ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.30
Committed: Fri Nov 19 08:10:43 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.29: +1 -1 lines
Log Message:
coding style

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.17 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.10 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33     * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38     * phase number starts at zero, and advances when all parties arrive
39     * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74 jsr166 1.1 *
75     * </ul>
76     *
77 jsr166 1.10 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78     * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82     * onAdvance} returns {@code true}. As illustrated below, when
83     * phasers control actions with a fixed number of iterations, it is
84 jsr166 1.7 * often convenient to override this method to cause termination when
85     * the current phase number reaches a threshold. Method {@link
86     * #forceTermination} is also available to abruptly release waiting
87     * threads and allow them to terminate.
88 jsr166 1.1 *
89 jsr166 1.10 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90     * in tree structures) to reduce contention. Phasers with large
91 jsr166 1.1 * numbers of parties that would otherwise experience heavy
92 jsr166 1.10 * synchronization contention costs may instead be set up so that
93     * groups of sub-phasers share a common parent. This may greatly
94     * increase throughput even though it incurs greater per-operation
95     * overhead.
96     *
97     * <p><b>Monitoring.</b> While synchronization methods may be invoked
98     * only by registered parties, the current state of a phaser may be
99     * monitored by any caller. At any given moment there are {@link
100     * #getRegisteredParties} parties in total, of which {@link
101     * #getArrivedParties} have arrived at the current phase ({@link
102     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103     * parties arrive, the phase advances. The values returned by these
104     * methods may reflect transient states and so are not in general
105     * useful for synchronization control. Method {@link #toString}
106     * returns snapshots of these state queries in a form convenient for
107     * informal monitoring.
108 jsr166 1.1 *
109     * <p><b>Sample usages:</b>
110     *
111 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
113     * The typical idiom is for the method setting this up to first
114     * register, then start the actions, then deregister, as in:
115 jsr166 1.1 *
116     * <pre> {@code
117 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
118 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
119 jsr166 1.7 * // create and start threads
120 jsr166 1.8 * for (Runnable task : tasks) {
121 jsr166 1.1 * phaser.register();
122     * new Thread() {
123     * public void run() {
124     * phaser.arriveAndAwaitAdvance(); // await all creation
125 jsr166 1.8 * task.run();
126 jsr166 1.1 * }
127     * }.start();
128     * }
129     *
130 jsr166 1.7 * // allow threads to start and deregister self
131     * phaser.arriveAndDeregister();
132 jsr166 1.1 * }}</pre>
133     *
134     * <p>One way to cause a set of threads to repeatedly perform actions
135     * for a given number of iterations is to override {@code onAdvance}:
136     *
137     * <pre> {@code
138 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
139 jsr166 1.1 * final Phaser phaser = new Phaser() {
140 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
141 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
142     * }
143     * };
144     * phaser.register();
145 jsr166 1.10 * for (final Runnable task : tasks) {
146 jsr166 1.1 * phaser.register();
147     * new Thread() {
148     * public void run() {
149     * do {
150 jsr166 1.8 * task.run();
151 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
152 jsr166 1.10 * } while (!phaser.isTerminated());
153 jsr166 1.1 * }
154     * }.start();
155     * }
156     * phaser.arriveAndDeregister(); // deregister self, don't wait
157     * }}</pre>
158     *
159 jsr166 1.10 * If the main task must later await termination, it
160     * may re-register and then execute a similar loop:
161     * <pre> {@code
162     * // ...
