ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.5
Committed: Mon Aug 3 01:18:07 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.4: +3 -3 lines
Log Message:
sync with jsr166 package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.atomic.AtomicReference;
10     import java.util.concurrent.locks.LockSupport;
11    
12     /**
13     * A reusable synchronization barrier, similar in functionality to a
14     * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16     * but supporting more flexible usage.
17     *
18     * <ul>
19     *
20     * <li> The number of parties synchronizing on a phaser may vary over
21     * time. A task may register to be a party at any time, and may
22     * deregister upon arriving at the barrier. As is the case with most
23     * basic synchronization constructs, registration and deregistration
24     * affect only internal counts; they do not establish any further
25     * internal bookkeeping, so tasks cannot query whether they are
26     * registered. (However, you can introduce such bookkeeping by
27     * subclassing this class.)
28     *
29     * <li> Each generation has an associated phase value, starting at
30     * zero, and advancing when all parties reach the barrier (wrapping
31     * around to zero after reaching {@code Integer.MAX_VALUE}).
32     *
33 jsr166 1.4 * <li> Like a {@code CyclicBarrier}, a Phaser may be repeatedly
34     * awaited. Method {@link #arriveAndAwaitAdvance} has effect
35     * analogous to {@link java.util.concurrent.CyclicBarrier#await
36     * CyclicBarrier.await}. However, phasers separate two aspects of
37     * coordination, that may also be invoked independently:
38 jsr166 1.1 *
39     * <ul>
40     *
41 jsr166 1.4 * <li> Arriving at a barrier. Methods {@link #arrive} and
42     * {@link #arriveAndDeregister} do not block, but return
43 jsr166 1.1 * the phase value current upon entry to the method.
44     *
45 jsr166 1.4 * <li> Awaiting others. Method {@link #awaitAdvance} requires an
46 jsr166 1.1 * argument indicating the entry phase, and returns when the
47     * barrier advances to a new phase.
48     * </ul>
49     *
50     *
51     * <li> Barrier actions, performed by the task triggering a phase
52     * advance while others may be waiting, are arranged by overriding
53 jsr166 1.4 * method {@link #onAdvance}, that also controls termination.
54 jsr166 1.1 * Overriding this method may be used to similar but more flexible
55 jsr166 1.4 * effect as providing a barrier action to a {@code CyclicBarrier}.
56 jsr166 1.1 *
57     * <li> Phasers may enter a <em>termination</em> state in which all
58     * actions immediately return without updating phaser state or waiting
59     * for advance, and indicating (via a negative phase value) that
60     * execution is complete. Termination is triggered by executing the
61     * overridable {@code onAdvance} method that is invoked each time the
62 jsr166 1.4 * barrier is about to be tripped. When a phaser is controlling an
63 jsr166 1.1 * action with a fixed number of iterations, it is often convenient to
64     * override this method to cause termination when the current phase
65 jsr166 1.4 * number reaches a threshold. Method {@link #forceTermination} is also
66 jsr166 1.1 * available to abruptly release waiting threads and allow them to
67     * terminate.
68     *
69     * <li> Phasers may be tiered to reduce contention. Phasers with large
70     * numbers of parties that would otherwise experience heavy
71     * synchronization contention costs may instead be arranged in trees.
72     * This will typically greatly increase throughput even though it
73     * incurs somewhat greater per-operation overhead.
74     *
75     * <li> By default, {@code awaitAdvance} continues to wait even if
76     * the waiting thread is interrupted. And unlike the case in
77 jsr166 1.4 * {@code CyclicBarrier}, exceptions encountered while tasks wait
78 jsr166 1.1 * interruptibly or with timeout do not change the state of the
79     * barrier. If necessary, you can perform any associated recovery
80     * within handlers of those exceptions, often after invoking
81     * {@code forceTermination}.
