ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.55
Committed: Mon Dec 13 00:19:27 2010 UTC (13 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.54: +6 -6 lines
Log Message:
minor comment tidying

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9 dl 1.17 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.10 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
22 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33     * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.37 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
42 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 jsr166 1.10 *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62 dl 1.37 * the phaser advances to (or is already at) a different phase.
63 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68 dl 1.37 * state of the phaser. If necessary, you can perform any
69 jsr166 1.10 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74 jsr166 1.1 *
75     * </ul>
76     *
77 dl 1.37 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91 jsr166 1.1 *
92 dl 1.32 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 jsr166 1.10 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 jsr166 1.44 * from its parent.
109     *
110 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.37 * only by registered parties, the current state of a phaser may be
112 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
113     * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116     * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 jsr166 1.1 *
122     * <p><b>Sample usages:</b>
123     *
124 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 jsr166 1.1 *
129     * <pre> {@code
130 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
132 jsr166 1.7 * // create and start threads
133 jsr166 1.8 * for (Runnable task : tasks) {
134 jsr166 1.1 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.8 * task.run();
139 jsr166 1.1 * }
140     * }.start();
141     * }
142     *
143 jsr166 1.7 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.1 * }}</pre>
146     *
147     * <p>One way to cause a set of threads to repeatedly perform actions
148     * for a given number of iterations is to override {@code onAdvance}:
149     *
150     * <pre> {@code
151 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.1 * final Phaser phaser = new Phaser() {
153 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.10 * for (final Runnable task : tasks) {
159 jsr166 1.1 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.8 * task.run();
164 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.10 * } while (!phaser.isTerminated());
166 jsr166 1.1 * }
167     * }.start();
168     * }
169     * phaser.arriveAndDeregister(); // deregister self, don't wait
170     * }}</pre>
171     *
172 jsr166 1.10 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174     * <pre> {@code
175     * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178     * phaser.arriveAndAwaitAdvance();}</pre>
179     *
180     * <p>Related constructions may be used to await particular phase numbers
181     * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184     * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192     * }
193     * phaser.arriveAndDeregister();
194     * }}</pre>
195     *
196     *
197 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.10 *
204 jsr166 1.1 * <pre> {@code
205 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.39 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.1 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.39 * tasks[i] = new Task(ph);
214 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.1 * }
216 dl 1.39 * }}</pre>
217 jsr166 1.1 *
218     * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.37 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
222     *
223     * <p><b>Implementation notes</b>: This implementation restricts the
224     * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
227 jsr166 1.1 * of participants.
228     *
229     * @since 1.7
230     * @author Doug Lea
231     */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235     * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237     */
238    
239     /**
240 jsr166 1.55 * Primary state representation, holding four bit-fields:
241 jsr166 1.1 *
242 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246 jsr166 1.1 *
247 dl 1.39 * Except that a phaser with no registered parties is
248 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
249 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263 dl 1.53 * ancestors until it is actually accessed -- see method
264     * reconcileState.
265 jsr166 1.1 */
266     private volatile long state;
267    
268 dl 1.33 private static final int MAX_PARTIES = 0xffff;
269     private static final int MAX_PHASE = 0x7fffffff;
270     private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272 jsr166 1.52 private static final long PHASE_MASK = -1L << PHASE_SHIFT;
273 dl 1.33 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
274     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
275     private static final long TERMINATION_BIT = 1L << 63;
276 dl 1.17
277 dl 1.39 // some special values
278     private static final int ONE_ARRIVAL = 1;
279     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
280     private static final int EMPTY = 1;
281    
282 dl 1.17 // The following unpacking methods are usually manually inlined
283 jsr166 1.1
284     private static int unarrivedOf(long s) {
285 dl 1.39 int counts = (int)s;
286 jsr166 1.40 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
287 jsr166 1.1 }
288    
289     private static int partiesOf(long s) {
290 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
291 jsr166 1.1 }
292    
293     private static int phaseOf(long s) {
294 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
295 jsr166 1.1 }
296    
297     private static int arrivedOf(long s) {
298 dl 1.39 int counts = (int)s;
299 jsr166 1.40 return (counts == EMPTY) ? 0 :
300 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 jsr166 1.1 }
302    
303     /**
304     * The parent of this phaser, or null if none
305     */
306     private final Phaser parent;
307    
308     /**
309 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
310 jsr166 1.1 */
311     private final Phaser root;
312    
313     /**
314     * Heads of Treiber stacks for waiting threads. To eliminate
315 dl 1.14 * contention when releasing some threads while adding others, we
316 jsr166 1.1 * use two of them, alternating across even and odd phases.
