ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.33
Committed: Sat Nov 27 16:47:00 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.32: +105 -72 lines
Log Message:
Remove constraints on tiered deregistration

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.17 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.10 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33     * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38     * phase number starts at zero, and advances when all parties arrive
39     * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74 jsr166 1.1 *
75     * </ul>
76     *
77 jsr166 1.10 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78     * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82 dl 1.33 * onAdvance} returns {@code true}. The default implementation returns
83     * {@code true} if a deregistration has caused the number of
84     * registered parties to become zero. As illustrated below, when
85 jsr166 1.10 * phasers control actions with a fixed number of iterations, it is
86 jsr166 1.7 * often convenient to override this method to cause termination when
87     * the current phase number reaches a threshold. Method {@link
88     * #forceTermination} is also available to abruptly release waiting
89     * threads and allow them to terminate.
90 jsr166 1.1 *
91 dl 1.32 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92     * constructed in tree structures) to reduce contention. Phasers with
93     * large numbers of parties that would otherwise experience heavy
94 jsr166 1.10 * synchronization contention costs may instead be set up so that
95     * groups of sub-phasers share a common parent. This may greatly
96     * increase throughput even though it incurs greater per-operation
97     * overhead.
98     *
99     * <p><b>Monitoring.</b> While synchronization methods may be invoked
100     * only by registered parties, the current state of a phaser may be
101     * monitored by any caller. At any given moment there are {@link
102     * #getRegisteredParties} parties in total, of which {@link
103     * #getArrivedParties} have arrived at the current phase ({@link
104     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105     * parties arrive, the phase advances. The values returned by these
106     * methods may reflect transient states and so are not in general
107     * useful for synchronization control. Method {@link #toString}
108     * returns snapshots of these state queries in a form convenient for
109     * informal monitoring.
110 jsr166 1.1 *
111     * <p><b>Sample usages:</b>
112     *
113 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
115     * The typical idiom is for the method setting this up to first
116     * register, then start the actions, then deregister, as in:
117 jsr166 1.1 *
118     * <pre> {@code
119 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
120 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
121 jsr166 1.7 * // create and start threads
122 jsr166 1.8 * for (Runnable task : tasks) {
123 jsr166 1.1 * phaser.register();
124     * new Thread() {
125     * public void run() {
126     * phaser.arriveAndAwaitAdvance(); // await all creation
127 jsr166 1.8 * task.run();
128 jsr166 1.1 * }
129     * }.start();
130     * }
131     *
132 jsr166 1.7 * // allow threads to start and deregister self
133     * phaser.arriveAndDeregister();
134 jsr166 1.1 * }}</pre>
135     *
136     * <p>One way to cause a set of threads to repeatedly perform actions
137     * for a given number of iterations is to override {@code onAdvance}:
138     *
139     * <pre> {@code
140 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
141 jsr166 1.1 * final Phaser phaser = new Phaser() {
142 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
143 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
144     * }
145     * };
146     * phaser.register();
147 jsr166 1.10 * for (final Runnable task : tasks) {
148 jsr166 1.1 * phaser.register();
149     * new Thread() {
150     * public void run() {
151     * do {
152 jsr166 1.8 * task.run();
153 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
154 jsr166 1.10 * } while (!phaser.isTerminated());
155 jsr166 1.1 * }
156     * }.start();
157     * }
158     * phaser.arriveAndDeregister(); // deregister self, don't wait
159     * }}</pre>
160     *
161 jsr166 1.10 * If the main task must later await termination, it
162     * may re-register and then execute a similar loop:
163     * <pre> {@code
164     * // ...
