ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.66
Committed: Sun Oct 9 21:57:51 2011 UTC (12 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.65: +14 -12 lines
Log Message:
save a branch in doArrive

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.17 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.10 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
22 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33     * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.37 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
42 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 jsr166 1.10 *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62 dl 1.37 * the phaser advances to (or is already at) a different phase.
63 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68 dl 1.37 * state of the phaser. If necessary, you can perform any
69 jsr166 1.10 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74 jsr166 1.1 *
75     * </ul>
76     *
77 dl 1.37 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91 jsr166 1.1 *
92 dl 1.32 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 jsr166 1.10 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 jsr166 1.44 * from its parent.
109     *
110 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.37 * only by registered parties, the current state of a phaser may be
112 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
113     * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116     * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 jsr166 1.1 *
122     * <p><b>Sample usages:</b>
123     *
124 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 jsr166 1.1 *
129     * <pre> {@code
130 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
132 jsr166 1.7 * // create and start threads
133 dl 1.61 * for (final Runnable task : tasks) {
134 jsr166 1.1 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.8 * task.run();
139 jsr166 1.1 * }
140     * }.start();
141     * }
142     *
143 jsr166 1.7 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.1 * }}</pre>
146     *
147     * <p>One way to cause a set of threads to repeatedly perform actions
148     * for a given number of iterations is to override {@code onAdvance}:
149     *
150     * <pre> {@code
151 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.1 * final Phaser phaser = new Phaser() {
153 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.10 * for (final Runnable task : tasks) {
159 jsr166 1.1 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.8 * task.run();
164 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.10 * } while (!phaser.isTerminated());
166 jsr166 1.1 * }
167     * }.start();
168     * }
169     * phaser.arriveAndDeregister(); // deregister self, don't wait
170     * }}</pre>
171     *
172 jsr166 1.10 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174     * <pre> {@code
175     * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178     * phaser.arriveAndAwaitAdvance();}</pre>
179     *
180     * <p>Related constructions may be used to await particular phase numbers
181     * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184     * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192     * }
193     * phaser.arriveAndDeregister();
194     * }}</pre>
195     *
196     *
197 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.10 *
204 jsr166 1.1 * <pre> {@code
205 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.39 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.1 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.39 * tasks[i] = new Task(ph);
214 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.1 * }
216 dl 1.39 * }}</pre>
217 jsr166 1.1 *
218     * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.37 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
222     *
223     * <p><b>Implementation notes</b>: This implementation restricts the
224     * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
227 jsr166 1.1 * of participants.
228     *
229     * @since 1.7
230     * @author Doug Lea
231     */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235     * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237     */
238    
239     /**
240 jsr166 1.55 * Primary state representation, holding four bit-fields:
241 jsr166 1.1 *
242 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246 jsr166 1.1 *
247 dl 1.39 * Except that a phaser with no registered parties is
248 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
249 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263 dl 1.53 * ancestors until it is actually accessed -- see method
264     * reconcileState.
265 jsr166 1.1 */
266     private volatile long state;
267    
268 dl 1.33 private static final int MAX_PARTIES = 0xffff;
269 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 dl 1.33 private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274     private static final long TERMINATION_BIT = 1L << 63;
275 dl 1.17
276 dl 1.39 // some special values
277     private static final int ONE_ARRIVAL = 1;
278     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
280 dl 1.39 private static final int EMPTY = 1;
281    
282 dl 1.17 // The following unpacking methods are usually manually inlined
283 jsr166 1.1
284     private static int unarrivedOf(long s) {
285 dl 1.39 int counts = (int)s;
286 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287 jsr166 1.1 }
288    
289     private static int partiesOf(long s) {
290 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
291 jsr166 1.1 }
292    
293     private static int phaseOf(long s) {
294 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
295 jsr166 1.1 }
296    
297     private static int arrivedOf(long s) {
298 dl 1.39 int counts = (int)s;
299 jsr166 1.40 return (counts == EMPTY) ? 0 :
300 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 jsr166 1.1 }
302    
303     /**
304     * The parent of this phaser, or null if none
305     */
306     private final Phaser parent;
307    
308     /**
309 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
310 jsr166 1.1 */
311     private final Phaser root;
312    
313     /**
314     * Heads of Treiber stacks for waiting threads. To eliminate
315 dl 1.14 * contention when releasing some threads while adding others, we
316 jsr166 1.1 * use two of them, alternating across even and odd phases.