317 dl 1.14 * Subphasers share queues with root to speed up releases.
318 jsr166 1.1 */
319 dl 1.15 private final AtomicReference<QNode> evenQ;
320     private final AtomicReference<QNode> oddQ;
321 jsr166 1.1
322     private AtomicReference<QNode> queueFor(int phase) {
323 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
324 jsr166 1.1 }
325    
326     /**
327 dl 1.33 * Returns message string for bounds exceptions on arrival.
328     */
329     private String badArrive(long s) {
330     return "Attempted arrival of unregistered party for " +
331     stateToString(s);
332     }
333    
334     /**
335     * Returns message string for bounds exceptions on registration.
336     */
337     private String badRegister(long s) {
338     return "Attempt to register more than " +
339     MAX_PARTIES + " parties for " + stateToString(s);
340     }
341    
342     /**
343 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
344     * Manually tuned to speed up and minimize race windows for the
345     * common case of just decrementing unarrived field.
346     *
347 dl 1.39 * @param deregister false for arrive, true for arriveAndDeregister
348 dl 1.17 */
349 dl 1.39 private int doArrive(boolean deregister) {
350     int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
351 dl 1.50 final Phaser root = this.root;
352     for (;;) {
353     long s = (root == this) ? state : reconcileState();
354     int phase = (int)(s >>> PHASE_SHIFT);
355 dl 1.39 int counts = (int)s;
356 dl 1.50 int unarrived = (counts & UNARRIVED_MASK) - 1;
357     if (phase < 0)
358     return phase;
359     else if (counts == EMPTY || unarrived < 0) {
360     if (root == this || reconcileState() == s)
361 dl 1.33 throw new IllegalStateException(badArrive(s));
362     }
363 dl 1.24 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
364 dl 1.50 if (unarrived == 0) {
365     long n = s & PARTIES_MASK; // base of next state
366 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367 dl 1.50 if (root != this)
368     return parent.doArrive(nextUnarrived == 0);
369     if (onAdvance(phase, nextUnarrived))
370     n |= TERMINATION_BIT;
371     else if (nextUnarrived == 0)
372     n |= EMPTY;
373     else
374     n |= nextUnarrived;
375     n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
376     UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377     releaseWaiters(phase);
378 dl 1.17 }
379 dl 1.50 return phase;
380 dl 1.17 }
381     }
382     }
383    
384     /**
385     * Implementation of register, bulkRegister
386     *
387 dl 1.32 * @param registrations number to add to both parties and
388     * unarrived fields. Must be greater than zero.
389 jsr166 1.1 */
390 dl 1.17 private int doRegister(int registrations) {
391 jsr166 1.26 // adjustment to state
392     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
393 dl 1.39 Phaser par = parent;
394     int phase;
395 dl 1.21 for (;;) {
396 dl 1.39 long s = state;
397     int counts = (int)s;
398     int parties = counts >>> PARTIES_SHIFT;
399     int unarrived = counts & UNARRIVED_MASK;
400     if (registrations > MAX_PARTIES - parties)
401 dl 1.21 throw new IllegalStateException(badRegister(s));
402 dl 1.39 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
403     break;
404     else if (counts != EMPTY) { // not 1st registration
405     if (par == null || reconcileState() == s) {
406     if (unarrived == 0) // wait out advance
407     root.internalAwaitAdvance(phase, null);
408     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
409     s, s + adj))
410     break;
411     }
412     }
413     else if (par == null) { // 1st root registration
414 jsr166 1.54 long next = ((long)phase << PHASE_SHIFT) | adj;
415 dl 1.39 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
416     break;
417     }
418     else {
419 jsr166 1.40 synchronized (this) { // 1st sub registration
420 dl 1.39 if (state == s) { // recheck under lock
421     par.doRegister(1);
422     do { // force current phase
423     phase = (int)(root.state >>> PHASE_SHIFT);
424     // assert phase < 0 || (int)state == EMPTY;
425     } while (!UNSAFE.compareAndSwapLong
426     (this, stateOffset, state,
427 jsr166 1.54 ((long)phase << PHASE_SHIFT) | adj));
428 dl 1.39 break;
429 dl 1.33 }
430     }
431     }
432 dl 1.17 }
433 dl 1.39 return phase;
434 dl 1.17 }
435    
436     /**
437 dl 1.39 * Resolves lagged phase propagation from root if necessary.