165     * phaser.register();
166     * while (!phaser.isTerminated())
167     * phaser.arriveAndAwaitAdvance();}</pre>
168     *
169     * <p>Related constructions may be used to await particular phase numbers
170     * in contexts where you are sure that the phase will never wrap around
171     * {@code Integer.MAX_VALUE}. For example:
172     *
173     * <pre> {@code
174     * void awaitPhase(Phaser phaser, int phase) {
175     * int p = phaser.register(); // assumes caller not already registered
176     * while (p < phase) {
177     * if (phaser.isTerminated())
178     * // ... deal with unexpected termination
179     * else
180     * p = phaser.arriveAndAwaitAdvance();
181     * }
182     * phaser.arriveAndDeregister();
183     * }}</pre>
184     *
185     *
186 jsr166 1.5 * <p>To create a set of tasks using a tree of phasers,
187 jsr166 1.1 * you could use code of the following form, assuming a
188 jsr166 1.4 * Task class with a constructor accepting a phaser that
189 jsr166 1.12 * it registers with upon construction:
190 jsr166 1.10 *
191 jsr166 1.1 * <pre> {@code
192 jsr166 1.10 * void build(Task[] actions, int lo, int hi, Phaser ph) {
193     * if (hi - lo > TASKS_PER_PHASER) {
194     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195     * int j = Math.min(i + TASKS_PER_PHASER, hi);
196     * build(actions, i, j, new Phaser(ph));
197 jsr166 1.1 * }
198     * } else {
199     * for (int i = lo; i < hi; ++i)
200 jsr166 1.10 * actions[i] = new Task(ph);
201     * // assumes new Task(ph) performs ph.register()
202 jsr166 1.1 * }
203     * }
204     * // .. initially called, for n tasks via
205     * build(new Task[n], 0, n, new Phaser());}</pre>
206     *
207     * The best value of {@code TASKS_PER_PHASER} depends mainly on
208     * expected barrier synchronization rates. A value as low as four may
209     * be appropriate for extremely small per-barrier task bodies (thus
210     * high rates), or up to hundreds for extremely large ones.
211     *
212     * <p><b>Implementation notes</b>: This implementation restricts the
213     * maximum number of parties to 65535. Attempts to register additional
214 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
215 jsr166 1.1 * should create tiered phasers to accommodate arbitrarily large sets
216     * of participants.
217     *
218     * @since 1.7
219     * @author Doug Lea
220     */
221     public class Phaser {
222     /*
223     * This class implements an extension of X10 "clocks". Thanks to
224     * Vijay Saraswat for the idea, and to Vivek Sarkar for
225     * enhancements to extend functionality.
226     */
227    
228     /**
229     * Barrier state representation. Conceptually, a barrier contains
230     * four values:
231     *
232 dl 1.17 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
233     * * parties -- the number of parties to wait (bits 16-31)
234     * * phase -- the generation of the barrier (bits 32-62)
235     * * terminated -- set if barrier is terminated (bit 63 / sign)
236 jsr166 1.1 *
237     * However, to efficiently maintain atomicity, these values are
238     * packed into a single (atomic) long. Termination uses the sign
239     * bit of 32 bit representation of phase, so phase is set to -1 on
240     * termination. Good performance relies on keeping state decoding
241     * and encoding simple, and keeping race windows short.
242     */
243     private volatile long state;
244    
245 dl 1.33 private static final int MAX_PARTIES = 0xffff;
246     private static final int MAX_PHASE = 0x7fffffff;
247     private static final int PARTIES_SHIFT = 16;
248     private static final int PHASE_SHIFT = 32;
249     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
250     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
251     private static final long ONE_ARRIVAL = 1L;
252     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
253     private static final long TERMINATION_BIT = 1L << 63;
254 dl 1.17
255     // The following unpacking methods are usually manually inlined
256 jsr166 1.1
257     private static int unarrivedOf(long s) {
258 jsr166 1.25 return (int)s & UNARRIVED_MASK;
259 jsr166 1.1 }
260    
261     private static int partiesOf(long s) {
262 jsr166 1.25 return (int)s >>> PARTIES_SHIFT;
263 jsr166 1.1 }
264    
265     private static int phaseOf(long s) {
266 dl 1.17 return (int) (s >>> PHASE_SHIFT);
267 jsr166 1.1 }
268    
269     private static int arrivedOf(long s) {
270     return partiesOf(s) - unarrivedOf(s);
271     }
272    
273     /**
274     * The parent of this phaser, or null if none
275     */
276     private final Phaser parent;
277    
278     /**
279 jsr166 1.4 * The root of phaser tree. Equals this if not in a tree. Used to
280 jsr166 1.1 * support faster state push-down.
281     */
282     private final Phaser root;
283    
284     /**
285     * Heads of Treiber stacks for waiting threads. To eliminate
286 dl 1.14 * contention when releasing some threads while adding others, we
287 jsr166 1.1 * use two of them, alternating across even and odd phases.
288 dl 1.14 * Subphasers share queues with root to speed up releases.
289 jsr166 1.1 */
290 dl 1.15 private final AtomicReference<QNode> evenQ;
291     private final AtomicReference<QNode> oddQ;
292 jsr166 1.1
293     private AtomicReference<QNode> queueFor(int phase) {
294 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
295 jsr166 1.1 }
296    
297     /**
298 dl 1.33 * Returns message string for bounds exceptions on arrival.