82     *
83     * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
84     *
85     * </ul>
86     *
87     * <p><b>Sample usages:</b>
88     *
89 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
90     * to control a one-shot action serving a variable number of
91     * parties. The typical idiom is for the method setting this up to
92     * first register, then start the actions, then deregister, as in:
93 jsr166 1.1 *
94     * <pre> {@code
95     * void runTasks(List<Runnable> list) {
96     * final Phaser phaser = new Phaser(1); // "1" to register self
97     * for (Runnable r : list) {
98     * phaser.register();
99     * new Thread() {
100     * public void run() {
101     * phaser.arriveAndAwaitAdvance(); // await all creation
102     * r.run();
103     * phaser.arriveAndDeregister(); // signal completion
104     * }
105     * }.start();
106     * }
107     *
108     * doSomethingOnBehalfOfWorkers();
109     * phaser.arrive(); // allow threads to start
110     * int p = phaser.arriveAndDeregister(); // deregister self ...
111     * p = phaser.awaitAdvance(p); // ... and await arrival
112     * otherActions(); // do other things while tasks execute
113     * phaser.awaitAdvance(p); // await final completion
114     * }}</pre>
115     *
116     * <p>One way to cause a set of threads to repeatedly perform actions
117     * for a given number of iterations is to override {@code onAdvance}:
118     *
119     * <pre> {@code
120     * void startTasks(List<Runnable> list, final int iterations) {
121     * final Phaser phaser = new Phaser() {
122     * public boolean onAdvance(int phase, int registeredParties) {
123     * return phase >= iterations || registeredParties == 0;
124     * }
125     * };
126     * phaser.register();
127     * for (Runnable r : list) {
128     * phaser.register();
129     * new Thread() {
130     * public void run() {
131     * do {
132     * r.run();
133     * phaser.arriveAndAwaitAdvance();
134     * } while(!phaser.isTerminated();
135     * }
136     * }.start();
137     * }
138     * phaser.arriveAndDeregister(); // deregister self, don't wait
139     * }}</pre>
140     *
141 jsr166 1.5 * <p>To create a set of tasks using a tree of phasers,
142 jsr166 1.1 * you could use code of the following form, assuming a
143 jsr166 1.4 * Task class with a constructor accepting a phaser that
144 jsr166 1.1 * it registers for upon construction:
145     * <pre> {@code
146     * void build(Task[] actions, int lo, int hi, Phaser b) {
147     * int step = (hi - lo) / TASKS_PER_PHASER;
148     * if (step > 1) {
149     * int i = lo;
150     * while (i < hi) {
151     * int r = Math.min(i + step, hi);
152     * build(actions, i, r, new Phaser(b));
153     * i = r;
154     * }
155     * } else {
156     * for (int i = lo; i < hi; ++i)
157     * actions[i] = new Task(b);
158     * // assumes new Task(b) performs b.register()
159     * }
160     * }
161     * // .. initially called, for n tasks via
162     * build(new Task[n], 0, n, new Phaser());}</pre>
163     *
164     * The best value of {@code TASKS_PER_PHASER} depends mainly on
165     * expected barrier synchronization rates. A value as low as four may
166     * be appropriate for extremely small per-barrier task bodies (thus
167     * high rates), or up to hundreds for extremely large ones.
168     *
169     * </pre>
170     *
171     * <p><b>Implementation notes</b>: This implementation restricts the
172     * maximum number of parties to 65535. Attempts to register additional
173     * parties result in IllegalStateExceptions. However, you can and
174     * should create tiered phasers to accommodate arbitrarily large sets
175     * of participants.
176     *
177     * @since 1.7
178     * @author Doug Lea
179     */
180     public class Phaser {
181     /*
182     * This class implements an extension of X10 "clocks". Thanks to
183     * Vijay Saraswat for the idea, and to Vivek Sarkar for
184     * enhancements to extend functionality.