438 dl 1.53 * Reconciliation normally occurs when root has advanced but
439     * subphasers have not yet done so, in which case they must finish
440     * their own advance by setting unarrived to parties (or if
441     * parties is zero, resetting to unregistered EMPTY state).
442     * However, this method may also be called when "floating"
443     * subphasers with possibly some unarrived parties are merely
444     * catching up to current phase, in which case counts are
445     * unaffected.
446     *
447     * @return reconciled state
448 jsr166 1.1 */
449     private long reconcileState() {
450 jsr166 1.52 final Phaser root = this.root;
451 dl 1.31 long s = state;
452 jsr166 1.52 if (root != this) {
453 dl 1.53 int phase, u, p;
454     // CAS root phase with current parties; possibly trip unarrived
455     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
456     (int)(s >>> PHASE_SHIFT) &&
457     !UNSAFE.compareAndSwapLong
458     (this, stateOffset, s,
459 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
460     (s & PARTIES_MASK) |
461 dl 1.53 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
462     (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
463     s = state;
464 jsr166 1.1 }
465 dl 1.31 return s;
466 jsr166 1.1 }
467    
468     /**
469 dl 1.37 * Creates a new phaser with no initially registered parties, no
470     * parent, and initial phase number 0. Any thread using this
471     * phaser will need to first register for it.
472 jsr166 1.1 */
473     public Phaser() {
474 dl 1.15 this(null, 0);
475 jsr166 1.1 }
476    
477     /**
478 dl 1.37 * Creates a new phaser with the given number of registered
479     * unarrived parties, no parent, and initial phase number 0.
480 jsr166 1.1 *
481 dl 1.37 * @param parties the number of parties required to advance to the
482     * next phase
483 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
484     * or greater than the maximum number of parties supported
485     */
486     public Phaser(int parties) {
487     this(null, parties);
488     }
489    
490     /**
491 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
492 jsr166 1.1 *
493 dl 1.37 * @param parent the parent phaser
494 jsr166 1.1 */
495     public Phaser(Phaser parent) {
496 dl 1.15 this(parent, 0);
497 jsr166 1.1 }
498    
499     /**
500 dl 1.37 * Creates a new phaser with the given parent and number of
501 dl 1.50 * registered unarrived parties. When the given parent is non-null
502 jsr166 1.44 * and the given number of parties is greater than zero, this
503     * child phaser is registered with its parent.
504 jsr166 1.1 *
505 dl 1.37 * @param parent the parent phaser
506     * @param parties the number of parties required to advance to the
507     * next phase
508 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
509     * or greater than the maximum number of parties supported
510     */
511     public Phaser(Phaser parent, int parties) {
512 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
513 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
514 dl 1.39 int phase = 0;
515 jsr166 1.1 this.parent = parent;
516     if (parent != null) {
517 jsr166 1.42 final Phaser root = parent.root;
518     this.root = root;
519     this.evenQ = root.evenQ;
520     this.oddQ = root.oddQ;
521 dl 1.34 if (parties != 0)
522 dl 1.39 phase = parent.doRegister(1);
523 jsr166 1.1 }
524 dl 1.15 else {
525 jsr166 1.1 this.root = this;
526 dl 1.15 this.evenQ = new AtomicReference<QNode>();
527     this.oddQ = new AtomicReference<QNode>();
528     }
529 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
530     ((long)phase << PHASE_SHIFT) |
531     ((long)parties << PARTIES_SHIFT) |
532     ((long)parties);
533 jsr166 1.1 }
534    
535     /**
536 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
537 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
538 dl 1.37 * may await its completion before returning. If this phaser has
539     * a parent, and this phaser previously had no registered parties,
540 dl 1.50 * this child phaser is also registered with its parent. If
541     * this phaser is terminated, the attempt to register has
542     * no effect, and a negative value is returned.