317 dl 1.14 * Subphasers share queues with root to speed up releases.
318 jsr166 1.1 */
319 dl 1.15 private final AtomicReference<QNode> evenQ;
320     private final AtomicReference<QNode> oddQ;
321 jsr166 1.1
322     private AtomicReference<QNode> queueFor(int phase) {
323 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
324 jsr166 1.1 }
325    
326     /**
327 dl 1.33 * Returns message string for bounds exceptions on arrival.
328     */
329     private String badArrive(long s) {
330     return "Attempted arrival of unregistered party for " +
331     stateToString(s);
332     }
333    
334     /**
335     * Returns message string for bounds exceptions on registration.
336     */
337     private String badRegister(long s) {
338     return "Attempt to register more than " +
339     MAX_PARTIES + " parties for " + stateToString(s);
340     }
341    
342     /**
343 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
344     * Manually tuned to speed up and minimize race windows for the
345     * common case of just decrementing unarrived field.
346     *
347 jsr166 1.66 * @param adjust value to subtract from state;
348     * ONE_ARRIVAL for arrive,
349     * ONE_DEREGISTER for arriveAndDeregister
350 dl 1.17 */
351 jsr166 1.66 private int doArrive(int adjust) {
352 dl 1.50 final Phaser root = this.root;
353     for (;;) {
354     long s = (root == this) ? state : reconcileState();
355     int phase = (int)(s >>> PHASE_SHIFT);
356     if (phase < 0)
357     return phase;
358 jsr166 1.64 int counts = (int)s;
359     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360     if (unarrived <= 0)
361     throw new IllegalStateException(badArrive(s));
362 jsr166 1.66 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363 jsr166 1.64 if (unarrived == 1) {
364 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
365     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 dl 1.63 if (root == this) {
367     if (onAdvance(phase, nextUnarrived))
368     n |= TERMINATION_BIT;
369     else if (nextUnarrived == 0)
370     n |= EMPTY;
371     else
372     n |= nextUnarrived;
373 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
374     n |= (long)nextPhase << PHASE_SHIFT;
375 dl 1.63 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376     }
377     else if (nextUnarrived == 0) { // propagate deregistration
378 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
379 dl 1.63 UNSAFE.compareAndSwapLong(this, stateOffset,
380     s, s | EMPTY);
381     }
382 dl 1.50 else
383 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
384 dl 1.50 releaseWaiters(phase);
385 dl 1.17 }
386 dl 1.50 return phase;
387 dl 1.17 }
388     }
389     }
390    
391     /**
392     * Implementation of register, bulkRegister
393     *
394 dl 1.32 * @param registrations number to add to both parties and
395     * unarrived fields. Must be greater than zero.