185     */
186    
187     /**
188     * Barrier state representation. Conceptually, a barrier contains
189     * four values:
190     *
191     * * parties -- the number of parties to wait (16 bits)
192     * * unarrived -- the number of parties yet to hit barrier (16 bits)
193     * * phase -- the generation of the barrier (31 bits)
194     * * terminated -- set if barrier is terminated (1 bit)
195     *
196     * However, to efficiently maintain atomicity, these values are
197     * packed into a single (atomic) long. Termination uses the sign
198     * bit of 32 bit representation of phase, so phase is set to -1 on
199     * termination. Good performance relies on keeping state decoding
200     * and encoding simple, and keeping race windows short.
201     *
202     * Note: there are some cheats in arrive() that rely on unarrived
203     * count being lowest 16 bits.
204     */
205     private volatile long state;
206    
207     private static final int ushortBits = 16;
208     private static final int ushortMask = 0xffff;
209     private static final int phaseMask = 0x7fffffff;
210    
211     private static int unarrivedOf(long s) {
212     return (int) (s & ushortMask);
213     }
214    
215     private static int partiesOf(long s) {
216     return ((int) s) >>> 16;
217     }
218    
219     private static int phaseOf(long s) {
220     return (int) (s >>> 32);
221     }
222    
223     private static int arrivedOf(long s) {
224     return partiesOf(s) - unarrivedOf(s);
225     }
226    
227     private static long stateFor(int phase, int parties, int unarrived) {
228     return ((((long) phase) << 32) | (((long) parties) << 16) |
229     (long) unarrived);
230     }
231    
232     private static long trippedStateFor(int phase, int parties) {
233     long lp = (long) parties;
234     return (((long) phase) << 32) | (lp << 16) | lp;
235     }
236    
237     /**
238     * Returns message string for bad bounds exceptions.
239     */
240     private static String badBounds(int parties, int unarrived) {
241     return ("Attempt to set " + unarrived +
242     " unarrived of " + parties + " parties");
243     }
244    
245     /**
246     * The parent of this phaser, or null if none
247     */
248     private final Phaser parent;
249    
250     /**
251 jsr166 1.4 * The root of phaser tree. Equals this if not in a tree. Used to
252 jsr166 1.1 * support faster state push-down.
253     */
254     private final Phaser root;
255    
256     // Wait queues
257    
258     /**
259     * Heads of Treiber stacks for waiting threads. To eliminate
260     * contention while releasing some threads while adding others, we
261     * use two of them, alternating across even and odd phases.
262     */
263     private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
264     private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
265    
266     private AtomicReference<QNode> queueFor(int phase) {
267     return ((phase & 1) == 0) ? evenQ : oddQ;
268     }
269    
270     /**
271     * Returns current state, first resolving lagged propagation from
272     * root if necessary.
273     */
274     private long getReconciledState() {
275     return (parent == null) ? state : reconcileState();
276     }
277    
278     /**
279     * Recursively resolves state.
280     */
281     private long reconcileState() {
282     Phaser p = parent;
283     long s = state;
284     if (p != null) {
285     while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
286     long parentState = p.getReconciledState();
287     int parentPhase = phaseOf(parentState);
288     int phase = phaseOf(s = state);
289     if (phase != parentPhase) {
290     long next = trippedStateFor(parentPhase, partiesOf(s));
291     if (casState(s, next)) {
292     releaseWaiters(phase);
293     s = next;
294     }
295     }
296     }
297     }
298     return s;
299     }
300    
301     /**
302 jsr166 1.4 * Creates a new phaser without any initially registered parties,
303 jsr166 1.1 * initial phase number 0, and no parent. Any thread using this
304 jsr166 1.4 * phaser will need to first register for it.
305 jsr166 1.1 */
306     public Phaser() {
307     this(null);
308     }
309    
310     /**
311 jsr166 1.4 * Creates a new phaser with the given numbers of registered
312 jsr166 1.1 * unarrived parties, initial phase number 0, and no parent.