543     *
544     * @return the arrival phase number to which this registration
545     * applied. If this value is negative, then this phaser has
546 jsr166 1.51 * terminated, in which case registration has no effect.
547 jsr166 1.1 * @throws IllegalStateException if attempting to register more
548     * than the maximum supported number of parties
549     */
550     public int register() {
551     return doRegister(1);
552     }
553    
554     /**
555 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
556 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
557 dl 1.34 * this method may await its completion before returning. If this
558 dl 1.50 * phaser has a parent, and the given number of parties is greater
559     * than zero, and this phaser previously had no registered
560 jsr166 1.44 * parties, this child phaser is also registered with its parent.
561 dl 1.50 * If this phaser is terminated, the attempt to register has no
562     * effect, and a negative value is returned.
563 jsr166 1.1 *
564 dl 1.37 * @param parties the number of additional parties required to
565     * advance to the next phase
566 dl 1.50 * @return the arrival phase number to which this registration
567     * applied. If this value is negative, then this phaser has
568 jsr166 1.51 * terminated, in which case registration has no effect.
569 jsr166 1.1 * @throws IllegalStateException if attempting to register more
570     * than the maximum supported number of parties
571 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
572 jsr166 1.1 */
573     public int bulkRegister(int parties) {
574     if (parties < 0)
575     throw new IllegalArgumentException();
576 dl 1.34 if (parties == 0)
577 jsr166 1.1 return getPhase();
578     return doRegister(parties);
579     }
580    
581     /**
582 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
583 dl 1.34 *
584     * <p>It is a usage error for an unregistered party to invoke this
585     * method. However, this error may result in an {@code
586     * IllegalStateException} only upon some subsequent operation on
587 dl 1.37 * this phaser, if ever.
588 jsr166 1.1 *
589 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
590 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
591     * of unarrived parties would become negative
592     */
593     public int arrive() {
594 dl 1.39 return doArrive(false);
595 jsr166 1.1 }
596    
597     /**
598 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
599 dl 1.34 * for others to arrive. Deregistration reduces the number of
600 dl 1.37 * parties required to advance in future phases. If this phaser
601     * has a parent, and deregistration causes this phaser to have
602     * zero parties, this phaser is also deregistered from its parent.
603 dl 1.34 *
604     * <p>It is a usage error for an unregistered party to invoke this
605     * method. However, this error may result in an {@code
606     * IllegalStateException} only upon some subsequent operation on
607 dl 1.37 * this phaser, if ever.
608 jsr166 1.1 *
609 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
610 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
611     * of registered or unarrived parties would become negative
612     */
613     public int arriveAndDeregister() {
614 dl 1.39 return doArrive(true);
615 jsr166 1.1 }
616    
617     /**
618 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
619 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
620     * interruption or timeout, you can arrange this with an analogous
621 jsr166 1.12 * construction using one of the other forms of the {@code
622     * awaitAdvance} method. If instead you need to deregister upon
623 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
624     *
625     * <p>It is a usage error for an unregistered party to invoke this
626     * method. However, this error may result in an {@code
627     * IllegalStateException} only upon some subsequent operation on
628 dl 1.37 * this phaser, if ever.
629 jsr166 1.1 *
630 jsr166 1.49 * @return the arrival phase number, or the (negative)
631     * {@linkplain #getPhase() current phase} if terminated
632 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
633     * of unarrived parties would become negative
634     */
635     public int arriveAndAwaitAdvance() {
636 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
637     final Phaser root = this.root;
638     for (;;) {
639     long s = (root == this) ? state : reconcileState();
640     int phase = (int)(s >>> PHASE_SHIFT);
641     int counts = (int)s;
642     int unarrived = (counts & UNARRIVED_MASK) - 1;
643     if (phase < 0)
644     return phase;
645     else if (counts == EMPTY || unarrived < 0) {
646     if (reconcileState() == s)
647     throw new IllegalStateException(badArrive(s));
648     }
649     else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
650     s -= ONE_ARRIVAL)) {
651     if (unarrived != 0)
652     return root.internalAwaitAdvance(phase, null);
653     if (root != this)
654     return parent.arriveAndAwaitAdvance();
655     long n = s & PARTIES_MASK; // base of next state
656 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
657 dl 1.50 if (onAdvance(phase, nextUnarrived))
658     n |= TERMINATION_BIT;
659     else if (nextUnarrived == 0)
660     n |= EMPTY;
661     else
662     n |= nextUnarrived;
663     int nextPhase = (phase + 1) & MAX_PHASE;
664     n |= (long)nextPhase << PHASE_SHIFT;
665     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
666     return (int)(state >>> PHASE_SHIFT); // terminated
667     releaseWaiters(phase);
668     return nextPhase;
669     }
670     }
671 jsr166 1.1 }
672    
673     /**
674 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
675     * value, returning immediately if the current phase is not equal
676     * to the given phase value or this phaser is terminated.