163     * phaser.register();
164     * while (!phaser.isTerminated())
165     * phaser.arriveAndAwaitAdvance();}</pre>
166     *
167     * <p>Related constructions may be used to await particular phase numbers
168     * in contexts where you are sure that the phase will never wrap around
169     * {@code Integer.MAX_VALUE}. For example:
170     *
171     * <pre> {@code
172     * void awaitPhase(Phaser phaser, int phase) {
173     * int p = phaser.register(); // assumes caller not already registered
174     * while (p < phase) {
175     * if (phaser.isTerminated())
176     * // ... deal with unexpected termination
177     * else
178     * p = phaser.arriveAndAwaitAdvance();
179     * }
180     * phaser.arriveAndDeregister();
181     * }}</pre>
182     *
183     *
184 jsr166 1.5 * <p>To create a set of tasks using a tree of phasers,
185 jsr166 1.1 * you could use code of the following form, assuming a
186 jsr166 1.4 * Task class with a constructor accepting a phaser that
187 jsr166 1.12 * it registers with upon construction:
188 jsr166 1.10 *
189 jsr166 1.1 * <pre> {@code
190 jsr166 1.10 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191     * if (hi - lo > TASKS_PER_PHASER) {
192     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193     * int j = Math.min(i + TASKS_PER_PHASER, hi);
194     * build(actions, i, j, new Phaser(ph));
195 jsr166 1.1 * }
196     * } else {
197     * for (int i = lo; i < hi; ++i)
198 jsr166 1.10 * actions[i] = new Task(ph);
199     * // assumes new Task(ph) performs ph.register()
200 jsr166 1.1 * }
201     * }
202     * // .. initially called, for n tasks via
203     * build(new Task[n], 0, n, new Phaser());}</pre>
204     *
205     * The best value of {@code TASKS_PER_PHASER} depends mainly on
206     * expected barrier synchronization rates. A value as low as four may
207     * be appropriate for extremely small per-barrier task bodies (thus
208     * high rates), or up to hundreds for extremely large ones.
209     *
210     * <p><b>Implementation notes</b>: This implementation restricts the
211     * maximum number of parties to 65535. Attempts to register additional
212 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
213 jsr166 1.1 * should create tiered phasers to accommodate arbitrarily large sets
214     * of participants.
215     *
216     * @since 1.7
217     * @author Doug Lea
218     */
219     public class Phaser {
220     /*
221     * This class implements an extension of X10 "clocks". Thanks to
222     * Vijay Saraswat for the idea, and to Vivek Sarkar for
223     * enhancements to extend functionality.
224     */
225    
226     /**
227     * Barrier state representation. Conceptually, a barrier contains
228     * four values:
229     *
230 dl 1.17 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231     * * parties -- the number of parties to wait (bits 16-31)
232     * * phase -- the generation of the barrier (bits 32-62)
233     * * terminated -- set if barrier is terminated (bit 63 / sign)
234 jsr166 1.1 *
235     * However, to efficiently maintain atomicity, these values are
236     * packed into a single (atomic) long. Termination uses the sign
237     * bit of 32 bit representation of phase, so phase is set to -1 on
238     * termination. Good performance relies on keeping state decoding
239     * and encoding simple, and keeping race windows short.
240     */
241     private volatile long state;
242    
243 dl 1.24 private static final int MAX_PARTIES = 0xffff;
244 dl 1.17 private static final int MAX_PHASE = 0x7fffffff;
245     private static final int PARTIES_SHIFT = 16;
246     private static final int PHASE_SHIFT = 32;
247 dl 1.24 private static final int UNARRIVED_MASK = 0xffff;
248     private static final int PARTIES_MASK = 0xffff0000;
249     private static final long LPARTIES_MASK = 0xffff0000L; // long version
250 dl 1.17 private static final long ONE_ARRIVAL = 1L;
251     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
252     private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
253    
254     // The following unpacking methods are usually manually inlined
255 jsr166 1.1
256     private static int unarrivedOf(long s) {
257 jsr166 1.25 return (int)s & UNARRIVED_MASK;
258 jsr166 1.1 }
259    
260     private static int partiesOf(long s) {
261 jsr166 1.25 return (int)s >>> PARTIES_SHIFT;
262 jsr166 1.1 }
263    
264     private static int phaseOf(long s) {
265 dl 1.17 return (int) (s >>> PHASE_SHIFT);
266 jsr166 1.1 }
267    
268     private static int arrivedOf(long s) {
269     return partiesOf(s) - unarrivedOf(s);
270     }
271    
272     /**
273     * The parent of this phaser, or null if none
274     */
275     private final Phaser parent;
276    
277     /**
278 jsr166 1.4 * The root of phaser tree. Equals this if not in a tree. Used to
279 jsr166 1.1 * support faster state push-down.
280     */
281     private final Phaser root;
282    
283     /**
284     * Heads of Treiber stacks for waiting threads. To eliminate
285 dl 1.14 * contention when releasing some threads while adding others, we
286 jsr166 1.1 * use two of them, alternating across even and odd phases.
287 dl 1.14 * Subphasers share queues with root to speed up releases.