299     */
300     private String badArrive(long s) {
301     return "Attempted arrival of unregistered party for " +
302     stateToString(s);
303     }
304    
305     /**
306     * Returns message string for bounds exceptions on registration.
307     */
308     private String badRegister(long s) {
309     return "Attempt to register more than " +
310     MAX_PARTIES + " parties for " + stateToString(s);
311     }
312    
313     /**
314 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
315     * Manually tuned to speed up and minimize race windows for the
316     * common case of just decrementing unarrived field.
317     *
318     * @param adj - adjustment to apply to state -- either
319     * ONE_ARRIVAL (for arrive) or
320     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321     */
322     private int doArrive(long adj) {
323 dl 1.21 for (;;) {
324 jsr166 1.28 long s = state;
325 dl 1.33 int unarrived = (int)s & UNARRIVED_MASK;
326 jsr166 1.28 int phase = (int)(s >>> PHASE_SHIFT);
327     if (phase < 0)
328 dl 1.21 return phase;
329 dl 1.33 else if (unarrived == 0) {
330     if (reconcileState() == s) // recheck
331     throw new IllegalStateException(badArrive(s));
332     }
333 dl 1.24 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 dl 1.21 if (unarrived == 1) {
335 dl 1.31 long p = s & PARTIES_MASK; // unshifted parties field
336 dl 1.21 long lu = p >>> PARTIES_SHIFT;
337     int u = (int)lu;
338     int nextPhase = (phase + 1) & MAX_PHASE;
339     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 jsr166 1.28 final Phaser parent = this.parent;
341     if (parent == null) {
342 dl 1.24 if (onAdvance(phase, u))
343 dl 1.33 next |= TERMINATION_BIT;
344 dl 1.24 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345 dl 1.21 releaseWaiters(phase);
346     }
347     else {
348 jsr166 1.28 parent.doArrive((u == 0) ?
349     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350     if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 dl 1.21 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352     !UNSAFE.compareAndSwapLong(this, stateOffset,
353     s, next)))
354     reconcileState();
355 dl 1.17 }
356     }
357 dl 1.21 return phase;
358 dl 1.17 }
359     }
360     }
361    
362     /**
363     * Implementation of register, bulkRegister
364     *
365 dl 1.32 * @param registrations number to add to both parties and
366     * unarrived fields. Must be greater than zero.
367 jsr166 1.1 */
368 dl 1.17 private int doRegister(int registrations) {
369 jsr166 1.26 // adjustment to state
370     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371     final Phaser parent = this.parent;
372 dl 1.21 for (;;) {
373 jsr166 1.26 long s = (parent == null) ? state : reconcileState();
374 dl 1.32 int parties = (int)s >>> PARTIES_SHIFT;
375 jsr166 1.26 int phase = (int)(s >>> PHASE_SHIFT);
376     if (phase < 0)
377 dl 1.21 return phase;
378 jsr166 1.27 else if (registrations > MAX_PARTIES - parties)
379 dl 1.21 throw new IllegalStateException(badRegister(s));
380 dl 1.33 else if ((parties == 0 && parent == null) || // first reg of root
381     ((int)s & UNARRIVED_MASK) != 0) { // not advancing
382     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383     return phase;
384     }
385     else if (parties != 0) // wait for onAdvance
386     internalAwaitAdvance(phase, null);
387     else { // 1st registration of child
388     synchronized(this) { // register parent first
389     if (reconcileState() == s) { // recheck under lock
390     parent.doRegister(1); // OK if throws IllegalState
391     for (;;) { // simpler form of outer loop
392     s = reconcileState();
393     phase = (int)(s >>> PHASE_SHIFT);
394     if (phase < 0 ||
395     UNSAFE.compareAndSwapLong(this, stateOffset,
396     s, s + adj))
397     return phase;
398     }
399     }
400     }
401     }
402 dl 1.17 }
403     }
404    
405     /**
406 jsr166 1.22 * Recursively resolves lagged phase propagation from root if necessary.
407 jsr166 1.1 */
408     private long reconcileState() {
409 dl 1.14 Phaser par = parent;
410 dl 1.31 long s = state;
411     if (par != null) {
412     Phaser rt = root;
413     int phase, rPhase;
414     while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416     if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417     par.reconcileState();
418     else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419     long u = s & PARTIES_MASK; // reset unarrived to parties
420     long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421     (u >>> PARTIES_SHIFT));
422 dl 1.33 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 dl 1.31 }
424     s = state;
425 jsr166 1.1 }
426     }
427 dl 1.31 return s;
428 jsr166 1.1 }
429    
430     /**
431 jsr166 1.4 * Creates a new phaser without any initially registered parties,
432 jsr166 1.1 * initial phase number 0, and no parent. Any thread using this
433 jsr166 1.4 * phaser will need to first register for it.