677 jsr166 1.1 *
678 jsr166 1.10 * @param phase an arrival phase number, or negative value if
679     * terminated; this argument is normally the value returned by a
680 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
681 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
682     * negative, or the (negative) {@linkplain #getPhase() current phase}
683     * if terminated
684 jsr166 1.1 */
685     public int awaitAdvance(int phase) {
686 dl 1.50 final Phaser root = this.root;
687 jsr166 1.51 long s = (root == this) ? state : reconcileState();
688     int p = (int)(s >>> PHASE_SHIFT);
689 jsr166 1.1 if (phase < 0)
690     return phase;
691 dl 1.50 if (p == phase)
692     return root.internalAwaitAdvance(phase, null);
693 dl 1.34 return p;
694 jsr166 1.1 }
695    
696     /**
697 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
698 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
699 dl 1.37 * while waiting, or returning immediately if the current phase is
700     * not equal to the given phase value or this phaser is
701     * terminated.
702 jsr166 1.10 *
703     * @param phase an arrival phase number, or negative value if
704     * terminated; this argument is normally the value returned by a
705 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
706 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
707     * negative, or the (negative) {@linkplain #getPhase() current phase}
708     * if terminated
709 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
710     */
711     public int awaitAdvanceInterruptibly(int phase)
712     throws InterruptedException {
713 dl 1.50 final Phaser root = this.root;
714 jsr166 1.51 long s = (root == this) ? state : reconcileState();
715     int p = (int)(s >>> PHASE_SHIFT);
716 jsr166 1.1 if (phase < 0)
717     return phase;
718 dl 1.39 if (p == phase) {
719 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
720     p = root.internalAwaitAdvance(phase, node);
721     if (node.wasInterrupted)
722     throw new InterruptedException();
723 dl 1.24 }
724     return p;
725 jsr166 1.1 }
726    
727     /**
728 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
729 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
730     * InterruptedException} if interrupted while waiting, or
731 dl 1.37 * returning immediately if the current phase is not equal to the
732     * given phase value or this phaser is terminated.
733 jsr166 1.10 *
734     * @param phase an arrival phase number, or negative value if
735     * terminated; this argument is normally the value returned by a
736 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
737 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
738     * {@code unit}
739     * @param unit a {@code TimeUnit} determining how to interpret the
740     * {@code timeout} parameter
741 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
742     * negative, or the (negative) {@linkplain #getPhase() current phase}
743     * if terminated
744 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
745     * @throws TimeoutException if timed out while waiting
746     */
747     public int awaitAdvanceInterruptibly(int phase,
748     long timeout, TimeUnit unit)
749     throws InterruptedException, TimeoutException {
750 dl 1.50 long nanos = unit.toNanos(timeout);
751     final Phaser root = this.root;
752 jsr166 1.51 long s = (root == this) ? state : reconcileState();
753     int p = (int)(s >>> PHASE_SHIFT);
754 jsr166 1.47 if (phase < 0)
755     return phase;
756 dl 1.39 if (p == phase) {
757 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
758     p = root.internalAwaitAdvance(phase, node);
759     if (node.wasInterrupted)
760     throw new InterruptedException();
761     else if (p == phase)
762     throw new TimeoutException();
763 dl 1.24 }
764     return p;
765 jsr166 1.1 }
766    
767     /**
768 dl 1.37 * Forces this phaser to enter termination state. Counts of
769 dl 1.39 * registered parties are unaffected. If this phaser is a member
770     * of a tiered set of phasers, then all of the phasers in the set
771     * are terminated. If this phaser is already terminated, this
772     * method has no effect. This method may be useful for
773     * coordinating recovery after one or more tasks encounter
774     * unexpected exceptions.
