ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.9
Committed: Wed Oct 28 00:00:38 2009 UTC (14 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.8: +1 -1 lines
Log Message:
sync with jsr166y package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.ConcurrentModificationException;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15 import java.util.concurrent.locks.LockSupport;
16 /**
17 * An unbounded {@link TransferQueue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out) with respect
19 * to any given producer. The <em>head</em> of the queue is that
20 * element that has been on the queue the longest time for some
21 * producer. The <em>tail</em> of the queue is that element that has
22 * been on the queue the shortest time for some producer.
23 *
24 * <p>Beware that, unlike in most collections, the {@code size}
25 * method is <em>NOT</em> a constant-time operation. Because of the
26 * asynchronous nature of these queues, determining the current number
27 * of elements requires a traversal of the elements.
28 *
29 * <p>This class and its iterator implement all of the
30 * <em>optional</em> methods of the {@link Collection} and {@link
31 * Iterator} interfaces.
32 *
33 * <p>Memory consistency effects: As with other concurrent
34 * collections, actions in a thread prior to placing an object into a
35 * {@code LinkedTransferQueue}
36 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37 * actions subsequent to the access or removal of that element from
38 * the {@code LinkedTransferQueue} in another thread.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.7
45 * @author Doug Lea
46 * @param <E> the type of elements held in this collection
47 */
48 public class LinkedTransferQueue<E> extends AbstractQueue<E>
49 implements TransferQueue<E>, java.io.Serializable {
50 private static final long serialVersionUID = -3223113410248163686L;
51
52 /*
53 * *** Overview of Dual Queues with Slack ***
54 *
55 * Dual Queues, introduced by Scherer and Scott
56 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57 * (linked) queues in which nodes may represent either data or
58 * requests. When a thread tries to enqueue a data node, but
59 * encounters a request node, it instead "matches" and removes it;
60 * and vice versa for enqueuing requests. Blocking Dual Queues
61 * arrange that threads enqueuing unmatched requests block until
62 * other threads provide the match. Dual Synchronous Queues (see
63 * Scherer, Lea, & Scott
64 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65 * additionally arrange that threads enqueuing unmatched data also
66 * block. Dual Transfer Queues support all of these modes, as
67 * dictated by callers.
68 *
69 * A FIFO dual queue may be implemented using a variation of the
70 * Michael & Scott (M&S) lock-free queue algorithm
71 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72 * It maintains two pointer fields, "head", pointing to a
73 * (matched) node that in turn points to the first actual
74 * (unmatched) queue node (or null if empty); and "tail" that
75 * points to the last node on the queue (or again null if
76 * empty). For example, here is a possible queue with four data
77 * elements:
78 *
79 * head tail
80 * | |
81 * v v
82 * M -> U -> U -> U -> U
83 *
84 * The M&S queue algorithm is known to be prone to scalability and
85 * overhead limitations when maintaining (via CAS) these head and
86 * tail pointers. This has led to the development of
87 * contention-reducing variants such as elimination arrays (see
88 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89 * optimistic back pointers (see Ladan-Mozes & Shavit
90 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91 * However, the nature of dual queues enables a simpler tactic for
92 * improving M&S-style implementations when dual-ness is needed.
93 *
94 * In a dual queue, each node must atomically maintain its match
95 * status. While there are other possible variants, we implement
96 * this here as: for a data-mode node, matching entails CASing an
97 * "item" field from a non-null data value to null upon match, and
98 * vice-versa for request nodes, CASing from null to a data
99 * value. (Note that the linearization properties of this style of
100 * queue are easy to verify -- elements are made available by
101 * linking, and unavailable by matching.) Compared to plain M&S
102 * queues, this property of dual queues requires one additional
103 * successful atomic operation per enq/deq pair. But it also
104 * enables lower cost variants of queue maintenance mechanics. (A
105 * variation of this idea applies even for non-dual queues that
106 * support deletion of interior elements, such as
107 * j.u.c.ConcurrentLinkedQueue.)
108 *
109 * Once a node is matched, its match status can never again
110 * change. We may thus arrange that the linked list of them
111 * contain a prefix of zero or more matched nodes, followed by a
112 * suffix of zero or more unmatched nodes. (Note that we allow
113 * both the prefix and suffix to be zero length, which in turn
114 * means that we do not use a dummy header.) If we were not
115 * concerned with either time or space efficiency, we could
116 * correctly perform enqueue and dequeue operations by traversing
117 * from a pointer to the initial node; CASing the item of the
118 * first unmatched node on match and CASing the next field of the
119 * trailing node on appends. (Plus some special-casing when
120 * initially empty). While this would be a terrible idea in
121 * itself, it does have the benefit of not requiring ANY atomic
122 * updates on head/tail fields.
123 *
124 * We introduce here an approach that lies between the extremes of
125 * never versus always updating queue (head and tail) pointers.
126 * This offers a tradeoff between sometimes requiring extra
127 * traversal steps to locate the first and/or last unmatched
128 * nodes, versus the reduced overhead and contention of fewer
129 * updates to queue pointers. For example, a possible snapshot of
130 * a queue is:
131 *
132 * head tail
133 * | |
134 * v v
135 * M -> M -> U -> U -> U -> U
136 *
137 * The best value for this "slack" (the targeted maximum distance
138 * between the value of "head" and the first unmatched node, and
139 * similarly for "tail") is an empirical matter. We have found
140 * that using very small constants in the range of 1-3 work best
141 * over a range of platforms. Larger values introduce increasing
142 * costs of cache misses and risks of long traversal chains, while
143 * smaller values increase CAS contention and overhead.