313     *
314     * @param parties the number of parties required to trip barrier
315     * @throws IllegalArgumentException if parties less than zero
316     * or greater than the maximum number of parties supported
317     */
318     public Phaser(int parties) {
319     this(null, parties);
320     }
321    
322     /**
323 jsr166 1.4 * Creates a new phaser with the given parent, without any
324 jsr166 1.1 * initially registered parties. If parent is non-null this phaser
325     * is registered with the parent and its initial phase number is
326     * the same as that of parent phaser.
327     *
328     * @param parent the parent phaser
329     */
330     public Phaser(Phaser parent) {
331     int phase = 0;
332     this.parent = parent;
333     if (parent != null) {
334     this.root = parent.root;
335     phase = parent.register();
336     }
337     else
338     this.root = this;
339     this.state = trippedStateFor(phase, 0);
340     }
341    
342     /**
343 jsr166 1.4 * Creates a new phaser with the given parent and numbers of
344 jsr166 1.1 * registered unarrived parties. If parent is non-null, this phaser
345     * is registered with the parent and its initial phase number is
346     * the same as that of parent phaser.
347     *
348     * @param parent the parent phaser
349     * @param parties the number of parties required to trip barrier
350     * @throws IllegalArgumentException if parties less than zero
351     * or greater than the maximum number of parties supported
352     */
353     public Phaser(Phaser parent, int parties) {
354     if (parties < 0 || parties > ushortMask)
355     throw new IllegalArgumentException("Illegal number of parties");
356     int phase = 0;
357     this.parent = parent;
358     if (parent != null) {
359     this.root = parent.root;
360     phase = parent.register();
361     }
362     else
363     this.root = this;
364     this.state = trippedStateFor(phase, parties);
365     }
366    
367     /**
368     * Adds a new unarrived party to this phaser.
369     *
370     * @return the current barrier phase number upon registration
371     * @throws IllegalStateException if attempting to register more
372     * than the maximum supported number of parties
373     */
374     public int register() {
375     return doRegister(1);
376     }
377    
378     /**
379     * Adds the given number of new unarrived parties to this phaser.
380     *
381     * @param parties the number of parties required to trip barrier
382     * @return the current barrier phase number upon registration
383     * @throws IllegalStateException if attempting to register more
384     * than the maximum supported number of parties
385     */
386     public int bulkRegister(int parties) {
387     if (parties < 0)
388     throw new IllegalArgumentException();
389     if (parties == 0)
390     return getPhase();
391     return doRegister(parties);
392     }
393    
394     /**
395     * Shared code for register, bulkRegister
396     */
397     private int doRegister(int registrations) {
398     int phase;
399     for (;;) {
400     long s = getReconciledState();
401     phase = phaseOf(s);
402     int unarrived = unarrivedOf(s) + registrations;
403     int parties = partiesOf(s) + registrations;
404     if (phase < 0)
405     break;
406     if (parties > ushortMask || unarrived > ushortMask)
407     throw new IllegalStateException(badBounds(parties, unarrived));
408     if (phase == phaseOf(root.state) &&
409     casState(s, stateFor(phase, parties, unarrived)))
410     break;
411     }
412     return phase;
413     }
414    
415     /**
416     * Arrives at the barrier, but does not wait for others. (You can
417     * in turn wait for others via {@link #awaitAdvance}).
418     *
419     * @return the barrier phase number upon entry to this method, or a
420     * negative value if terminated
421     * @throws IllegalStateException if not terminated and the number
422     * of unarrived parties would become negative
423     */
424     public int arrive() {
425     int phase;
426     for (;;) {
427     long s = state;
428     phase = phaseOf(s);
429     if (phase < 0)
430     break;
431     int parties = partiesOf(s);
432     int unarrived = unarrivedOf(s) - 1;
433     if (unarrived > 0) { // Not the last arrival
434     if (casState(s, s - 1)) // s-1 adds one arrival
435     break;
436     }
437     else if (unarrived == 0) { // the last arrival
438     Phaser par = parent;
439     if (par == null) { // directly trip
440     if (casState
441     (s,
442     trippedStateFor(onAdvance(phase, parties) ? -1 :
443     ((phase + 1) & phaseMask), parties))) {
444     releaseWaiters(phase);
445     break;
446     }
447     }
448     else { // cascade to parent
449     if (casState(s, s - 1)) { // zeroes unarrived
450     par.arrive();
451     reconcileState();
452     break;
453     }
454     }
455     }
456     else if (phase != phaseOf(root.state)) // or if unreconciled
457     reconcileState();
458     else
459     throw new IllegalStateException(badBounds(parties, unarrived));
460     }
461     return phase;
462     }
463    
464     /**
465     * Arrives at the barrier, and deregisters from it, without
466     * waiting for others. Deregistration reduces number of parties
467     * required to trip the barrier in future phases. If this phaser
468     * has a parent, and deregistration causes this phaser to have
469     * zero parties, this phaser is also deregistered from its parent.