288 jsr166 1.1 */
289 dl 1.15 private final AtomicReference<QNode> evenQ;
290     private final AtomicReference<QNode> oddQ;
291 jsr166 1.1
292     private AtomicReference<QNode> queueFor(int phase) {
293 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
294 jsr166 1.1 }
295    
296     /**
297 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
298     * Manually tuned to speed up and minimize race windows for the
299     * common case of just decrementing unarrived field.
300     *
301     * @param adj - adjustment to apply to state -- either
302     * ONE_ARRIVAL (for arrive) or
303     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304     */
305     private int doArrive(long adj) {
306 dl 1.21 for (;;) {
307 jsr166 1.28 long s = state;
308     int phase = (int)(s >>> PHASE_SHIFT);
309     if (phase < 0)
310 dl 1.21 return phase;
311 jsr166 1.28 int unarrived = (int)s & UNARRIVED_MASK;
312     if (unarrived == 0)
313 dl 1.21 checkBadArrive(s);
314 dl 1.24 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
315 dl 1.21 if (unarrived == 1) {
316 dl 1.24 long p = s & LPARTIES_MASK; // unshifted parties field
317 dl 1.21 long lu = p >>> PARTIES_SHIFT;
318     int u = (int)lu;
319     int nextPhase = (phase + 1) & MAX_PHASE;
320     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321 jsr166 1.28 final Phaser parent = this.parent;
322     if (parent == null) {
323 dl 1.24 if (onAdvance(phase, u))
324     next |= TERMINATION_PHASE; // obliterate phase
325     UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
326 dl 1.21 releaseWaiters(phase);
327     }
328     else {
329 jsr166 1.28 parent.doArrive((u == 0) ?
330     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
331     if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
332 dl 1.21 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
333     !UNSAFE.compareAndSwapLong(this, stateOffset,
334     s, next)))
335     reconcileState();
336 dl 1.17 }
337     }
338 dl 1.21 return phase;
339 dl 1.17 }
340     }
341     }
342    
343     /**
344 dl 1.21 * Rechecks state and throws bounds exceptions on arrival -- called
345     * only if unarrived is apparently zero.
346 dl 1.17 */
347 dl 1.21 private void checkBadArrive(long s) {
348     if (reconcileState() == s)
349     throw new IllegalStateException
350     ("Attempted arrival of unregistered party for " +
351     stateToString(s));
352 dl 1.17 }
353    
354     /**
355     * Implementation of register, bulkRegister
356     *
357     * @param registrations number to add to both parties and unarrived fields
358 jsr166 1.1 */
359 dl 1.17 private int doRegister(int registrations) {
360 jsr166 1.27 // assert registrations > 0;
361 jsr166 1.26 // adjustment to state
362     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
363     final Phaser parent = this.parent;
364 dl 1.21 for (;;) {
365 jsr166 1.26 long s = (parent == null) ? state : reconcileState();
366     int phase = (int)(s >>> PHASE_SHIFT);
367     if (phase < 0)
368 dl 1.21 return phase;
369 jsr166 1.26 int parties = (int)s >>> PARTIES_SHIFT;
370     if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
371 dl 1.17 internalAwaitAdvance(phase, null); // wait for onAdvance
372 jsr166 1.27 else if (registrations > MAX_PARTIES - parties)
373 dl 1.21 throw new IllegalStateException(badRegister(s));
374 dl 1.17 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
375 dl 1.21 return phase;
376 dl 1.17 }
377     }
378    
379     /**
380 jsr166 1.22 * Returns message string for out of bounds exceptions on registration.
381 dl 1.17 */
382 dl 1.21 private String badRegister(long s) {
383 jsr166 1.20 return "Attempt to register more than " +
384 dl 1.24 MAX_PARTIES + " parties for " + stateToString(s);
385 jsr166 1.1 }
386    
387     /**
388 jsr166 1.22 * Recursively resolves lagged phase propagation from root if necessary.