775 jsr166 1.1 */
776     public void forceTermination() {
777 jsr166 1.23 // Only need to change root state
778     final Phaser root = this.root;
779 dl 1.14 long s;
780 jsr166 1.23 while ((s = root.state) >= 0) {
781 dl 1.53 if (UNSAFE.compareAndSwapLong(root, stateOffset,
782     s, s | TERMINATION_BIT)) {
783 jsr166 1.45 // signal all threads
784     releaseWaiters(0);
785 jsr166 1.23 releaseWaiters(1);
786     return;
787     }
788     }
789 jsr166 1.1 }
790    
791     /**
792     * Returns the current phase number. The maximum phase number is
793     * {@code Integer.MAX_VALUE}, after which it restarts at
794 dl 1.37 * zero. Upon termination, the phase number is negative,
795     * in which case the prevailing phase prior to termination
796     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
797 jsr166 1.1 *
798     * @return the phase number, or a negative value if terminated
799     */
800     public final int getPhase() {
801 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
802 jsr166 1.1 }
803    
804     /**
805 dl 1.37 * Returns the number of parties registered at this phaser.
806 jsr166 1.1 *
807     * @return the number of parties
808     */
809     public int getRegisteredParties() {
810 dl 1.31 return partiesOf(state);
811 jsr166 1.1 }
812    
813     /**
814 jsr166 1.10 * Returns the number of registered parties that have arrived at
815 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
816     * the returned value is meaningless and arbitrary.
817 jsr166 1.1 *
818     * @return the number of arrived parties
819     */
820     public int getArrivedParties() {
821 dl 1.39 return arrivedOf(reconcileState());
822 jsr166 1.1 }
823    
824     /**
825     * Returns the number of registered parties that have not yet
826 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
827     * terminated, the returned value is meaningless and arbitrary.
828 jsr166 1.1 *
829     * @return the number of unarrived parties
830     */
831     public int getUnarrivedParties() {
832 dl 1.39 return unarrivedOf(reconcileState());
833 jsr166 1.1 }
834    
835     /**
836 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
837 jsr166 1.1 *
838 dl 1.37 * @return the parent of this phaser, or {@code null} if none
839 jsr166 1.1 */
840     public Phaser getParent() {
841     return parent;
842     }
843    
844     /**
845 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
846     * this phaser if it has no parent.
847 jsr166 1.1 *
848 dl 1.37 * @return the root ancestor of this phaser
849 jsr166 1.1 */
850     public Phaser getRoot() {
851     return root;
852     }
853    
854     /**
855 dl 1.37 * Returns {@code true} if this phaser has been terminated.
856 jsr166 1.1 *
857 dl 1.37 * @return {@code true} if this phaser has been terminated
858 jsr166 1.1 */
859     public boolean isTerminated() {
860 dl 1.31 return root.state < 0L;
861 jsr166 1.1 }
862    
863     /**
864 jsr166 1.10 * Overridable method to perform an action upon impending phase
865     * advance, and to control termination. This method is invoked
866 dl 1.37 * upon arrival of the party advancing this phaser (when all other
867 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
868 dl 1.39 * true}, this phaser will be set to a final termination state
869     * upon advance, and subsequent calls to {@link #isTerminated}
870     * will return true. Any (unchecked) Exception or Error thrown by
871     * an invocation of this method is propagated to the party
872     * attempting to advance this phaser, in which case no advance
873     * occurs.
874 jsr166 1.10 *
875 dl 1.37 * <p>The arguments to this method provide the state of the phaser
876 dl 1.17 * prevailing for the current transition. The effects of invoking
877 dl 1.37 * arrival, registration, and waiting methods on this phaser from
878 dl 1.15 * within {@code onAdvance} are unspecified and should not be
879 dl 1.17 * relied on.
880     *
881 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
882     * {@code onAdvance} is invoked only for its root phaser on each
883 dl 1.17 * advance.