470     *
471     * @return the current barrier phase number upon entry to
472     * this method, or a negative value if terminated
473     * @throws IllegalStateException if not terminated and the number
474     * of registered or unarrived parties would become negative
475     */
476     public int arriveAndDeregister() {
477     // similar code to arrive, but too different to merge
478     Phaser par = parent;
479     int phase;
480     for (;;) {
481     long s = state;
482     phase = phaseOf(s);
483     if (phase < 0)
484     break;
485     int parties = partiesOf(s) - 1;
486     int unarrived = unarrivedOf(s) - 1;
487     if (parties >= 0) {
488     if (unarrived > 0 || (unarrived == 0 && par != null)) {
489     if (casState
490     (s,
491     stateFor(phase, parties, unarrived))) {
492     if (unarrived == 0) {
493     par.arriveAndDeregister();
494     reconcileState();
495     }
496     break;
497     }
498     continue;
499     }
500     if (unarrived == 0) {
501     if (casState
502     (s,
503     trippedStateFor(onAdvance(phase, parties) ? -1 :
504     ((phase + 1) & phaseMask), parties))) {
505     releaseWaiters(phase);
506     break;
507     }
508     continue;
509     }
510     if (par != null && phase != phaseOf(root.state)) {
511     reconcileState();
512     continue;
513     }
514     }
515     throw new IllegalStateException(badBounds(parties, unarrived));
516     }
517     return phase;
518     }
519    
520     /**
521     * Arrives at the barrier and awaits others. Equivalent in effect
522     * to {@code awaitAdvance(arrive())}. If you instead need to
523     * await with interruption of timeout, and/or deregister upon
524     * arrival, you can arrange them using analogous constructions.
525     *
526     * @return the phase on entry to this method
527     * @throws IllegalStateException if not terminated and the number
528     * of unarrived parties would become negative
529     */
530     public int arriveAndAwaitAdvance() {
531     return awaitAdvance(arrive());
532     }
533    
534     /**
535     * Awaits the phase of the barrier to advance from the given
536     * value, or returns immediately if argument is negative or this
537     * barrier is terminated.
538     *
539     * @param phase the phase on entry to this method
540     * @return the phase on exit from this method
541     */
542     public int awaitAdvance(int phase) {
543     if (phase < 0)
544     return phase;
545     long s = getReconciledState();
546     int p = phaseOf(s);
547     if (p != phase)
548     return p;
549     if (unarrivedOf(s) == 0 && parent != null)
550     parent.awaitAdvance(phase);
551     // Fall here even if parent waited, to reconcile and help release
552     return untimedWait(phase);
553     }
554    
555     /**
556     * Awaits the phase of the barrier to advance from the given
557     * value, or returns immediately if argument is negative or this
558     * barrier is terminated, or throws InterruptedException if
559     * interrupted while waiting.
560     *
561     * @param phase the phase on entry to this method
562     * @return the phase on exit from this method
563     * @throws InterruptedException if thread interrupted while waiting
564     */
565     public int awaitAdvanceInterruptibly(int phase)
566     throws InterruptedException {
567     if (phase < 0)
568     return phase;
569     long s = getReconciledState();
570     int p = phaseOf(s);
571     if (p != phase)
572     return p;
573     if (unarrivedOf(s) == 0 && parent != null)
574     parent.awaitAdvanceInterruptibly(phase);
575     return interruptibleWait(phase);
576     }
577    
578     /**
579     * Awaits the phase of the barrier to advance from the given value
580     * or the given timeout elapses, or returns immediately if
581     * argument is negative or this barrier is terminated.