389 jsr166 1.1 */
390     private long reconcileState() {
391 dl 1.14 Phaser par = parent;
392 dl 1.17 if (par == null)
393     return state;
394     Phaser rt = root;
395 dl 1.21 for (;;) {
396     long s, u;
397     int phase, rPhase, pPhase;
398     if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
399     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
400     return s;
401     long pState = par.parent == null? par.state : par.reconcileState();
402     if (state == s) {
403 jsr166 1.25 if ((rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) &&
404 dl 1.21 ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
405     pPhase == ((phase + 1) & MAX_PHASE)))
406     UNSAFE.compareAndSwapLong
407     (this, stateOffset, s,
408     (((long) pPhase) << PHASE_SHIFT) |
409 dl 1.24 (u = s & LPARTIES_MASK) |
410 dl 1.21 (u >>> PARTIES_SHIFT)); // reset unarrived to parties
411     else
412     releaseWaiters(phase); // help release others
413 jsr166 1.1 }
414     }
415     }
416    
417     /**
418 jsr166 1.4 * Creates a new phaser without any initially registered parties,
419 jsr166 1.1 * initial phase number 0, and no parent. Any thread using this
420 jsr166 1.4 * phaser will need to first register for it.
421 jsr166 1.1 */
422     public Phaser() {
423 dl 1.15 this(null, 0);
424 jsr166 1.1 }
425    
426     /**
427 jsr166 1.12 * Creates a new phaser with the given number of registered
428 jsr166 1.1 * unarrived parties, initial phase number 0, and no parent.
429     *
430     * @param parties the number of parties required to trip barrier
431     * @throws IllegalArgumentException if parties less than zero
432     * or greater than the maximum number of parties supported
433     */
434     public Phaser(int parties) {
435     this(null, parties);
436     }
437    
438     /**
439 jsr166 1.4 * Creates a new phaser with the given parent, without any
440 jsr166 1.1 * initially registered parties. If parent is non-null this phaser
441     * is registered with the parent and its initial phase number is
442     * the same as that of parent phaser.
443     *
444     * @param parent the parent phaser
445     */
446     public Phaser(Phaser parent) {
447 dl 1.15 this(parent, 0);
448 jsr166 1.1 }
449    
450     /**
451 jsr166 1.12 * Creates a new phaser with the given parent and number of
452 jsr166 1.1 * registered unarrived parties. If parent is non-null, this phaser
453     * is registered with the parent and its initial phase number is
454     * the same as that of parent phaser.
455     *
456     * @param parent the parent phaser
457     * @param parties the number of parties required to trip barrier
458     * @throws IllegalArgumentException if parties less than zero
459     * or greater than the maximum number of parties supported
460     */
461     public Phaser(Phaser parent, int parties) {
462 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
463 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
464 dl 1.15 int phase;
465 jsr166 1.1 this.parent = parent;
466     if (parent != null) {
467 dl 1.15 Phaser r = parent.root;
468     this.root = r;
469     this.evenQ = r.evenQ;
470     this.oddQ = r.oddQ;
471 jsr166 1.1 phase = parent.register();
472     }
473 dl 1.15 else {
474 jsr166 1.1 this.root = this;
475 dl 1.15 this.evenQ = new AtomicReference<QNode>();
476     this.oddQ = new AtomicReference<QNode>();
477     phase = 0;
478     }
479 dl 1.17 long p = (long)parties;
480 dl 1.24 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
481 jsr166 1.1 }
482    
483     /**
484     * Adds a new unarrived party to this phaser.
485 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
486 dl 1.15 * this method may wait until its completion before registering.
487 jsr166 1.1 *
488 jsr166 1.10 * @return the arrival phase number to which this registration applied
489 jsr166 1.1 * @throws IllegalStateException if attempting to register more
490     * than the maximum supported number of parties
491     */
492     public int register() {
493     return doRegister(1);
494     }
495    
496     /**
497     * Adds the given number of new unarrived parties to this phaser.
498 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
499 dl 1.15 * this method may wait until its completion before registering.
500 jsr166 1.1 *
501 jsr166 1.12 * @param parties the number of additional parties required to trip barrier
502 jsr166 1.10 * @return the arrival phase number to which this registration applied
503 jsr166 1.1 * @throws IllegalStateException if attempting to register more
504     * than the maximum supported number of parties
505 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
506 jsr166 1.1 */
507     public int bulkRegister(int parties) {
508     if (parties < 0)
509     throw new IllegalArgumentException();
510     if (parties == 0)
511     return getPhase();
512     return doRegister(parties);
513     }
514    
515     /**
516     * Arrives at the barrier, but does not wait for others. (You can
517 jsr166 1.10 * in turn wait for others via {@link #awaitAdvance}). It is an
518     * unenforced usage error for an unregistered party to invoke this
519     * method.