434 jsr166 1.1 */
435     public Phaser() {
436 dl 1.15 this(null, 0);
437 jsr166 1.1 }
438    
439     /**
440 jsr166 1.12 * Creates a new phaser with the given number of registered
441 jsr166 1.1 * unarrived parties, initial phase number 0, and no parent.
442     *
443     * @param parties the number of parties required to trip barrier
444     * @throws IllegalArgumentException if parties less than zero
445     * or greater than the maximum number of parties supported
446     */
447     public Phaser(int parties) {
448     this(null, parties);
449     }
450    
451     /**
452 dl 1.33 * Creates a new phaser with the given parent, and without any
453     * initially registered parties. Any thread using this phaser
454     * will need to first register for it, at which point, if the
455     * given parent is non-null, this phaser will also be registered
456     * with the parent.
457     *
458 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
459 jsr166 1.1 *
460     * @param parent the parent phaser
461     */
462     public Phaser(Phaser parent) {
463 dl 1.15 this(parent, 0);
464 jsr166 1.1 }
465    
466     /**
467 jsr166 1.12 * Creates a new phaser with the given parent and number of
468 dl 1.33 * registered unarrived parties. If parent is non-null and
469     * the number of parties is non-zero, this phaser is registered
470     * with the parent.
471 jsr166 1.1 *
472     * @param parent the parent phaser
473     * @param parties the number of parties required to trip barrier
474     * @throws IllegalArgumentException if parties less than zero
475     * or greater than the maximum number of parties supported
476     */
477     public Phaser(Phaser parent, int parties) {
478 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
479 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
480 dl 1.15 int phase;
481 jsr166 1.1 this.parent = parent;
482     if (parent != null) {
483 dl 1.15 Phaser r = parent.root;
484     this.root = r;
485     this.evenQ = r.evenQ;
486     this.oddQ = r.oddQ;
487 dl 1.33 phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1);
488 jsr166 1.1 }
489 dl 1.15 else {
490 jsr166 1.1 this.root = this;
491 dl 1.15 this.evenQ = new AtomicReference<QNode>();
492     this.oddQ = new AtomicReference<QNode>();
493     phase = 0;
494     }
495 dl 1.17 long p = (long)parties;
496 dl 1.24 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
497 jsr166 1.1 }
498    
499     /**
500 dl 1.33 * Adds a new unarrived party to this phaser. If an ongoing
501     * invocation of {@link #onAdvance} is in progress, this method
502     * may wait until its completion before registering. If this
503     * phaser has a parent, and this phaser previously had no
504     * registered parties, this phaser is also registered with its
505     * parent.
506 jsr166 1.1 *
507 jsr166 1.10 * @return the arrival phase number to which this registration applied
508 jsr166 1.1 * @throws IllegalStateException if attempting to register more
509     * than the maximum supported number of parties
510     */
511     public int register() {
512     return doRegister(1);
513     }
514    
515     /**
516     * Adds the given number of new unarrived parties to this phaser.
517 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
518 dl 1.15 * this method may wait until its completion before registering.
519 dl 1.33 * If this phaser has a parent, and the given number of parities
520     * is greater than zero, and this phaser previously had no
521     * registered parties, this phaser is also registered with its
522     * parent.
523 jsr166 1.1 *
524 jsr166 1.12 * @param parties the number of additional parties required to trip barrier
525 jsr166 1.10 * @return the arrival phase number to which this registration applied
526 jsr166 1.1 * @throws IllegalStateException if attempting to register more
527     * than the maximum supported number of parties
528 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
529 jsr166 1.1 */
530     public int bulkRegister(int parties) {
531     if (parties < 0)
532     throw new IllegalArgumentException();
533 dl 1.33 else if (parties == 0)
534 jsr166 1.1 return getPhase();
535     return doRegister(parties);
536     }
537    
538     /**
539     * Arrives at the barrier, but does not wait for others. (You can
540 dl 1.33 * in turn wait for others via {@link #awaitAdvance}). It is a
541     * usage error for an unregistered party to invoke this
542     * method. However, it is possible that this error will result in
543     * an {code IllegalStateException} only when some <em>other</em>
544     * party arrives.