144 *
145 * Dual queues with slack differ from plain M&S dual queues by
146 * virtue of only sometimes updating head or tail pointers when
147 * matching, appending, or even traversing nodes; in order to
148 * maintain a targeted slack. The idea of "sometimes" may be
149 * operationalized in several ways. The simplest is to use a
150 * per-operation counter incremented on each traversal step, and
151 * to try (via CAS) to update the associated queue pointer
152 * whenever the count exceeds a threshold. Another, that requires
153 * more overhead, is to use random number generators to update
154 * with a given probability per traversal step.
155 *
156 * In any strategy along these lines, because CASes updating
157 * fields may fail, the actual slack may exceed targeted
158 * slack. However, they may be retried at any time to maintain
159 * targets. Even when using very small slack values, this
160 * approach works well for dual queues because it allows all
161 * operations up to the point of matching or appending an item
162 * (hence potentially allowing progress by another thread) to be
163 * read-only, thus not introducing any further contention. As
164 * described below, we implement this by performing slack
165 * maintenance retries only after these points.
166 *
167 * As an accompaniment to such techniques, traversal overhead can
168 * be further reduced without increasing contention of head
169 * pointer updates: Threads may sometimes shortcut the "next" link
170 * path from the current "head" node to be closer to the currently
171 * known first unmatched node, and similarly for tail. Again, this
172 * may be triggered with using thresholds or randomization.
173 *
174 * These ideas must be further extended to avoid unbounded amounts
175 * of costly-to-reclaim garbage caused by the sequential "next"
176 * links of nodes starting at old forgotten head nodes: As first
177 * described in detail by Boehm
178 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179 * delays noticing that any arbitrarily old node has become
180 * garbage, all newer dead nodes will also be unreclaimed.
181 * (Similar issues arise in non-GC environments.) To cope with
182 * this in our implementation, upon CASing to advance the head
183 * pointer, we set the "next" link of the previous head to point
184 * only to itself; thus limiting the length of connected dead lists.
185 * (We also take similar care to wipe out possibly garbage
186 * retaining values held in other Node fields.) However, doing so
187 * adds some further complexity to traversal: If any "next"
188 * pointer links to itself, it indicates that the current thread
189 * has lagged behind a head-update, and so the traversal must
190 * continue from the "head". Traversals trying to find the
191 * current tail starting from "tail" may also encounter
192 * self-links, in which case they also continue at "head".
193 *
194 * It is tempting in slack-based scheme to not even use CAS for
195 * updates (similarly to Ladan-Mozes & Shavit). However, this
196 * cannot be done for head updates under the above link-forgetting
197 * mechanics because an update may leave head at a detached node.
198 * And while direct writes are possible for tail updates, they
199 * increase the risk of long retraversals, and hence long garbage
200 * chains, which can be much more costly than is worthwhile
201 * considering that the cost difference of performing a CAS vs
202 * write is smaller when they are not triggered on each operation
203 * (especially considering that writes and CASes equally require
204 * additional GC bookkeeping ("write barriers") that are sometimes
205 * more costly than the writes themselves because of contention).
206 *
207 * Removal of interior nodes (due to timed out or interrupted
208 * waits, or calls to remove(x) or Iterator.remove) can use a
209 * scheme roughly similar to that described in Scherer, Lea, and
210 * Scott's SynchronousQueue. Given a predecessor, we can unsplice
211 * any node except the (actual) tail of the queue. To avoid
212 * build-up of cancelled trailing nodes, upon a request to remove
213 * a trailing node, it is placed in field "cleanMe" to be
214 * unspliced upon the next call to unsplice any other node.
215 * Situations needing such mechanics are not common but do occur
216 * in practice; for example when an unbounded series of short
217 * timed calls to poll repeatedly time out but never otherwise
218 * fall off the list because of an untimed call to take at the
219 * front of the queue. Note that maintaining field cleanMe does
220 * not otherwise much impact garbage retention even if never
221 * cleared by some other call because the held node will
222 * eventually either directly or indirectly lead to a self-link
223 * once off the list.
224 *
225 * *** Overview of implementation ***
226 *
227 * We use a threshold-based approach to updates, with a slack
228 * threshold of two -- that is, we update head/tail when the
229 * current pointer appears to be two or more steps away from the
230 * first/last node. The slack value is hard-wired: a path greater
231 * than one is naturally implemented by checking equality of
232 * traversal pointers except when the list has only one element,
233 * in which case we keep slack threshold at one. Avoiding tracking
234 * explicit counts across method calls slightly simplifies an
235 * already-messy implementation. Using randomization would
236 * probably work better if there were a low-quality dirt-cheap
237 * per-thread one available, but even ThreadLocalRandom is too
238 * heavy for these purposes.