520 jsr166 1.1 *
521 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
522 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
523     * of unarrived parties would become negative
524     */
525     public int arrive() {
526 dl 1.17 return doArrive(ONE_ARRIVAL);
527 jsr166 1.1 }
528    
529     /**
530 jsr166 1.7 * Arrives at the barrier and deregisters from it without waiting
531     * for others. Deregistration reduces the number of parties
532 jsr166 1.1 * required to trip the barrier in future phases. If this phaser
533     * has a parent, and deregistration causes this phaser to have
534 jsr166 1.7 * zero parties, this phaser also arrives at and is deregistered
535 jsr166 1.10 * from its parent. It is an unenforced usage error for an
536     * unregistered party to invoke this method.
537 jsr166 1.1 *
538 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
539 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
540     * of registered or unarrived parties would become negative
541     */
542     public int arriveAndDeregister() {
543 dl 1.17 return doArrive(ONE_ARRIVAL|ONE_PARTY);
544 jsr166 1.1 }
545    
546     /**
547     * Arrives at the barrier and awaits others. Equivalent in effect
548 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
549     * interruption or timeout, you can arrange this with an analogous
550 jsr166 1.12 * construction using one of the other forms of the {@code
551     * awaitAdvance} method. If instead you need to deregister upon
552     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553     * usage error for an unregistered party to invoke this method.
554 jsr166 1.1 *
555 jsr166 1.10 * @return the arrival phase number, or a negative number if terminated
556 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
557     * of unarrived parties would become negative
558     */
559     public int arriveAndAwaitAdvance() {
560     return awaitAdvance(arrive());
561     }
562    
563     /**
564 jsr166 1.7 * Awaits the phase of the barrier to advance from the given phase
565 jsr166 1.8 * value, returning immediately if the current phase of the
566     * barrier is not equal to the given phase value or this barrier
567 dl 1.15 * is terminated.
568 jsr166 1.1 *
569 jsr166 1.10 * @param phase an arrival phase number, or negative value if
570     * terminated; this argument is normally the value returned by a
571     * previous call to {@code arrive} or its variants
572     * @return the next arrival phase number, or a negative value
573     * if terminated or argument is negative
574 jsr166 1.1 */
575     public int awaitAdvance(int phase) {
576     if (phase < 0)
577     return phase;
578 jsr166 1.29 long s = (parent == null) ? state : reconcileState();
579     int p = (int)(s >>> PHASE_SHIFT);
580     return (p != phase) ? p : internalAwaitAdvance(phase, null);
581 jsr166 1.1 }
582    
583     /**
584 jsr166 1.8 * Awaits the phase of the barrier to advance from the given phase
585 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
586     * while waiting, or returning immediately if the current phase of
587     * the barrier is not equal to the given phase value or this
588 dl 1.15 * barrier is terminated.
589 jsr166 1.10 *
590     * @param phase an arrival phase number, or negative value if
591     * terminated; this argument is normally the value returned by a
592     * previous call to {@code arrive} or its variants
593     * @return the next arrival phase number, or a negative value
594     * if terminated or argument is negative
595 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
596     */
597     public int awaitAdvanceInterruptibly(int phase)
598     throws InterruptedException {
599     if (phase < 0)
600     return phase;
601 jsr166 1.29 long s = (parent == null) ? state : reconcileState();
602     int p = (int)(s >>> PHASE_SHIFT);
603     if (p == phase) {
604 dl 1.24 QNode node = new QNode(this, phase, true, false, 0L);
605     p = internalAwaitAdvance(phase, node);
606     if (node.wasInterrupted)
607     throw new InterruptedException();
608     }
609     return p;
610 jsr166 1.1 }
611    
612     /**
613 jsr166 1.8 * Awaits the phase of the barrier to advance from the given phase
614 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
615     * InterruptedException} if interrupted while waiting, or
616     * returning immediately if the current phase of the barrier is
617     * not equal to the given phase value or this barrier is
618 dl 1.15 * terminated.