582     *
583     * @param phase the phase on entry to this method
584     * @return the phase on exit from this method
585     * @throws InterruptedException if thread interrupted while waiting
586     * @throws TimeoutException if timed out while waiting
587     */
588     public int awaitAdvanceInterruptibly(int phase,
589     long timeout, TimeUnit unit)
590     throws InterruptedException, TimeoutException {
591     if (phase < 0)
592     return phase;
593     long s = getReconciledState();
594     int p = phaseOf(s);
595     if (p != phase)
596     return p;
597     if (unarrivedOf(s) == 0 && parent != null)
598     parent.awaitAdvanceInterruptibly(phase, timeout, unit);
599     return timedWait(phase, unit.toNanos(timeout));
600     }
601    
602     /**
603     * Forces this barrier to enter termination state. Counts of
604     * arrived and registered parties are unaffected. If this phaser
605     * has a parent, it too is terminated. This method may be useful
606     * for coordinating recovery after one or more tasks encounter
607     * unexpected exceptions.
608     */
609     public void forceTermination() {
610     for (;;) {
611     long s = getReconciledState();
612     int phase = phaseOf(s);
613     int parties = partiesOf(s);
614     int unarrived = unarrivedOf(s);
615     if (phase < 0 ||
616     casState(s, stateFor(-1, parties, unarrived))) {
617     releaseWaiters(0);
618     releaseWaiters(1);
619     if (parent != null)
620     parent.forceTermination();
621     return;
622     }
623     }
624     }
625    
626     /**
627     * Returns the current phase number. The maximum phase number is
628     * {@code Integer.MAX_VALUE}, after which it restarts at
629     * zero. Upon termination, the phase number is negative.
630     *
631     * @return the phase number, or a negative value if terminated
632     */
633     public final int getPhase() {
634     return phaseOf(getReconciledState());
635     }
636    
637     /**
638     * Returns {@code true} if the current phase number equals the given phase.
639     *
640     * @param phase the phase
641     * @return {@code true} if the current phase number equals the given phase
642     */
643     public final boolean hasPhase(int phase) {
644     return phaseOf(getReconciledState()) == phase;
645     }
646    
647     /**
648     * Returns the number of parties registered at this barrier.
649     *
650     * @return the number of parties
651     */
652     public int getRegisteredParties() {
653     return partiesOf(state);
654     }
655    
656     /**
657     * Returns the number of parties that have arrived at the current
658     * phase of this barrier.
659     *
660     * @return the number of arrived parties
661     */
662     public int getArrivedParties() {
663     return arrivedOf(state);
664     }
665    
666     /**
667     * Returns the number of registered parties that have not yet
668     * arrived at the current phase of this barrier.
669     *
670     * @return the number of unarrived parties
671     */
672     public int getUnarrivedParties() {
673     return unarrivedOf(state);
674     }
675    
676     /**
677 jsr166 1.4 * Returns the parent of this phaser, or {@code null} if none.
678 jsr166 1.1 *
679 jsr166 1.4 * @return the parent of this phaser, or {@code null} if none
680 jsr166 1.1 */
681     public Phaser getParent() {
682     return parent;
683     }
684    
685     /**
686     * Returns the root ancestor of this phaser, which is the same as
687     * this phaser if it has no parent.
688     *
689     * @return the root ancestor of this phaser
690     */
691     public Phaser getRoot() {
692     return root;
693     }
694    
695     /**
696     * Returns {@code true} if this barrier has been terminated.