545 jsr166 1.1 *
546 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
547 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
548     * of unarrived parties would become negative
549     */
550     public int arrive() {
551 dl 1.17 return doArrive(ONE_ARRIVAL);
552 jsr166 1.1 }
553    
554     /**
555 jsr166 1.7 * Arrives at the barrier and deregisters from it without waiting
556     * for others. Deregistration reduces the number of parties
557 jsr166 1.1 * required to trip the barrier in future phases. If this phaser
558     * has a parent, and deregistration causes this phaser to have
559 jsr166 1.7 * zero parties, this phaser also arrives at and is deregistered
560 dl 1.33 * from its parent. It is a usage error for an unregistered party
561     * to invoke this method. However, it is possible that this error
562     * will result in an {code IllegalStateException} only when some
563     * <em>other</em> party arrives.
564 jsr166 1.1 *
565 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
566 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
567     * of registered or unarrived parties would become negative
568     */
569     public int arriveAndDeregister() {
570 dl 1.17 return doArrive(ONE_ARRIVAL|ONE_PARTY);
571 jsr166 1.1 }
572    
573     /**
574     * Arrives at the barrier and awaits others. Equivalent in effect
575 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
576     * interruption or timeout, you can arrange this with an analogous
577 jsr166 1.12 * construction using one of the other forms of the {@code
578     * awaitAdvance} method. If instead you need to deregister upon
579 dl 1.33 * arrival, use {@link #arriveAndDeregister}. It is a usage error
580     * for an unregistered party to invoke this method. However, it is
581     * possible that this error will result in an {code
582     * IllegalStateException} only when some <em>other</em> party
583     * arrives.
584 jsr166 1.1 *
585 jsr166 1.10 * @return the arrival phase number, or a negative number if terminated
586 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
587     * of unarrived parties would become negative
588     */
589     public int arriveAndAwaitAdvance() {
590     return awaitAdvance(arrive());
591     }
592    
593     /**
594 jsr166 1.7 * Awaits the phase of the barrier to advance from the given phase
595 jsr166 1.8 * value, returning immediately if the current phase of the
596     * barrier is not equal to the given phase value or this barrier
597 dl 1.15 * is terminated.
598 jsr166 1.1 *
599 jsr166 1.10 * @param phase an arrival phase number, or negative value if
600     * terminated; this argument is normally the value returned by a
601     * previous call to {@code arrive} or its variants
602     * @return the next arrival phase number, or a negative value
603     * if terminated or argument is negative
604 jsr166 1.1 */
605     public int awaitAdvance(int phase) {
606     if (phase < 0)
607     return phase;
608 jsr166 1.29 long s = (parent == null) ? state : reconcileState();
609     int p = (int)(s >>> PHASE_SHIFT);
610     return (p != phase) ? p : internalAwaitAdvance(phase, null);
611 jsr166 1.1 }
612    
613     /**
614 jsr166 1.8 * Awaits the phase of the barrier to advance from the given phase
615 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
616     * while waiting, or returning immediately if the current phase of
617     * the barrier is not equal to the given phase value or this
618 dl 1.15 * barrier is terminated.
619 jsr166 1.10 *
620     * @param phase an arrival phase number, or negative value if
621     * terminated; this argument is normally the value returned by a
622     * previous call to {@code arrive} or its variants
623     * @return the next arrival phase number, or a negative value
624     * if terminated or argument is negative
625 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
626     */
627     public int awaitAdvanceInterruptibly(int phase)
628     throws InterruptedException {
629     if (phase < 0)
630     return phase;
631 jsr166 1.29 long s = (parent == null) ? state : reconcileState();
632     int p = (int)(s >>> PHASE_SHIFT);
633     if (p == phase) {
634 dl 1.24 QNode node = new QNode(this, phase, true, false, 0L);
635     p = internalAwaitAdvance(phase, node);
636     if (node.wasInterrupted)
637     throw new InterruptedException();
638     }
639     return p;
640 jsr166 1.1 }
641    
642     /**
643 jsr166 1.8 * Awaits the phase of the barrier to advance from the given phase
644 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
645     * InterruptedException} if interrupted while waiting, or
646     * returning immediately if the current phase of the barrier is
647     * not equal to the given phase value or this barrier is
648 dl 1.15 * terminated.