239 *
240 * With such a small slack threshold value, it is rarely
241 * worthwhile to augment this with path short-circuiting; i.e.,
242 * unsplicing nodes between head and the first unmatched node, or
243 * similarly for tail, rather than advancing head or tail
244 * proper. However, it is used (in awaitMatch) immediately before
245 * a waiting thread starts to block, as a final bit of helping at
246 * a point when contention with others is extremely unlikely
247 * (since if other threads that could release it are operating,
248 * then the current thread wouldn't be blocking).
249 *
250 * We allow both the head and tail fields to be null before any
251 * nodes are enqueued; initializing upon first append. This
252 * simplifies some other logic, as well as providing more
253 * efficient explicit control paths instead of letting JVMs insert
254 * implicit NullPointerExceptions when they are null. While not
255 * currently fully implemented, we also leave open the possibility
256 * of re-nulling these fields when empty (which is complicated to
257 * arrange, for little benefit.)
258 *
259 * All enqueue/dequeue operations are handled by the single method
260 * "xfer" with parameters indicating whether to act as some form
261 * of offer, put, poll, take, or transfer (each possibly with
262 * timeout). The relative complexity of using one monolithic
263 * method outweighs the code bulk and maintenance problems of
264 * using separate methods for each case.
265 *
266 * Operation consists of up to three phases. The first is
267 * implemented within method xfer, the second in tryAppend, and
268 * the third in method awaitMatch.
269 *
270 * 1. Try to match an existing node
271 *
272 * Starting at head, skip already-matched nodes until finding
273 * an unmatched node of opposite mode, if one exists, in which
274 * case matching it and returning, also if necessary updating
275 * head to one past the matched node (or the node itself if the
276 * list has no other unmatched nodes). If the CAS misses, then
277 * a loop retries advancing head by two steps until either
278 * success or the slack is at most two. By requiring that each
279 * attempt advances head by two (if applicable), we ensure that
280 * the slack does not grow without bound. Traversals also check
281 * if the initial head is now off-list, in which case they
282 * start at the new head.
283 *
284 * If no candidates are found and the call was untimed
285 * poll/offer, (argument "how" is NOW) return.
286 *
287 * 2. Try to append a new node (method tryAppend)
288 *
289 * Starting at current tail pointer, find the actual last node
290 * and try to append a new node (or if head was null, establish
291 * the first node). Nodes can be appended only if their
292 * predecessors are either already matched or are of the same
293 * mode. If we detect otherwise, then a new node with opposite
294 * mode must have been appended during traversal, so we must
295 * restart at phase 1. The traversal and update steps are
296 * otherwise similar to phase 1: Retrying upon CAS misses and
297 * checking for staleness. In particular, if a self-link is
298 * encountered, then we can safely jump to a node on the list
299 * by continuing the traversal at current head.
300 *
301 * On successful append, if the call was ASYNC, return.
302 *
303 * 3. Await match or cancellation (method awaitMatch)
304 *
305 * Wait for another thread to match node; instead cancelling if
306 * the current thread was interrupted or the wait timed out. On
307 * multiprocessors, we use front-of-queue spinning: If a node
308 * appears to be the first unmatched node in the queue, it
309 * spins a bit before blocking. In either case, before blocking
310 * it tries to unsplice any nodes between the current "head"
311 * and the first unmatched node.
312 *
313 * Front-of-queue spinning vastly improves performance of
314 * heavily contended queues. And so long as it is relatively
315 * brief and "quiet", spinning does not much impact performance
316 * of less-contended queues. During spins threads check their
317 * interrupt status and generate a thread-local random number
318 * to decide to occasionally perform a Thread.yield. While
319 * yield has underdefined specs, we assume that might it help,
320 * and will not hurt in limiting impact of spinning on busy
321 * systems. We also use smaller (1/2) spins for nodes that are
322 * not known to be front but whose predecessors have not
323 * blocked -- these "chained" spins avoid artifacts of
324 * front-of-queue rules which otherwise lead to alternating
325 * nodes spinning vs blocking. Further, front threads that
326 * represent phase changes (from data to request node or vice
327 * versa) compared to their predecessors receive additional
328 * chained spins, reflecting longer paths typically required to
329 * unblock threads during phase changes.
330 */
331
332 /** True if on multiprocessor */
333 private static final boolean MP =
334 Runtime.getRuntime().availableProcessors() > 1;
335
336 /**
337 * The number of times to spin (with randomly interspersed calls
338 * to Thread.yield) on multiprocessor before blocking when a node
339 * is apparently the first waiter in the queue. See above for
340 * explanation. Must be a power of two. The value is empirically
341 * derived -- it works pretty well across a variety of processors,
342 * numbers of CPUs, and OSes.
343 */
344 private static final int FRONT_SPINS = 1 << 7;
345
346 /**
347 * The number of times to spin before blocking when a node is
348 * preceded by another node that is apparently spinning. Also
349 * serves as an increment to FRONT_SPINS on phase changes, and as
350 * base average frequency for yielding during spins. Must be a
351 * power of two.
352 */
353 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
354
355 /**
356 * Queue nodes. Uses Object, not E, for items to allow forgetting
357 * them after use. Relies heavily on Unsafe mechanics to minimize
358 * unnecessary ordering constraints: Writes that intrinsically
359 * precede or follow CASes use simple relaxed forms. Other
360 * cleanups use releasing/lazy writes.