697     *
698     * @return {@code true} if this barrier has been terminated
699     */
700     public boolean isTerminated() {
701     return getPhase() < 0;
702     }
703    
704     /**
705     * Overridable method to perform an action upon phase advance, and
706     * to control termination. This method is invoked whenever the
707     * barrier is tripped (and thus all other waiting parties are
708 jsr166 1.4 * dormant). If it returns {@code true}, then, rather than advance
709     * the phase number, this barrier will be set to a final
710     * termination state, and subsequent calls to {@link #isTerminated}
711     * will return true.
712 jsr166 1.1 *
713 jsr166 1.5 * <p>The default version returns {@code true} when the number of
714 jsr166 1.1 * registered parties is zero. Normally, overrides that arrange
715     * termination for other reasons should also preserve this
716     * property.
717     *
718 jsr166 1.5 * <p>You may override this method to perform an action with side
719 jsr166 1.1 * effects visible to participating tasks, but it is in general
720     * only sensible to do so in designs where all parties register
721 jsr166 1.4 * before any arrive, and all {@link #awaitAdvance} at each phase.
722 jsr166 1.1 * Otherwise, you cannot ensure lack of interference. In
723     * particular, this method may be invoked more than once per
724     * transition if other parties successfully register while the
725     * invocation of this method is in progress, thus postponing the
726     * transition until those parties also arrive, re-triggering this
727     * method.
728     *
729     * @param phase the phase number on entering the barrier
730     * @param registeredParties the current number of registered parties
731     * @return {@code true} if this barrier should terminate
732     */
733     protected boolean onAdvance(int phase, int registeredParties) {
734     return registeredParties <= 0;
735     }
736    
737     /**
738     * Returns a string identifying this phaser, as well as its
739     * state. The state, in brackets, includes the String {@code
740     * "phase = "} followed by the phase number, {@code "parties = "}
741     * followed by the number of registered parties, and {@code
742     * "arrived = "} followed by the number of arrived parties.
743     *
744     * @return a string identifying this barrier, as well as its state
745     */
746     public String toString() {
747     long s = getReconciledState();
748     return super.toString() +
749     "[phase = " + phaseOf(s) +
750     " parties = " + partiesOf(s) +
751     " arrived = " + arrivedOf(s) + "]";
752     }
753    
754     // methods for waiting
755    
756     /**
757     * Wait nodes for Treiber stack representing wait queue
758     */
759     static final class QNode implements ForkJoinPool.ManagedBlocker {
760     final Phaser phaser;
761     final int phase;
762     final long startTime;
763     final long nanos;
764     final boolean timed;
765     final boolean interruptible;
766     volatile boolean wasInterrupted = false;
767     volatile Thread thread; // nulled to cancel wait
768     QNode next;
769     QNode(Phaser phaser, int phase, boolean interruptible,
770     boolean timed, long startTime, long nanos) {
771     this.phaser = phaser;
772     this.phase = phase;
773     this.timed = timed;
774     this.interruptible = interruptible;
775     this.startTime = startTime;
776     this.nanos = nanos;
777     thread = Thread.currentThread();
778     }
779     public boolean isReleasable() {
780     return (thread == null ||
781     phaser.getPhase() != phase ||
782     (interruptible && wasInterrupted) ||
783     (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
784     }
785     public boolean block() {
786     if (Thread.interrupted()) {
787     wasInterrupted = true;
788     if (interruptible)
789     return true;
790     }
791     if (!timed)
792     LockSupport.park(this);
793     else {
794     long waitTime = nanos - (System.nanoTime() - startTime);
795     if (waitTime <= 0)
796     return true;
797     LockSupport.parkNanos(this, waitTime);
798     }
799     return isReleasable();
800     }
801     void signal() {
802     Thread t = thread;
803     if (t != null) {
804     thread = null;
805     LockSupport.unpark(t);
806     }
807     }
808     boolean doWait() {
809     if (thread != null) {
810     try {
811     ForkJoinPool.managedBlock(this, false);
812     } catch (InterruptedException ie) {
813     }
814     }
815     return wasInterrupted;
816     }
817    
818     }
819    
820     /**
821     * Removes and signals waiting threads from wait queue.