649 jsr166 1.10 *
650     * @param phase an arrival phase number, or negative value if
651     * terminated; this argument is normally the value returned by a
652     * previous call to {@code arrive} or its variants
653 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
654     * {@code unit}
655     * @param unit a {@code TimeUnit} determining how to interpret the
656     * {@code timeout} parameter
657 jsr166 1.10 * @return the next arrival phase number, or a negative value
658     * if terminated or argument is negative
659 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
660     * @throws TimeoutException if timed out while waiting
661     */
662     public int awaitAdvanceInterruptibly(int phase,
663     long timeout, TimeUnit unit)
664     throws InterruptedException, TimeoutException {
665     if (phase < 0)
666     return phase;
667 jsr166 1.29 long s = (parent == null) ? state : reconcileState();
668     int p = (int)(s >>> PHASE_SHIFT);
669     if (p == phase) {
670     long nanos = unit.toNanos(timeout);
671 dl 1.24 QNode node = new QNode(this, phase, true, true, nanos);
672     p = internalAwaitAdvance(phase, node);
673     if (node.wasInterrupted)
674     throw new InterruptedException();
675     else if (p == phase)
676     throw new TimeoutException();
677     }
678     return p;
679 jsr166 1.1 }
680    
681     /**
682 jsr166 1.23 * Forces this barrier to enter termination state. Counts of
683     * arrived and registered parties are unaffected. If this phaser
684     * is a member of a tiered set of phasers, then all of the phasers
685     * in the set are terminated. If this phaser is already
686     * terminated, this method has no effect. This method may be
687     * useful for coordinating recovery after one or more tasks
688     * encounter unexpected exceptions.
689 jsr166 1.1 */
690     public void forceTermination() {
691 jsr166 1.23 // Only need to change root state
692     final Phaser root = this.root;
693 dl 1.14 long s;
694 jsr166 1.23 while ((s = root.state) >= 0) {
695     if (UNSAFE.compareAndSwapLong(root, stateOffset,
696 dl 1.33 s, s | TERMINATION_BIT)) {
697 jsr166 1.23 releaseWaiters(0); // signal all threads
698     releaseWaiters(1);
699     return;
700     }
701     }
702 jsr166 1.1 }
703    
704     /**
705     * Returns the current phase number. The maximum phase number is
706     * {@code Integer.MAX_VALUE}, after which it restarts at
707     * zero. Upon termination, the phase number is negative.
708     *
709     * @return the phase number, or a negative value if terminated
710     */
711     public final int getPhase() {
712 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
713 jsr166 1.1 }
714    
715     /**
716     * Returns the number of parties registered at this barrier.
717     *
718     * @return the number of parties
719     */
720     public int getRegisteredParties() {
721 dl 1.31 return partiesOf(state);
722 jsr166 1.1 }
723    
724     /**
725 jsr166 1.10 * Returns the number of registered parties that have arrived at
726     * the current phase of this barrier.
727 jsr166 1.1 *
728     * @return the number of arrived parties
729     */
730     public int getArrivedParties() {
731 dl 1.21 return arrivedOf(parent==null? state : reconcileState());
732 jsr166 1.1 }
733    
734     /**
735     * Returns the number of registered parties that have not yet
736     * arrived at the current phase of this barrier.
737     *
738     * @return the number of unarrived parties
739     */
740     public int getUnarrivedParties() {
741 dl 1.21 return unarrivedOf(parent==null? state : reconcileState());
742 jsr166 1.1 }
743    
744     /**
745 jsr166 1.4 * Returns the parent of this phaser, or {@code null} if none.
746 jsr166 1.1 *
747 jsr166 1.4 * @return the parent of this phaser, or {@code null} if none
748 jsr166 1.1 */
749     public Phaser getParent() {
750     return parent;
751     }
752    
753     /**
754     * Returns the root ancestor of this phaser, which is the same as
755     * this phaser if it has no parent.
756     *
757     * @return the root ancestor of this phaser
758     */
759     public Phaser getRoot() {
760     return root;
761     }
762    
763     /**
764     * Returns {@code true} if this barrier has been terminated.
765     *
766     * @return {@code true} if this barrier has been terminated
767     */
768     public boolean isTerminated() {
769 dl 1.31 return root.state < 0L;
770 jsr166 1.1 }
771    
772     /**
773 jsr166 1.10 * Overridable method to perform an action upon impending phase
774     * advance, and to control termination. This method is invoked
775     * upon arrival of the party tripping the barrier (when all other
776     * waiting parties are dormant). If this method returns {@code
777     * true}, then, rather than advance the phase number, this barrier
778     * will be set to a final termination state, and subsequent calls
779     * to {@link #isTerminated} will return true. Any (unchecked)
780     * Exception or Error thrown by an invocation of this method is
781     * propagated to the party attempting to trip the barrier, in
782     * which case no advance occurs.