361 */
362 static final class Node<E> {
363 final boolean isData; // false if this is a request node
364 volatile Object item; // initially non-null if isData; CASed to match
365 volatile Node<E> next;
366 volatile Thread waiter; // null until waiting
367
368 // CAS methods for fields
369 final boolean casNext(Node<E> cmp, Node<E> val) {
370 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
371 }
372
373 final boolean casItem(Object cmp, Object val) {
374 assert cmp == null || cmp.getClass() != Node.class;
375 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
376 }
377
378 /**
379 * Creates a new node. Uses relaxed write because item can only
380 * be seen if followed by CAS.
381 */
382 Node(E item, boolean isData) {
383 UNSAFE.putObject(this, itemOffset, item); // relaxed write
384 this.isData = isData;
385 }
386
387 /**
388 * Links node to itself to avoid garbage retention. Called
389 * only after CASing head field, so uses relaxed write.
390 */
391 final void forgetNext() {
392 UNSAFE.putObject(this, nextOffset, this);
393 }
394
395 /**
396 * Sets item to self (using a releasing/lazy write) and waiter
397 * to null, to avoid garbage retention after extracting or
398 * cancelling.
399 */
400 final void forgetContents() {
401 UNSAFE.putOrderedObject(this, itemOffset, this);
402 UNSAFE.putOrderedObject(this, waiterOffset, null);
403 }
404
405 /**
406 * Returns true if this node has been matched, including the
407 * case of artificial matches due to cancellation.
408 */
409 final boolean isMatched() {
410 Object x = item;
411 return x == this || (x != null) != isData;
412 }
413
414 /**
415 * Returns true if a node with the given mode cannot be
416 * appended to this node because this node is unmatched and
417 * has opposite data mode.
418 */
419 final boolean cannotPrecede(boolean haveData) {
420 boolean d = isData;
421 Object x;
422 return d != haveData && (x = item) != this && (x != null) == d;
423 }
424
425 /**
426 * Tries to artificially match a data node -- used by remove.
427 */
428 final boolean tryMatchData() {
429 Object x = item;
430 if (x != null && x != this && casItem(x, null)) {
431 LockSupport.unpark(waiter);
432 return true;
433 }
434 return false;
435 }
436
437 // Unsafe mechanics
438 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
439 private static final long nextOffset =
440 objectFieldOffset(UNSAFE, "next", Node.class);
441 private static final long itemOffset =
442 objectFieldOffset(UNSAFE, "item", Node.class);
443 private static final long waiterOffset =
444 objectFieldOffset(UNSAFE, "waiter", Node.class);
445
446 private static final long serialVersionUID = -3375979862319811754L;
447 }
448
449 /** head of the queue; null until first enqueue */
450 transient volatile Node<E> head;
451
452 /** predecessor of dangling unspliceable node */
453 private transient volatile Node<E> cleanMe; // decl here reduces contention
454
455 /** tail of the queue; null until first append */
456 private transient volatile Node<E> tail;
457
458 // CAS methods for fields
459 private boolean casTail(Node<E> cmp, Node<E> val) {
460 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
461 }
462
463 private boolean casHead(Node<E> cmp, Node<E> val) {
464 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
465 }
466
467 private boolean casCleanMe(Node<E> cmp, Node<E> val) {
468 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
469 }
470
471 /*
472 * Possible values for "how" argument in xfer method. Beware that
473 * the order of assigned numerical values matters.
474 */
475 private static final int NOW = 0; // for untimed poll, tryTransfer
476 private static final int ASYNC = 1; // for offer, put, add
477 private static final int SYNC = 2; // for transfer, take
478 private static final int TIMEOUT = 3; // for timed poll, tryTransfer
479
480 /**
481 * Implements all queuing methods. See above for explanation.
482 *
483 * @param e the item or null for take
484 * @param haveData true if this is a put, else a take
485 * @param how NOW, ASYNC, SYNC, or TIMEOUT
486 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
487 * @return an item if matched, else e
488 * @throws NullPointerException if haveData mode but e is null
489 */
490 private E xfer(E e, boolean haveData, int how, long nanos) {
491 if (haveData && (e == null))
492 throw new NullPointerException();
493 Node<E> s = null; // the node to append, if needed
494
495 retry: for (;;) { // restart on append race
496
497 for (Node<E> h = head, p = h; p != null;) {
498 // find & match first node
499 boolean isData = p.isData;
500 Object item = p.item;
501 if (item != p && (item != null) == isData) { // unmatched
502 if (isData == haveData) // can't match
503 break;
504 if (p.casItem(item, e)) { // match
505 for (Node<E> q = p; q != h;) {
506 Node<E> n = q.next; // update head by 2
507 if (n != null) // unless singleton
508 q = n;
509 if (head == h && casHead(h, q)) {
510 h.forgetNext();
511 break;
512 } // advance and retry
513 if ((h = head) == null ||
514 (q = h.next) == null || !q.isMatched())
515 break; // unless slack < 2
516 }
517 LockSupport.unpark(p.waiter);
518 return this.<E>cast(item);
519 }
520 }
521 Node<E> n = p.next;
522 p = (p != n) ? n : (h = head); // Use head if p offlist
523 }
524
525 if (how >= ASYNC) { // No matches available
526 if (s == null)
527 s = new Node<E>(e, haveData);
528 Node<E> pred = tryAppend(s, haveData);
529 if (pred == null)
530 continue retry; // lost race vs opposite mode
531 if (how >= SYNC)
532 return awaitMatch(s, pred, e, how, nanos);
533 }
534 return e; // not waiting
535 }
536 }
537
538 /**
539 * Tries to append node s as tail.
