, this method will never block.
1247 *
1248 * @throws NullPointerException if the specified element is null
1249 */
1250 public void put(E e) {
1251 xfer(e, true, ASYNC, 0);
1252 }
1253
1254 /**
1255 * Inserts the specified element at the tail of this queue.
1256 * As the queue is unbounded, this method will never block or
1257 * return {@code false}.
1258 *
1259 * @return {@code true} (as specified by
1260 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1261 * BlockingQueue.offer})
1262 * @throws NullPointerException if the specified element is null
1263 */
1264 public boolean offer(E e, long timeout, TimeUnit unit) {
1265 xfer(e, true, ASYNC, 0);
1266 return true;
1267 }
1268
1269 /**
1270 * Inserts the specified element at the tail of this queue.
1271 * As the queue is unbounded, this method will never return {@code false}.
1272 *
1273 * @return {@code true} (as specified by {@link Queue#offer})
1274 * @throws NullPointerException if the specified element is null
1275 */
1276 public boolean offer(E e) {
1277 xfer(e, true, ASYNC, 0);
1278 return true;
1279 }
1280
1281 /**
1282 * Inserts the specified element at the tail of this queue.
1283 * As the queue is unbounded, this method will never throw
1284 * {@link IllegalStateException} or return {@code false}.
1285 *
1286 * @return {@code true} (as specified by {@link Collection#add})
1287 * @throws NullPointerException if the specified element is null
1288 */
1289 public boolean add(E e) {
1290 xfer(e, true, ASYNC, 0);
1291 return true;
1292 }
1293
1294 /**
1295 * Transfers the element to a waiting consumer immediately, if possible.
1296 *
1297 * <p>More precisely, transfers the specified element immediately
1298 * if there exists a consumer already waiting to receive it (in
1299 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1300 * otherwise returning {@code false} without enqueuing the element.
1301 *
1302 * @throws NullPointerException if the specified element is null
1303 */
1304 public boolean tryTransfer(E e) {
1305 return xfer(e, true, NOW, 0) == null;
1306 }
1307
1308 /**
1309 * Transfers the element to a consumer, waiting if necessary to do so.
1310 *
1311 * <p>More precisely, transfers the specified element immediately
1312 * if there exists a consumer already waiting to receive it (in
1313 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1314 * else inserts the specified element at the tail of this queue
1315 * and waits until the element is received by a consumer.
1316 *
1317 * @throws NullPointerException if the specified element is null
1318 */
1319 public void transfer(E e) throws InterruptedException {
1320 if (xfer(e, true, SYNC, 0) != null) {
1321 Thread.interrupted(); // failure possible only due to interrupt
1322 throw new InterruptedException();
1323 }
1324 }
1325
1326 /**
1327 * Transfers the element to a consumer if it is possible to do so
1328 * before the timeout elapses.
1329 *
1330 * <p>More precisely, transfers the specified element immediately
1331 * if there exists a consumer already waiting to receive it (in
1332 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1333 * else inserts the specified element at the tail of this queue
1334 * and waits until the element is received by a consumer,
1335 * returning {@code false} if the specified wait time elapses
1336 * before the element can be transferred.
1337 *
1338 * @throws NullPointerException if the specified element is null
1339 */
1340 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1341 throws InterruptedException {
1342 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1343 return true;
1344 if (!Thread.interrupted())
1345 return false;
1346 throw new InterruptedException();
1347 }
1348
1349 public E take() throws InterruptedException {
1350 E e = xfer(null, false, SYNC, 0);
1351 if (e != null)
1352 return e;
1353 Thread.interrupted();
1354 throw new InterruptedException();
1355 }
1356
1357 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1358 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1359 if (e != null || !Thread.interrupted())
1360 return e;
1361 throw new InterruptedException();
1362 }
1363
1364 public E poll() {
1365 return xfer(null, false, NOW, 0);
1366 }
1367
1368 /**
1369 * @throws NullPointerException {@inheritDoc}
1370 * @throws IllegalArgumentException {@inheritDoc}
1371 */
1372 public int drainTo(Collection<? super E> c) {
1373 if (c == null)
1374 throw new NullPointerException();
1375 if (c == this)
1376 throw new IllegalArgumentException();
1377 int n = 0;
1378 for (E e; (e = poll()) != null;) {
1379 c.add(e);
1380 ++n;
1381 }
1382 return n;
1383 }
1384
1385 /**
1386 * @throws NullPointerException {@inheritDoc}
1387 * @throws IllegalArgumentException {@inheritDoc}
1388 */
1389 public int drainTo(Collection<? super E> c, int maxElements) {
1390 if (c == null)
1391 throw new NullPointerException();
1392 if (c == this)
1393 throw new IllegalArgumentException();
1394 int n = 0;
1395 for (E e; n < maxElements && (e = poll()) != null;) {
1396 c.add(e);
1397 ++n;
1398 }
1399 return n;
1400 }
1401
1402 /**
1403 * Returns an iterator over the elements in this queue in proper sequence.
1404 * The elements will be returned in order from first (head) to last (tail).