619 jsr166 1.10 *
620     * @param phase an arrival phase number, or negative value if
621     * terminated; this argument is normally the value returned by a
622     * previous call to {@code arrive} or its variants
623 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
624     * {@code unit}
625     * @param unit a {@code TimeUnit} determining how to interpret the
626     * {@code timeout} parameter
627 jsr166 1.10 * @return the next arrival phase number, or a negative value
628     * if terminated or argument is negative
629 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
630     * @throws TimeoutException if timed out while waiting
631     */
632     public int awaitAdvanceInterruptibly(int phase,
633     long timeout, TimeUnit unit)
634     throws InterruptedException, TimeoutException {
635     if (phase < 0)
636     return phase;
637 jsr166 1.29 long s = (parent == null) ? state : reconcileState();
638     int p = (int)(s >>> PHASE_SHIFT);
639     if (p == phase) {
640     long nanos = unit.toNanos(timeout);
641 dl 1.24 QNode node = new QNode(this, phase, true, true, nanos);
642     p = internalAwaitAdvance(phase, node);
643     if (node.wasInterrupted)
644     throw new InterruptedException();
645     else if (p == phase)
646     throw new TimeoutException();
647     }
648     return p;
649 jsr166 1.1 }
650    
651     /**
652 jsr166 1.23 * Forces this barrier to enter termination state. Counts of
653     * arrived and registered parties are unaffected. If this phaser
654     * is a member of a tiered set of phasers, then all of the phasers
655     * in the set are terminated. If this phaser is already
656     * terminated, this method has no effect. This method may be
657     * useful for coordinating recovery after one or more tasks
658     * encounter unexpected exceptions.
659 jsr166 1.1 */
660     public void forceTermination() {
661 jsr166 1.23 // Only need to change root state
662     final Phaser root = this.root;
663 dl 1.14 long s;
664 jsr166 1.23 while ((s = root.state) >= 0) {
665     if (UNSAFE.compareAndSwapLong(root, stateOffset,
666     s, s | TERMINATION_PHASE)) {
667     releaseWaiters(0); // signal all threads
668     releaseWaiters(1);
669     return;
670     }
671     }
672 jsr166 1.1 }
673    
674     /**
675     * Returns the current phase number. The maximum phase number is
676     * {@code Integer.MAX_VALUE}, after which it restarts at
677     * zero. Upon termination, the phase number is negative.
678     *
679     * @return the phase number, or a negative value if terminated
680     */
681     public final int getPhase() {
682 dl 1.21 return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
683 jsr166 1.1 }
684    
685     /**
686     * Returns the number of parties registered at this barrier.
687     *
688     * @return the number of parties
689     */
690     public int getRegisteredParties() {
691 dl 1.21 return partiesOf(parent==null? state : reconcileState());
692 jsr166 1.1 }
693    
694     /**
695 jsr166 1.10 * Returns the number of registered parties that have arrived at
696     * the current phase of this barrier.
697 jsr166 1.1 *
698     * @return the number of arrived parties
699     */
700     public int getArrivedParties() {
701 dl 1.21 return arrivedOf(parent==null? state : reconcileState());
702 jsr166 1.1 }
703    
704     /**
705     * Returns the number of registered parties that have not yet
706     * arrived at the current phase of this barrier.
707     *
708     * @return the number of unarrived parties
709     */
710     public int getUnarrivedParties() {
711 dl 1.21 return unarrivedOf(parent==null? state : reconcileState());
712 jsr166 1.1 }
713    
714     /**
715 jsr166 1.4 * Returns the parent of this phaser, or {@code null} if none.
716 jsr166 1.1 *
717 jsr166 1.4 * @return the parent of this phaser, or {@code null} if none
718 jsr166 1.1 */
719     public Phaser getParent() {
720     return parent;
721     }
722    
723     /**
724     * Returns the root ancestor of this phaser, which is the same as
725     * this phaser if it has no parent.
726     *
727     * @return the root ancestor of this phaser
728     */
729     public Phaser getRoot() {
730     return root;
731     }
732    
733     /**
734     * Returns {@code true} if this barrier has been terminated.
735     *
736     * @return {@code true} if this barrier has been terminated
737     */
738     public boolean isTerminated() {
739 dl 1.17 return (parent == null? state : reconcileState()) < 0;
740 jsr166 1.1 }
741    
742     /**
743 jsr166 1.10 * Overridable method to perform an action upon impending phase
744     * advance, and to control termination. This method is invoked
745     * upon arrival of the party tripping the barrier (when all other
746     * waiting parties are dormant). If this method returns {@code
747     * true}, then, rather than advance the phase number, this barrier
748     * will be set to a final termination state, and subsequent calls
749     * to {@link #isTerminated} will return true. Any (unchecked)
750     * Exception or Error thrown by an invocation of this method is
751     * propagated to the party attempting to trip the barrier, in
752     * which case no advance occurs.