540 *
541 * @param s the node to append
542 * @param haveData true if appending in data mode
543 * @return null on failure due to losing race with append in
544 * different mode, else s's predecessor, or s itself if no
545 * predecessor
546 */
547 private Node<E> tryAppend(Node<E> s, boolean haveData) {
548 for (Node<E> t = tail, p = t;;) { // move p to last node and append
549 Node<E> n, u; // temps for reads of next & tail
550 if (p == null && (p = head) == null) {
551 if (casHead(null, s))
552 return s; // initialize
553 }
554 else if (p.cannotPrecede(haveData))
555 return null; // lost race vs opposite mode
556 else if ((n = p.next) != null) // not last; keep traversing
557 p = p != t && t != (u = tail) ? (t = u) : // stale tail
558 (p != n) ? n : null; // restart if off list
559 else if (!p.casNext(null, s))
560 p = p.next; // re-read on CAS failure
561 else {
562 if (p != t) { // update if slack now >= 2
563 while ((tail != t || !casTail(t, s)) &&
564 (t = tail) != null &&
565 (s = t.next) != null && // advance and retry
566 (s = s.next) != null && s != t);
567 }
568 return p;
569 }
570 }
571 }
572
573 /**
574 * Spins/yields/blocks until node s is matched or caller gives up.
575 *
576 * @param s the waiting node
577 * @param pred the predecessor of s, or s itself if it has no
578 * predecessor, or null if unknown (the null case does not occur
579 * in any current calls but may in possible future extensions)
580 * @param e the comparison value for checking match
581 * @param how either SYNC or TIMEOUT
582 * @param nanos timeout value
583 * @return matched item, or e if unmatched on interrupt or timeout
584 */
585 private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
586 long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
587 Thread w = Thread.currentThread();
588 int spins = -1; // initialized after first item and cancel checks
589 ThreadLocalRandom randomYields = null; // bound if needed
590
591 for (;;) {
592 Object item = s.item;
593 if (item != e) { // matched
594 assert item != s;
595 s.forgetContents(); // avoid garbage
596 return this.<E>cast(item);
597 }
598 if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
599 s.casItem(e, s)) { // cancel
600 unsplice(pred, s);
601 return e;
602 }
603
604 if (spins < 0) { // establish spins at/near front
605 if ((spins = spinsFor(pred, s.isData)) > 0)
606 randomYields = ThreadLocalRandom.current();
607 }
608 else if (spins > 0) { // spin
609 if (--spins == 0)
610 shortenHeadPath(); // reduce slack before blocking
611 else if (randomYields.nextInt(CHAINED_SPINS) == 0)
612 Thread.yield(); // occasionally yield
613 }
614 else if (s.waiter == null) {
615 s.waiter = w; // request unpark then recheck
616 }
617 else if (how == TIMEOUT) {
618 long now = System.nanoTime();
619 if ((nanos -= now - lastTime) > 0)
620 LockSupport.parkNanos(this, nanos);
621 lastTime = now;
622 }
623 else {
624 LockSupport.park(this);
625 s.waiter = null;
626 spins = -1; // spin if front upon wakeup
627 }
628 }
629 }
630
631 /**
632 * Returns spin/yield value for a node with given predecessor and
633 * data mode. See above for explanation.
634 */
635 private static int spinsFor(Node<?> pred, boolean haveData) {
636 if (MP && pred != null) {
637 if (pred.isData != haveData) // phase change
638 return FRONT_SPINS + CHAINED_SPINS;
639 if (pred.isMatched()) // probably at front
640 return FRONT_SPINS;
641 if (pred.waiter == null) // pred apparently spinning
642 return CHAINED_SPINS;
643 }
644 return 0;
645 }
646
647 /**
648 * Tries (once) to unsplice nodes between head and first unmatched
649 * or trailing node; failing on contention.
650 */
651 private void shortenHeadPath() {
652 Node<E> h, hn, p, q;
653 if ((p = h = head) != null && h.isMatched() &&
654 (q = hn = h.next) != null) {
655 Node<E> n;
656 while ((n = q.next) != q) {
657 if (n == null || !q.isMatched()) {
658 if (hn != q && h.next == hn)
659 h.casNext(hn, q);
660 break;
661 }
662 p = q;
663 q = n;
664 }
665 }
666 }
667
668 /* -------------- Traversal methods -------------- */
669
670 /**
671 * Returns the first unmatched node of the given mode, or null if
672 * none. Used by methods isEmpty, hasWaitingConsumer.
673 */
674 private Node<E> firstOfMode(boolean data) {
675 for (Node<E> p = head; p != null; ) {
676 if (!p.isMatched())
677 return (p.isData == data) ? p : null;
678 Node<E> n = p.next;
679 p = (n != p) ? n : head;
680 }
681 return null;
682 }
683
684 @SuppressWarnings("unchecked")
685 static <E> E cast(Object item) {
686 assert item.getClass() != Node.class;
687 return (E) item;
688 }
689
690 /**
691 * Returns the item in the first unmatched node with isData; or
692 * null if none. Used by peek.