783     *
784     * <p>The arguments to this method provide the state of the phaser
785 dl 1.17 * prevailing for the current transition. The effects of invoking
786     * arrival, registration, and waiting methods on this Phaser from
787 dl 1.15 * within {@code onAdvance} are unspecified and should not be
788 dl 1.17 * relied on.
789     *
790     * <p>If this Phaser is a member of a tiered set of Phasers, then
791     * {@code onAdvance} is invoked only for its root Phaser on each
792     * advance.
793 jsr166 1.1 *
794 dl 1.33 * <p>To support the most common use cases, the default
795     * implementation of this method returns {@code true} when the
796     * number of registered parties has become zero as the result of a
797     * party invoking {@code arriveAndDeregister}. You can disable
798     * this behavior, thus enabling continuation upon future
799     * registrations, by overriding this method to always return
800     * {@code false}:
801     *
802     * <pre> {@code
803     * Phaser phaser = new Phaser() {
804     * protected boolean onAdvance(int phase, int parties) { return false; }
805     * }}</pre>
806 jsr166 1.1 *
807     * @param phase the phase number on entering the barrier
808     * @param registeredParties the current number of registered parties
809     * @return {@code true} if this barrier should terminate
810     */
811     protected boolean onAdvance(int phase, int registeredParties) {
812     return registeredParties <= 0;
813     }
814    
815     /**
816 dl 1.21 * Returns a string identifying this phaser, as well as its
817     * state. The state, in brackets, includes the String {@code
818     * "phase = "} followed by the phase number, {@code "parties = "}
819     * followed by the number of registered parties, and {@code
820     * "arrived = "} followed by the number of arrived parties.
821 jsr166 1.1 *
822     * @return a string identifying this barrier, as well as its state
823     */
824     public String toString() {
825 dl 1.21 return stateToString(reconcileState());
826     }
827    
828     /**
829     * Implementation of toString and string-based error messages
830     */
831     private String stateToString(long s) {
832 jsr166 1.1 return super.toString() +
833     "[phase = " + phaseOf(s) +
834     " parties = " + partiesOf(s) +
835     " arrived = " + arrivedOf(s) + "]";
836     }
837    
838 dl 1.21 // Waiting mechanics
839    
840 jsr166 1.1 /**
841 jsr166 1.30 * Removes and signals threads from queue for phase.
842 jsr166 1.1 */
843     private void releaseWaiters(int phase) {
844     AtomicReference<QNode> head = queueFor(phase);
845     QNode q;
846 dl 1.17 int p;
847     while ((q = head.get()) != null &&
848     ((p = q.phase) == phase ||
849     (int)(root.state >>> PHASE_SHIFT) != p)) {
850 jsr166 1.1 if (head.compareAndSet(q, q.next))
851     q.signal();
852     }
853     }
854    
855 dl 1.17 /** The number of CPUs, for spin control */
856     private static final int NCPU = Runtime.getRuntime().availableProcessors();
857    
858 jsr166 1.1 /**
859 dl 1.17 * The number of times to spin before blocking while waiting for
860     * advance, per arrival while waiting. On multiprocessors, fully
861     * blocking and waking up a large number of threads all at once is
862     * usually a very slow process, so we use rechargeable spins to
863     * avoid it when threads regularly arrive: When a thread in
864     * internalAwaitAdvance notices another arrival before blocking,
865     * and there appear to be enough CPUs available, it spins
866 dl 1.24 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
867     * uniprocessors, there is at least one intervening Thread.yield
868     * before blocking. The value trades off good-citizenship vs big
869     * unnecessary slowdowns.