884 jsr166 1.1 *
885 dl 1.33 * <p>To support the most common use cases, the default
886     * implementation of this method returns {@code true} when the
887     * number of registered parties has become zero as the result of a
888     * party invoking {@code arriveAndDeregister}. You can disable
889     * this behavior, thus enabling continuation upon future
890     * registrations, by overriding this method to always return
891     * {@code false}:
892     *
893     * <pre> {@code
894     * Phaser phaser = new Phaser() {
895     * protected boolean onAdvance(int phase, int parties) { return false; }
896     * }}</pre>
897 jsr166 1.1 *
898 dl 1.37 * @param phase the current phase number on entry to this method,
899     * before this phaser is advanced
900 jsr166 1.1 * @param registeredParties the current number of registered parties
901 dl 1.37 * @return {@code true} if this phaser should terminate
902 jsr166 1.1 */
903     protected boolean onAdvance(int phase, int registeredParties) {
904 dl 1.36 return registeredParties == 0;
905 jsr166 1.1 }
906    
907     /**
908 dl 1.37 * Returns a string identifying this phaser, as well as its
909 dl 1.21 * state. The state, in brackets, includes the String {@code
910     * "phase = "} followed by the phase number, {@code "parties = "}
911     * followed by the number of registered parties, and {@code
912     * "arrived = "} followed by the number of arrived parties.
913 jsr166 1.1 *
914 dl 1.37 * @return a string identifying this phaser, as well as its state
915 jsr166 1.1 */
916     public String toString() {
917 dl 1.21 return stateToString(reconcileState());
918     }
919    
920     /**
921     * Implementation of toString and string-based error messages
922     */
923     private String stateToString(long s) {
924 jsr166 1.1 return super.toString() +
925     "[phase = " + phaseOf(s) +
926     " parties = " + partiesOf(s) +
927     " arrived = " + arrivedOf(s) + "]";
928     }
929    
930 dl 1.21 // Waiting mechanics
931    
932 jsr166 1.1 /**
933 jsr166 1.30 * Removes and signals threads from queue for phase.
934 jsr166 1.1 */
935     private void releaseWaiters(int phase) {
936 dl 1.37 QNode q; // first element of queue
937     Thread t; // its thread
938 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
939 dl 1.17 while ((q = head.get()) != null &&
940 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
941 dl 1.37 if (head.compareAndSet(q, q.next) &&
942     (t = q.thread) != null) {
943     q.thread = null;
944     LockSupport.unpark(t);
945     }
946 jsr166 1.1 }
947     }
948    
949 dl 1.50 /**
950     * Variant of releaseWaiters that additionally tries to remove any
951     * nodes no longer waiting for advance due to timeout or
952     * interrupt. Currently, nodes are removed only if they are at
953     * head of queue, which suffices to reduce memory footprint in
954     * most usages.
955     *
956     * @return current phase on exit
957     */
958     private int abortWait(int phase) {
959     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
960     for (;;) {
961     Thread t;
962     QNode q = head.get();
963     int p = (int)(root.state >>> PHASE_SHIFT);
964     if (q == null || ((t = q.thread) != null && q.phase == p))
965     return p;
966     if (head.compareAndSet(q, q.next) && t != null) {
967     q.thread = null;
968     LockSupport.unpark(t);
969     }
970     }
971     }
972    
973 dl 1.17 /** The number of CPUs, for spin control */
974     private static final int NCPU = Runtime.getRuntime().availableProcessors();
975    
976 jsr166 1.1 /**
977 dl 1.17 * The number of times to spin before blocking while waiting for
978     * advance, per arrival while waiting. On multiprocessors, fully
979     * blocking and waking up a large number of threads all at once is
980     * usually a very slow process, so we use rechargeable spins to
981     * avoid it when threads regularly arrive: When a thread in
982     * internalAwaitAdvance notices another arrival before blocking,
983     * and there appear to be enough CPUs available, it spins
984 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
985     * off good-citizenship vs big unnecessary slowdowns.
986 dl 1.15 */
987 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
988 dl 1.15
989     /**
990 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
991 dl 1.34 * Call only from root node.