693 */
694 private E firstDataItem() {
695 for (Node<E> p = head; p != null; ) {
696 boolean isData = p.isData;
697 Object item = p.item;
698 if (item != p && (item != null) == isData)
699 return isData ? this.<E>cast(item) : null;
700 Node<E> n = p.next;
701 p = (n != p) ? n : head;
702 }
703 return null;
704 }
705
706 /**
707 * Traverses and counts unmatched nodes of the given mode.
708 * Used by methods size and getWaitingConsumerCount.
709 */
710 private int countOfMode(boolean data) {
711 int count = 0;
712 for (Node<E> p = head; p != null; ) {
713 if (!p.isMatched()) {
714 if (p.isData != data)
715 return 0;
716 if (++count == Integer.MAX_VALUE) // saturated
717 break;
718 }
719 Node<E> n = p.next;
720 if (n != p)
721 p = n;
722 else {
723 count = 0;
724 p = head;
725 }
726 }
727 return count;
728 }
729
730 final class Itr implements Iterator<E> {
731 private Node<E> nextNode; // next node to return item for
732 private E nextItem; // the corresponding item
733 private Node<E> lastRet; // last returned node, to support remove
734
735 /**
736 * Moves to next node after prev, or first node if prev null.
737 */
738 private void advance(Node<E> prev) {
739 lastRet = prev;
740 Node<E> p;
741 if (prev == null || (p = prev.next) == prev)
742 p = head;
743 while (p != null) {
744 Object item = p.item;
745 if (p.isData) {
746 if (item != null && item != p) {
747 nextItem = LinkedTransferQueue.this.<E>cast(item);
748 nextNode = p;
749 return;
750 }
751 }
752 else if (item == null)
753 break;
754 Node<E> n = p.next;
755 p = (n != p) ? n : head;
756 }
757 nextNode = null;
758 }
759
760 Itr() {
761 advance(null);
762 }
763
764 public final boolean hasNext() {
765 return nextNode != null;
766 }
767
768 public final E next() {
769 Node<E> p = nextNode;
770 if (p == null) throw new NoSuchElementException();
771 E e = nextItem;
772 advance(p);
773 return e;
774 }
775
776 public final void remove() {
777 Node<E> p = lastRet;
778 if (p == null) throw new IllegalStateException();
779 lastRet = null;
780 findAndRemoveNode(p);
781 }
782 }
783
784 /* -------------- Removal methods -------------- */
785
786 /**
787 * Unsplices (now or later) the given deleted/cancelled node with
788 * the given predecessor.
789 *
790 * @param pred predecessor of node to be unspliced
791 * @param s the node to be unspliced
792 */
793 private void unsplice(Node<E> pred, Node<E> s) {
794 s.forgetContents(); // clear unneeded fields
795 /*
796 * At any given time, exactly one node on list cannot be
797 * unlinked -- the last inserted node. To accommodate this, if
798 * we cannot unlink s, we save its predecessor as "cleanMe",
799 * processing the previously saved version first. Because only
800 * one node in the list can have a null next, at least one of
801 * node s or the node previously saved can always be
802 * processed, so this always terminates.
803 */
804 if (pred != null && pred != s) {
805 while (pred.next == s) {
806 Node<E> oldpred = (cleanMe == null) ? null : reclean();
807 Node<E> n = s.next;
808 if (n != null) {
809 if (n != s)
810 pred.casNext(s, n);
811 break;
812 }
813 if (oldpred == pred || // Already saved
814 (oldpred == null && casCleanMe(null, pred)))
815 break; // Postpone cleaning
816 }
817 }
818 }
819
820 /**
821 * Tries to unsplice the deleted/cancelled node held in cleanMe
822 * that was previously uncleanable because it was at tail.
823 *
824 * @return current cleanMe node (or null)
825 */
826 private Node<E> reclean() {
827 /*
828 * cleanMe is, or at one time was, predecessor of a cancelled
829 * node s that was the tail so could not be unspliced. If it
830 * is no longer the tail, try to unsplice if necessary and
831 * make cleanMe slot available. This differs from similar
832 * code in unsplice() because we must check that pred still
833 * points to a matched node that can be unspliced -- if not,
834 * we can (must) clear cleanMe without unsplicing. This can
835 * loop only due to contention.
836 */
837 Node<E> pred;
838 while ((pred = cleanMe) != null) {
839 Node<E> s = pred.next;
840 Node<E> n;
841 if (s == null || s == pred || !s.isMatched())
842 casCleanMe(pred, null); // already gone
843 else if ((n = s.next) != null) {
844 if (n != s)
845 pred.casNext(s, n);
846 casCleanMe(pred, null);
847 }
848 else
849 break;
850 }
851 return pred;
852 }
853
854 /**
855 * Main implementation of Iterator.remove(). Find
856 * and unsplice the given node.