870 dl 1.15 */
871 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
872 dl 1.15
873     /**
874 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
875 jsr166 1.1 *
876 dl 1.17 * @param phase current phase
877 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
878 dl 1.17 * if null, denotes noninterruptible wait
879 jsr166 1.1 * @return current phase
880     */
881 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
882     Phaser current = this; // to eventually wait at root if tiered
883 dl 1.21 boolean queued = false; // true when node is enqueued
884     int lastUnarrived = -1; // to increase spins upon change
885 dl 1.17 int spins = SPINS_PER_ARRIVAL;
886 dl 1.31 long s;
887     int p;
888     while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
889 dl 1.21 Phaser par;
890 dl 1.31 int unarrived = (int)s & UNARRIVED_MASK;
891     if (unarrived != lastUnarrived) {
892     if (lastUnarrived == -1) // ensure old queue clean
893     releaseWaiters(phase-1);
894     if ((lastUnarrived = unarrived) < NCPU)
895     spins += SPINS_PER_ARRIVAL;
896 dl 1.21 }
897 dl 1.31 else if (unarrived == 0 && (par = current.parent) != null) {
898 dl 1.24 current = par; // if all arrived, use parent
899     par = par.parent;
900     lastUnarrived = -1;
901     }
902     else if (spins > 0) {
903     if (--spins == (SPINS_PER_ARRIVAL >>> 1))
904     Thread.yield(); // yield midway through spin
905 dl 1.15 }
906 dl 1.21 else if (node == null) // must be noninterruptible
907 dl 1.17 node = new QNode(this, phase, false, false, 0L);
908 dl 1.21 else if (node.isReleasable()) {
909 dl 1.31 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
910     break;
911     else
912 dl 1.21 return phase; // aborted
913     }
914 dl 1.31 else if (!queued) { // push onto queue
915     AtomicReference<QNode> head = queueFor(phase);
916     QNode q = head.get();
917     if (q == null || q.phase == phase) {
918     node.next = q;
919     if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
920     break; // recheck to avoid stale enqueue
921     else
922     queued = head.compareAndSet(q, node);
923     }
924     }
925 dl 1.17 else {
926     try {
927     ForkJoinPool.managedBlock(node);
928     } catch (InterruptedException ie) {
929     node.wasInterrupted = true;
930     }
931     }
932     }
933 dl 1.31 releaseWaiters(phase);
934     if (node != null)
935     node.onRelease();
936     return p;
937 jsr166 1.1 }
938    
939     /**
940 dl 1.17 * Wait nodes for Treiber stack representing wait queue
941 jsr166 1.1 */
942 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
943     final Phaser phaser;
944     final int phase;
945     final boolean interruptible;
946     final boolean timed;
947     boolean wasInterrupted;
948     long nanos;
949     long lastTime;
950     volatile Thread thread; // nulled to cancel wait
951     QNode next;
952    
953     QNode(Phaser phaser, int phase, boolean interruptible,
954     boolean timed, long nanos) {
955     this.phaser = phaser;
956     this.phase = phase;
957     this.interruptible = interruptible;
958     this.nanos = nanos;
959     this.timed = timed;
960     this.lastTime = timed? System.nanoTime() : 0L;
961     thread = Thread.currentThread();
962     }
963    
964     public boolean isReleasable() {
965     Thread t = thread;
966     if (t != null) {
967     if (phaser.getPhase() != phase)
968     t = null;
969     else {
970     if (Thread.interrupted())
971     wasInterrupted = true;
972     if (interruptible && wasInterrupted)
973     t = null;
974     else if (timed) {
975     if (nanos > 0) {
976     long now = System.nanoTime();
977     nanos -= now - lastTime;
978     lastTime = now;
979     }
980     if (nanos <= 0)
981     t = null;
982     }
983     }
984     if (t != null)
985     return false;
986     thread = null;
987 dl 1.15 }
988 dl 1.17 return true;
989     }
990    
991     public boolean block() {
992     if (isReleasable())
993     return true;
994     else if (!timed)
995     LockSupport.park(this);
996     else if (nanos > 0)
997     LockSupport.parkNanos(this, nanos);
998     return isReleasable();
999     }
1000 jsr166 1.1
1001 dl 1.17 void signal() {
1002     Thread t = thread;
1003     if (t != null) {
1004     thread = null;
1005     LockSupport.unpark(t);
1006 dl 1.15 }
1007 dl 1.17 }
1008 dl 1.21
1009     void onRelease() { // actions upon return from internalAwaitAdvance
1010     if (!interruptible && wasInterrupted)
1011     Thread.currentThread().interrupt();
1012     if (thread != null)
1013     thread = null;
1014     }
1015    
1016 jsr166 1.1 }
1017    
1018     // Unsafe mechanics
1019    
1020     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1021 jsr166 1.2 private static final long stateOffset =
1022 jsr166 1.3 objectFieldOffset("state", Phaser.class);
1023 jsr166 1.1
1024 jsr166 1.3 private static long objectFieldOffset(String field, Class<?> klazz) {
1025     try {
1026     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1027     } catch (NoSuchFieldException e) {
1028     // Convert Exception to corresponding Error
1029     NoSuchFieldError error = new NoSuchFieldError(field);
1030     error.initCause(e);
1031     throw error;
1032     }
1033     }
1034 jsr166 1.1 }