753     *
754     * <p>The arguments to this method provide the state of the phaser
755 dl 1.17 * prevailing for the current transition. The effects of invoking
756     * arrival, registration, and waiting methods on this Phaser from
757 dl 1.15 * within {@code onAdvance} are unspecified and should not be
758 dl 1.17 * relied on.
759     *
760     * <p>If this Phaser is a member of a tiered set of Phasers, then
761     * {@code onAdvance} is invoked only for its root Phaser on each
762     * advance.
763 jsr166 1.1 *
764 jsr166 1.5 * <p>The default version returns {@code true} when the number of
765 jsr166 1.1 * registered parties is zero. Normally, overrides that arrange
766     * termination for other reasons should also preserve this
767     * property.
768     *
769     * @param phase the phase number on entering the barrier
770     * @param registeredParties the current number of registered parties
771     * @return {@code true} if this barrier should terminate
772     */
773     protected boolean onAdvance(int phase, int registeredParties) {
774     return registeredParties <= 0;
775     }
776    
777     /**
778 dl 1.21 * Returns a string identifying this phaser, as well as its
779     * state. The state, in brackets, includes the String {@code
780     * "phase = "} followed by the phase number, {@code "parties = "}
781     * followed by the number of registered parties, and {@code
782     * "arrived = "} followed by the number of arrived parties.
783 jsr166 1.1 *
784     * @return a string identifying this barrier, as well as its state
785     */
786     public String toString() {
787 dl 1.21 return stateToString(reconcileState());
788     }
789    
790     /**
791     * Implementation of toString and string-based error messages
792     */
793     private String stateToString(long s) {
794 jsr166 1.1 return super.toString() +
795     "[phase = " + phaseOf(s) +
796     " parties = " + partiesOf(s) +
797     " arrived = " + arrivedOf(s) + "]";
798     }
799    
800 dl 1.21 // Waiting mechanics
801    
802 jsr166 1.1 /**
803 jsr166 1.30 * Removes and signals threads from queue for phase.
804 jsr166 1.1 */
805     private void releaseWaiters(int phase) {
806     AtomicReference<QNode> head = queueFor(phase);
807     QNode q;
808 dl 1.17 int p;
809     while ((q = head.get()) != null &&
810     ((p = q.phase) == phase ||
811     (int)(root.state >>> PHASE_SHIFT) != p)) {
812 jsr166 1.1 if (head.compareAndSet(q, q.next))
813     q.signal();
814     }
815     }
816    
817     /**
818     * Tries to enqueue given node in the appropriate wait queue.
819     *
820     * @return true if successful
821     */
822 dl 1.17 private boolean tryEnqueue(int phase, QNode node) {
823     releaseWaiters(phase-1); // ensure old queue clean
824     AtomicReference<QNode> head = queueFor(phase);
825     QNode q = head.get();
826     return ((q == null || q.phase == phase) &&
827     (int)(root.state >>> PHASE_SHIFT) == phase &&
828     head.compareAndSet(node.next = q, node));
829 jsr166 1.1 }
830    
831 dl 1.17 /** The number of CPUs, for spin control */
832     private static final int NCPU = Runtime.getRuntime().availableProcessors();
833    
834 jsr166 1.1 /**
835 dl 1.17 * The number of times to spin before blocking while waiting for
836     * advance, per arrival while waiting. On multiprocessors, fully
837     * blocking and waking up a large number of threads all at once is
838     * usually a very slow process, so we use rechargeable spins to
839     * avoid it when threads regularly arrive: When a thread in
840     * internalAwaitAdvance notices another arrival before blocking,
841     * and there appear to be enough CPUs available, it spins
842 dl 1.24 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
843     * uniprocessors, there is at least one intervening Thread.yield
844     * before blocking. The value trades off good-citizenship vs big
845     * unnecessary slowdowns.