822     */
823     private void releaseWaiters(int phase) {
824     AtomicReference<QNode> head = queueFor(phase);
825     QNode q;
826     while ((q = head.get()) != null) {
827     if (head.compareAndSet(q, q.next))
828     q.signal();
829     }
830     }
831    
832     /**
833     * Tries to enqueue given node in the appropriate wait queue.
834     *
835     * @return true if successful
836     */
837     private boolean tryEnqueue(QNode node) {
838     AtomicReference<QNode> head = queueFor(node.phase);
839     return head.compareAndSet(node.next = head.get(), node);
840     }
841    
842     /**
843     * Enqueues node and waits unless aborted or signalled.
844     *
845     * @return current phase
846     */
847     private int untimedWait(int phase) {
848     QNode node = null;
849     boolean queued = false;
850     boolean interrupted = false;
851     int p;
852     while ((p = getPhase()) == phase) {
853     if (Thread.interrupted())
854     interrupted = true;
855     else if (node == null)
856     node = new QNode(this, phase, false, false, 0, 0);
857     else if (!queued)
858     queued = tryEnqueue(node);
859     else
860     interrupted = node.doWait();
861     }
862     if (node != null)
863     node.thread = null;
864     releaseWaiters(phase);
865     if (interrupted)
866     Thread.currentThread().interrupt();
867     return p;
868     }
869    
870     /**
871     * Interruptible version
872     * @return current phase
873     */
874     private int interruptibleWait(int phase) throws InterruptedException {
875     QNode node = null;
876     boolean queued = false;
877     boolean interrupted = false;
878     int p;
879     while ((p = getPhase()) == phase && !interrupted) {
880     if (Thread.interrupted())
881     interrupted = true;
882     else if (node == null)
883     node = new QNode(this, phase, true, false, 0, 0);
884     else if (!queued)
885     queued = tryEnqueue(node);
886     else
887     interrupted = node.doWait();
888     }
889     if (node != null)
890     node.thread = null;
891     if (p != phase || (p = getPhase()) != phase)
892     releaseWaiters(phase);
893     if (interrupted)
894     throw new InterruptedException();
895     return p;
896     }
897    
898     /**
899     * Timeout version.
900     * @return current phase
901     */
902     private int timedWait(int phase, long nanos)
903     throws InterruptedException, TimeoutException {
904     long startTime = System.nanoTime();
905     QNode node = null;
906     boolean queued = false;
907     boolean interrupted = false;
908     int p;
909     while ((p = getPhase()) == phase && !interrupted) {
910     if (Thread.interrupted())
911     interrupted = true;
912     else if (nanos - (System.nanoTime() - startTime) <= 0)
913     break;
914     else if (node == null)
915     node = new QNode(this, phase, true, true, startTime, nanos);
916     else if (!queued)
917     queued = tryEnqueue(node);
918     else
919     interrupted = node.doWait();
920     }
921     if (node != null)
922     node.thread = null;
923     if (p != phase || (p = getPhase()) != phase)
924     releaseWaiters(phase);
925     if (interrupted)
926     throw new InterruptedException();
927     if (p == phase)
928     throw new TimeoutException();
929     return p;
930     }
931    
932     // Unsafe mechanics
933    
934     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
935 jsr166 1.2 private static final long stateOffset =
936 jsr166 1.3 objectFieldOffset("state", Phaser.class);
937 jsr166 1.1
938 jsr166 1.2 private final boolean casState(long cmp, long val) {
939 jsr166 1.1 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
940     }
941 jsr166 1.3
942     private static long objectFieldOffset(String field, Class<?> klazz) {
943     try {
944     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
945     } catch (NoSuchFieldException e) {
946     // Convert Exception to corresponding Error
947     NoSuchFieldError error = new NoSuchFieldError(field);
948     error.initCause(e);
949     throw error;
950     }
951     }
952 jsr166 1.1 }