857 */
858 final void findAndRemoveNode(Node<E> s) {
859 if (s.tryMatchData()) {
860 Node<E> pred = null;
861 Node<E> p = head;
862 while (p != null) {
863 if (p == s) {
864 unsplice(pred, p);
865 break;
866 }
867 if (!p.isData && !p.isMatched())
868 break;
869 pred = p;
870 if ((p = p.next) == pred) { // stale
871 pred = null;
872 p = head;
873 }
874 }
875 }
876 }
877
878 /**
879 * Main implementation of remove(Object)
880 */
881 private boolean findAndRemove(Object e) {
882 if (e != null) {
883 Node<E> pred = null;
884 Node<E> p = head;
885 while (p != null) {
886 Object item = p.item;
887 if (p.isData) {
888 if (item != null && item != p && e.equals(item) &&
889 p.tryMatchData()) {
890 unsplice(pred, p);
891 return true;
892 }
893 }
894 else if (item == null)
895 break;
896 pred = p;
897 if ((p = p.next) == pred) {
898 pred = null;
899 p = head;
900 }
901 }
902 }
903 return false;
904 }
905
906
907 /**
908 * Creates an initially empty {@code LinkedTransferQueue}.
909 */
910 public LinkedTransferQueue() {
911 }
912
913 /**
914 * Creates a {@code LinkedTransferQueue}
915 * initially containing the elements of the given collection,
916 * added in traversal order of the collection's iterator.
917 *
918 * @param c the collection of elements to initially contain
919 * @throws NullPointerException if the specified collection or any
920 * of its elements are null
921 */
922 public LinkedTransferQueue(Collection<? extends E> c) {
923 this();
924 addAll(c);
925 }
926
927 /**
928 * Inserts the specified element at the tail of this queue.
929 * As the queue is unbounded, this method will never block.
930 *
931 * @throws NullPointerException if the specified element is null
932 */
933 public void put(E e) {
934 xfer(e, true, ASYNC, 0);
935 }
936
937 /**
938 * Inserts the specified element at the tail of this queue.
939 * As the queue is unbounded, this method will never block or
940 * return {@code false}.
941 *
942 * @return {@code true} (as specified by
943 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
944 * @throws NullPointerException if the specified element is null
945 */
946 public boolean offer(E e, long timeout, TimeUnit unit) {
947 xfer(e, true, ASYNC, 0);
948 return true;
949 }
950
951 /**
952 * Inserts the specified element at the tail of this queue.
953 * As the queue is unbounded, this method will never return {@code false}.
954 *
955 * @return {@code true} (as specified by
956 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
957 * @throws NullPointerException if the specified element is null
958 */
959 public boolean offer(E e) {
960 xfer(e, true, ASYNC, 0);
961 return true;
962 }
963
964 /**
965 * Inserts the specified element at the tail of this queue.
966 * As the queue is unbounded, this method will never throw
967 * {@link IllegalStateException} or return {@code false}.
968 *
969 * @return {@code true} (as specified by {@link Collection#add})
970 * @throws NullPointerException if the specified element is null
971 */
972 public boolean add(E e) {
973 xfer(e, true, ASYNC, 0);
974 return true;
975 }
976
977 /**
978 * Transfers the element to a waiting consumer immediately, if possible.
979 *
980 * <p>More precisely, transfers the specified element immediately
981 * if there exists a consumer already waiting to receive it (in
982 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
983 * otherwise returning {@code false} without enqueuing the element.
984 *
985 * @throws NullPointerException if the specified element is null
986 */
987 public boolean tryTransfer(E e) {
988 return xfer(e, true, NOW, 0) == null;
989 }
990
991 /**
992 * Transfers the element to a consumer, waiting if necessary to do so.
993 *
994 * <p>More precisely, transfers the specified element immediately
995 * if there exists a consumer already waiting to receive it (in
996 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
997 * else inserts the specified element at the tail of this queue
998 * and waits until the element is received by a consumer.
999 *
1000 * @throws NullPointerException if the specified element is null
1001 */
1002 public void transfer(E e) throws InterruptedException {
1003 if (xfer(e, true, SYNC, 0) != null) {
1004 Thread.interrupted(); // failure possible only due to interrupt
1005 throw new InterruptedException();
1006 }
1007 }
1008
1009 /**
1010 * Transfers the element to a consumer if it is possible to do so
1011 * before the timeout elapses.
1012 *
1013 * <p>More precisely, transfers the specified element immediately
1014 * if there exists a consumer already waiting to receive it (in
1015 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1016 * else inserts the specified element at the tail of this queue
1017 * and waits until the element is received by a consumer,
1018 * returning {@code false} if the specified wait time elapses
1019 * before the element can be transferred.