846 dl 1.15 */
847 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
848 dl 1.15
849     /**
850 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
851 jsr166 1.1 *
852 dl 1.17 * @param phase current phase
853 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
854 dl 1.17 * if null, denotes noninterruptible wait
855 jsr166 1.1 * @return current phase
856     */
857 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
858     Phaser current = this; // to eventually wait at root if tiered
859 dl 1.21 boolean queued = false; // true when node is enqueued
860     int lastUnarrived = -1; // to increase spins upon change
861 dl 1.17 int spins = SPINS_PER_ARRIVAL;
862 dl 1.21 for (;;) {
863     int p, unarrived;
864     Phaser par;
865     long s = current.state;
866     if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
867     if (node != null)
868     node.onRelease();
869     releaseWaiters(phase);
870     return p;
871     }
872 jsr166 1.25 else if ((unarrived = (int)s & UNARRIVED_MASK) == 0 &&
873 dl 1.24 (par = current.parent) != null) {
874     current = par; // if all arrived, use parent
875     par = par.parent;
876     lastUnarrived = -1;
877     }
878     else if (unarrived != lastUnarrived) {
879 dl 1.17 if ((lastUnarrived = unarrived) < NCPU)
880     spins += SPINS_PER_ARRIVAL;
881     }
882 dl 1.24 else if (spins > 0) {
883     if (--spins == (SPINS_PER_ARRIVAL >>> 1))
884     Thread.yield(); // yield midway through spin
885 dl 1.15 }
886 dl 1.21 else if (node == null) // must be noninterruptible
887 dl 1.17 node = new QNode(this, phase, false, false, 0L);
888 dl 1.21 else if (node.isReleasable()) {
889     if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
890     return phase; // aborted
891     }
892 jsr166 1.1 else if (!queued)
893 dl 1.17 queued = tryEnqueue(phase, node);
894     else {
895     try {
896     ForkJoinPool.managedBlock(node);
897     } catch (InterruptedException ie) {
898     node.wasInterrupted = true;
899     }
900     }
901     }
902 jsr166 1.1 }
903    
904     /**
905 dl 1.17 * Wait nodes for Treiber stack representing wait queue
906 jsr166 1.1 */
907 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
908     final Phaser phaser;
909     final int phase;
910     final boolean interruptible;
911     final boolean timed;
912     boolean wasInterrupted;
913     long nanos;
914     long lastTime;
915     volatile Thread thread; // nulled to cancel wait
916     QNode next;
917    
918     QNode(Phaser phaser, int phase, boolean interruptible,
919     boolean timed, long nanos) {
920     this.phaser = phaser;
921     this.phase = phase;
922     this.interruptible = interruptible;
923     this.nanos = nanos;
924     this.timed = timed;
925     this.lastTime = timed? System.nanoTime() : 0L;
926     thread = Thread.currentThread();
927     }
928    
929     public boolean isReleasable() {
930     Thread t = thread;
931     if (t != null) {
932     if (phaser.getPhase() != phase)
933     t = null;
934     else {
935     if (Thread.interrupted())
936     wasInterrupted = true;
937     if (interruptible && wasInterrupted)
938     t = null;
939     else if (timed) {
940     if (nanos > 0) {
941     long now = System.nanoTime();
942     nanos -= now - lastTime;
943     lastTime = now;
944     }
945     if (nanos <= 0)
946     t = null;
947     }
948     }
949     if (t != null)
950     return false;
951     thread = null;
952 dl 1.15 }
953 dl 1.17 return true;
954     }
955    
956     public boolean block() {
957     if (isReleasable())
958     return true;
959     else if (!timed)
960     LockSupport.park(this);
961     else if (nanos > 0)
962     LockSupport.parkNanos(this, nanos);
963     return isReleasable();
964     }
965 jsr166 1.1
966 dl 1.17 void signal() {
967     Thread t = thread;
968     if (t != null) {
969     thread = null;
970     LockSupport.unpark(t);
971 dl 1.15 }
972 dl 1.17 }
973 dl 1.21
974     void onRelease() { // actions upon return from internalAwaitAdvance
975     if (!interruptible && wasInterrupted)
976     Thread.currentThread().interrupt();
977     if (thread != null)
978     thread = null;
979     }
980    
981 jsr166 1.1 }
982    
983     // Unsafe mechanics
984    
985     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
986 jsr166 1.2 private static final long stateOffset =
987 jsr166 1.3 objectFieldOffset("state", Phaser.class);
988 jsr166 1.1
989 jsr166 1.3 private static long objectFieldOffset(String field, Class<?> klazz) {
990     try {
991     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
992     } catch (NoSuchFieldException e) {
993     // Convert Exception to corresponding Error
994     NoSuchFieldError error = new NoSuchFieldError(field);
995     error.initCause(e);
996     throw error;
997     }
998     }
999 jsr166 1.1 }