992 jsr166 1.1 *
993 dl 1.17 * @param phase current phase
994 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
995 dl 1.17 * if null, denotes noninterruptible wait
996 jsr166 1.1 * @return current phase
997     */
998 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
999 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1000     boolean queued = false; // true when node is enqueued
1001     int lastUnarrived = 0; // to increase spins upon change
1002 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1003 dl 1.31 long s;
1004     int p;
1005 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1006 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1007     int unarrived = (int)s & UNARRIVED_MASK;
1008     if (unarrived != lastUnarrived &&
1009     (lastUnarrived = unarrived) < NCPU)
1010 dl 1.31 spins += SPINS_PER_ARRIVAL;
1011 dl 1.37 boolean interrupted = Thread.interrupted();
1012     if (interrupted || --spins < 0) { // need node to record intr
1013     node = new QNode(this, phase, false, false, 0L);
1014     node.wasInterrupted = interrupted;
1015     }
1016 dl 1.21 }
1017 dl 1.37 else if (node.isReleasable()) // done or aborted
1018     break;
1019     else if (!queued) { // push onto queue
1020 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1021 dl 1.37 QNode q = node.next = head.get();
1022     if ((q == null || q.phase == phase) &&
1023     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1024 dl 1.36 queued = head.compareAndSet(q, node);
1025 dl 1.31 }
1026 dl 1.17 else {
1027     try {
1028     ForkJoinPool.managedBlock(node);
1029     } catch (InterruptedException ie) {
1030     node.wasInterrupted = true;
1031     }
1032     }
1033     }
1034 dl 1.34
1035     if (node != null) {
1036     if (node.thread != null)
1037 dl 1.37 node.thread = null; // avoid need for unpark()
1038 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1039 dl 1.34 Thread.currentThread().interrupt();
1040 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1041 dl 1.50 return abortWait(phase); // possibly clean up on abort
1042 dl 1.34 }
1043 dl 1.37 releaseWaiters(phase);
1044 dl 1.31 return p;
1045 jsr166 1.1 }
1046    
1047     /**
1048 dl 1.17 * Wait nodes for Treiber stack representing wait queue
1049 jsr166 1.1 */
1050 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1051     final Phaser phaser;
1052     final int phase;
1053     final boolean interruptible;
1054     final boolean timed;
1055     boolean wasInterrupted;
1056     long nanos;
1057     long lastTime;
1058     volatile Thread thread; // nulled to cancel wait
1059     QNode next;
1060    
1061     QNode(Phaser phaser, int phase, boolean interruptible,
1062     boolean timed, long nanos) {
1063     this.phaser = phaser;
1064     this.phase = phase;
1065     this.interruptible = interruptible;
1066     this.nanos = nanos;
1067     this.timed = timed;
1068 jsr166 1.38 this.lastTime = timed ? System.nanoTime() : 0L;
1069 dl 1.17 thread = Thread.currentThread();
1070     }
1071    
1072     public boolean isReleasable() {
1073 dl 1.37 if (thread == null)
1074     return true;
1075     if (phaser.getPhase() != phase) {
1076     thread = null;
1077     return true;
1078     }
1079     if (Thread.interrupted())
1080     wasInterrupted = true;
1081     if (wasInterrupted && interruptible) {
1082     thread = null;
1083     return true;
1084     }
1085     if (timed) {
1086     if (nanos > 0L) {
1087     long now = System.nanoTime();
1088     nanos -= now - lastTime;
1089     lastTime = now;
1090     }
1091     if (nanos <= 0L) {
1092     thread = null;
1093     return true;
1094 dl 1.17 }
1095 dl 1.15 }
1096 dl 1.37 return false;
1097 dl 1.17 }
1098    
1099     public boolean block() {
1100     if (isReleasable())
1101     return true;
1102     else if (!timed)
1103     LockSupport.park(this);
1104     else if (nanos > 0)
1105     LockSupport.parkNanos(this, nanos);
1106     return isReleasable();
1107     }
1108 jsr166 1.1 }
1109    
1110     // Unsafe mechanics
1111    
1112     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1113 jsr166 1.2 private static final long stateOffset =
1114 jsr166 1.3 objectFieldOffset("state", Phaser.class);
1115 jsr166 1.1
1116 jsr166 1.3 private static long objectFieldOffset(String field, Class<?> klazz) {
1117     try {
1118     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1119     } catch (NoSuchFieldException e) {
1120     // Convert Exception to corresponding Error
1121     NoSuchFieldError error = new NoSuchFieldError(field);
1122     error.initCause(e);
1123     throw error;
1124     }
1125     }
1126 jsr166 1.1 }