1020 *
1021 * @throws NullPointerException if the specified element is null
1022 */
1023 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1024 throws InterruptedException {
1025 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1026 return true;
1027 if (!Thread.interrupted())
1028 return false;
1029 throw new InterruptedException();
1030 }
1031
1032 public E take() throws InterruptedException {
1033 E e = xfer(null, false, SYNC, 0);
1034 if (e != null)
1035 return e;
1036 Thread.interrupted();
1037 throw new InterruptedException();
1038 }
1039
1040 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1041 E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1042 if (e != null || !Thread.interrupted())
1043 return e;
1044 throw new InterruptedException();
1045 }
1046
1047 public E poll() {
1048 return xfer(null, false, NOW, 0);
1049 }
1050
1051 /**
1052 * @throws NullPointerException {@inheritDoc}
1053 * @throws IllegalArgumentException {@inheritDoc}
1054 */
1055 public int drainTo(Collection<? super E> c) {
1056 if (c == null)
1057 throw new NullPointerException();
1058 if (c == this)
1059 throw new IllegalArgumentException();
1060 int n = 0;
1061 E e;
1062 while ( (e = poll()) != null) {
1063 c.add(e);
1064 ++n;
1065 }
1066 return n;
1067 }
1068
1069 /**
1070 * @throws NullPointerException {@inheritDoc}
1071 * @throws IllegalArgumentException {@inheritDoc}
1072 */
1073 public int drainTo(Collection<? super E> c, int maxElements) {
1074 if (c == null)
1075 throw new NullPointerException();
1076 if (c == this)
1077 throw new IllegalArgumentException();
1078 int n = 0;
1079 E e;
1080 while (n < maxElements && (e = poll()) != null) {
1081 c.add(e);
1082 ++n;
1083 }
1084 return n;
1085 }
1086
1087 /**
1088 * Returns an iterator over the elements in this queue in proper
1089 * sequence, from head to tail.
1090 *
1091 * <p>The returned iterator is a "weakly consistent" iterator that
1092 * will never throw
1093 * {@link ConcurrentModificationException ConcurrentModificationException},
1094 * and guarantees to traverse elements as they existed upon
1095 * construction of the iterator, and may (but is not guaranteed
1096 * to) reflect any modifications subsequent to construction.
1097 *
1098 * @return an iterator over the elements in this queue in proper sequence
1099 */
1100 public Iterator<E> iterator() {
1101 return new Itr();
1102 }
1103
1104 public E peek() {
1105 return firstDataItem();
1106 }
1107
1108 /**
1109 * Returns {@code true} if this queue contains no elements.
1110 *
1111 * @return {@code true} if this queue contains no elements
1112 */
1113 public boolean isEmpty() {
1114 return firstOfMode(true) == null;
1115 }
1116
1117 public boolean hasWaitingConsumer() {
1118 return firstOfMode(false) != null;
1119 }
1120
1121 /**
1122 * Returns the number of elements in this queue. If this queue
1123 * contains more than {@code Integer.MAX_VALUE} elements, returns
1124 * {@code Integer.MAX_VALUE}.
1125 *
1126 * <p>Beware that, unlike in most collections, this method is
1127 * <em>NOT</em> a constant-time operation. Because of the
1128 * asynchronous nature of these queues, determining the current
1129 * number of elements requires an O(n) traversal.
1130 *
1131 * @return the number of elements in this queue
1132 */
1133 public int size() {
1134 return countOfMode(true);
1135 }
1136
1137 public int getWaitingConsumerCount() {
1138 return countOfMode(false);
1139 }
1140
1141 /**
1142 * Removes a single instance of the specified element from this queue,
1143 * if it is present. More formally, removes an element {@code e} such
1144 * that {@code o.equals(e)}, if this queue contains one or more such
1145 * elements.
1146 * Returns {@code true} if this queue contained the specified element
1147 * (or equivalently, if this queue changed as a result of the call).
1148 *
1149 * @param o element to be removed from this queue, if present
1150 * @return {@code true} if this queue changed as a result of the call
1151 */
1152 public boolean remove(Object o) {
1153 return findAndRemove(o);
1154 }
1155
1156 /**
1157 * Always returns {@code Integer.MAX_VALUE} because a
1158 * {@code LinkedTransferQueue} is not capacity constrained.
1159 *
1160 * @return {@code Integer.MAX_VALUE} (as specified by
1161 * {@link BlockingQueue#remainingCapacity()})
1162 */
1163 public int remainingCapacity() {
1164 return Integer.MAX_VALUE;
1165 }
1166
1167 /**
1168 * Saves the state to a stream (that is, serializes it).
1169 *
1170 * @serialData All of the elements (each an {@code E}) in
1171 * the proper order, followed by a null
1172 * @param s the stream
1173 */
1174 private void writeObject(java.io.ObjectOutputStream s)
1175 throws java.io.IOException {
1176 s.defaultWriteObject();
1177 for (E e : this)
1178 s.writeObject(e);
1179 // Use trailing null as sentinel
1180 s.writeObject(null);
1181 }
1182
1183 /**
1184 * Reconstitutes the Queue instance from a stream (that is,
1185 * deserializes it).
1186 *
1187 * @param s the stream
1188 */
1189 private void readObject(java.io.ObjectInputStream s)
1190 throws java.io.IOException, ClassNotFoundException {
1191 s.defaultReadObject();
1192 for (;;) {
1193 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1194 if (item == null)
1195 break;
1196 else
1197 offer(item);
1198 }
1199 }
1200
1201 // Unsafe mechanics
1202
1203 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1204 private static final long headOffset =
1205 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1206 private static final long tailOffset =
1207 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1208 private static final long cleanMeOffset =
1209 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1210
1211 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1212 String field, Class<?> klazz) {
1213 try {
1214 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1215 } catch (NoSuchFieldException e) {
1216 // Convert Exception to corresponding Error
1217 NoSuchFieldError error = new NoSuchFieldError(field);
1218 error.initCause(e);
1219 throw error;
1220 }
1221 }
1222
1223 }