1405 *
1406 * <p>The returned iterator is
1407 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1408 *
1409 * @return an iterator over the elements in this queue in proper sequence
1410 */
1411 public Iterator<E> iterator() {
1412 return new Itr();
1413 }
1414
1415 public E peek() {
1416 return firstDataItem();
1417 }
1418
1419 /**
1420 * Returns {@code true} if this queue contains no elements.
1421 *
1422 * @return {@code true} if this queue contains no elements
1423 */
1424 public boolean isEmpty() {
1425 for (Node p = head; p != null; p = succ(p)) {
1426 if (!p.isMatched())
1427 return !p.isData;
1428 }
1429 return true;
1430 }
1431
1432 public boolean hasWaitingConsumer() {
1433 return firstOfMode(false) != null;
1434 }
1435
1436 /**
1437 * Returns the number of elements in this queue. If this queue
1438 * contains more than {@code Integer.MAX_VALUE} elements, returns
1439 * {@code Integer.MAX_VALUE}.
1440 *
1441 * <p>Beware that, unlike in most collections, this method is
1442 * <em>NOT</em> a constant-time operation. Because of the
1443 * asynchronous nature of these queues, determining the current
1444 * number of elements requires an O(n) traversal.
1445 *
1446 * @return the number of elements in this queue
1447 */
1448 public int size() {
1449 return countOfMode(true);
1450 }
1451
1452 public int getWaitingConsumerCount() {
1453 return countOfMode(false);
1454 }
1455
1456 /**
1457 * Removes a single instance of the specified element from this queue,
1458 * if it is present. More formally, removes an element {@code e} such
1459 * that {@code o.equals(e)}, if this queue contains one or more such
1460 * elements.
1461 * Returns {@code true} if this queue contained the specified element
1462 * (or equivalently, if this queue changed as a result of the call).
1463 *
1464 * @param o element to be removed from this queue, if present
1465 * @return {@code true} if this queue changed as a result of the call
1466 */
1467 public boolean remove(Object o) {
1468 return findAndRemove(o);
1469 }
1470
1471 /**
1472 * Returns {@code true} if this queue contains the specified element.
1473 * More formally, returns {@code true} if and only if this queue contains
1474 * at least one element {@code e} such that {@code o.equals(e)}.
1475 *
1476 * @param o object to be checked for containment in this queue
1477 * @return {@code true} if this queue contains the specified element
1478 */
1479 public boolean contains(Object o) {
1480 if (o != null) {
1481 for (Node p = head; p != null; p = succ(p)) {
1482 Object item = p.item;
1483 if (p.isData) {
1484 if (item != null && item != p && o.equals(item))
1485 return true;
1486 }
1487 else if (item == null)
1488 break;
1489 }
1490 }
1491 return false;
1492 }
1493
1494 /**
1495 * Always returns {@code Integer.MAX_VALUE} because a
1496 * {@code LinkedTransferQueue} is not capacity constrained.
1497 *
1498 * @return {@code Integer.MAX_VALUE} (as specified by
1499 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1500 * BlockingQueue.remainingCapacity})
1501 */
1502 public int remainingCapacity() {
1503 return Integer.MAX_VALUE;
1504 }
1505
1506 /**
1507 * Saves this queue to a stream (that is, serializes it).
1508 *
1509 * @param s the stream
1510 * @throws java.io.IOException if an I/O error occurs
1511 * @serialData All of the elements (each an {@code E}) in
1512 * the proper order, followed by a null
1513 */
1514 private void writeObject(java.io.ObjectOutputStream s)
1515 throws java.io.IOException {
1516 s.defaultWriteObject();
1517 for (E e : this)
1518 s.writeObject(e);
1519 // Use trailing null as sentinel
1520 s.writeObject(null);
1521 }
1522
1523 /**
1524 * Reconstitutes this queue from a stream (that is, deserializes it).
1525 * @param s the stream
1526 * @throws ClassNotFoundException if the class of a serialized object
1527 * could not be found
1528 * @throws java.io.IOException if an I/O error occurs
1529 */
1530 private void readObject(java.io.ObjectInputStream s)
1531 throws java.io.IOException, ClassNotFoundException {
1532 s.defaultReadObject();
1533 for (;;) {
1534 @SuppressWarnings("unchecked")
1535 E item = (E) s.readObject();
1536 if (item == null)
1537 break;
1538 else
1539 offer(item);
1540 }
1541 }
1542
1543 // Unsafe mechanics
1544
1545 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1546 private static final long HEAD;
1547 private static final long TAIL;
1548 private static final long SWEEPVOTES;
1549 static {
1550 try {
1551 HEAD = U.objectFieldOffset
1552 (LinkedTransferQueue.class.getDeclaredField("head"));
1553 TAIL = U.objectFieldOffset
1554 (LinkedTransferQueue.class.getDeclaredField("tail"));
1555 SWEEPVOTES = U.objectFieldOffset
1556 (LinkedTransferQueue.class.getDeclaredField("sweepVotes"));
1557 } catch (ReflectiveOperationException e) {
1558 throw new Error(e);
1559 }
1560
1561 // Reduce the risk of rare disastrous classloading in first call to
1562 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1563 Class<?> ensureLoaded = LockSupport.class;
1564 }
1565 }