396 jsr166 1.1 */
397 dl 1.17 private int doRegister(int registrations) {
398 jsr166 1.26 // adjustment to state
399 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400 jsr166 1.57 final Phaser parent = this.parent;
401 dl 1.39 int phase;
402 dl 1.21 for (;;) {
403 dl 1.63 long s = (parent == null) ? state : reconcileState();
404 dl 1.39 int counts = (int)s;
405     int parties = counts >>> PARTIES_SHIFT;
406     int unarrived = counts & UNARRIVED_MASK;
407     if (registrations > MAX_PARTIES - parties)
408 dl 1.21 throw new IllegalStateException(badRegister(s));
409 dl 1.39 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
410     break;
411     else if (counts != EMPTY) { // not 1st registration
412 jsr166 1.57 if (parent == null || reconcileState() == s) {
413 dl 1.39 if (unarrived == 0) // wait out advance
414     root.internalAwaitAdvance(phase, null);
415     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
416 jsr166 1.66 s, s + adjust))
417 dl 1.39 break;
418     }
419     }
420 jsr166 1.57 else if (parent == null) { // 1st root registration
421 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
422 dl 1.39 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
423     break;
424     }
425     else {
426 jsr166 1.40 synchronized (this) { // 1st sub registration
427 dl 1.39 if (state == s) { // recheck under lock
428 jsr166 1.57 parent.doRegister(1);
429 dl 1.39 do { // force current phase
430     phase = (int)(root.state >>> PHASE_SHIFT);
431     // assert phase < 0 || (int)state == EMPTY;
432     } while (!UNSAFE.compareAndSwapLong
433     (this, stateOffset, state,
434 jsr166 1.66 ((long)phase << PHASE_SHIFT) | adjust));
435 dl 1.39 break;
436 dl 1.33 }
437     }
438     }
439 dl 1.17 }
440 dl 1.39 return phase;
441 dl 1.17 }
442    
443     /**
444 dl 1.39 * Resolves lagged phase propagation from root if necessary.
445 dl 1.53 * Reconciliation normally occurs when root has advanced but
446     * subphasers have not yet done so, in which case they must finish
447     * their own advance by setting unarrived to parties (or if
448     * parties is zero, resetting to unregistered EMPTY state).
449     * However, this method may also be called when "floating"
450     * subphasers with possibly some unarrived parties are merely
451     * catching up to current phase, in which case counts are
452     * unaffected.
453     *
454     * @return reconciled state
455 jsr166 1.1 */
456     private long reconcileState() {
457 jsr166 1.52 final Phaser root = this.root;
458 dl 1.31 long s = state;
459 jsr166 1.52 if (root != this) {
460 dl 1.53 int phase, u, p;
461     // CAS root phase with current parties; possibly trip unarrived
462     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
463     (int)(s >>> PHASE_SHIFT) &&
464     !UNSAFE.compareAndSwapLong
465     (this, stateOffset, s,
466 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
467     (s & PARTIES_MASK) |
468 dl 1.53 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
469 dl 1.63 ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
470     p : u))))
471 dl 1.53 s = state;
472 jsr166 1.1 }
473 dl 1.31 return s;
474 jsr166 1.1 }
475    
476     /**
477 dl 1.37 * Creates a new phaser with no initially registered parties, no
478     * parent, and initial phase number 0. Any thread using this
479     * phaser will need to first register for it.
480 jsr166 1.1 */
481     public Phaser() {
482 dl 1.15 this(null, 0);
483 jsr166 1.1 }
484    
485     /**
486 dl 1.37 * Creates a new phaser with the given number of registered
487     * unarrived parties, no parent, and initial phase number 0.
488 jsr166 1.1 *
489 dl 1.37 * @param parties the number of parties required to advance to the
490     * next phase
491 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
492     * or greater than the maximum number of parties supported
493     */
494     public Phaser(int parties) {
495     this(null, parties);
496     }
497    
498     /**
499 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
500 jsr166 1.1 *
501 dl 1.37 * @param parent the parent phaser
502 jsr166 1.1 */
503     public Phaser(Phaser parent) {
504 dl 1.15 this(parent, 0);
505 jsr166 1.1 }
506    
507     /**
508 dl 1.37 * Creates a new phaser with the given parent and number of
509 dl 1.50 * registered unarrived parties. When the given parent is non-null
510 jsr166 1.44 * and the given number of parties is greater than zero, this
511     * child phaser is registered with its parent.
512 jsr166 1.1 *
513 dl 1.37 * @param parent the parent phaser
514     * @param parties the number of parties required to advance to the
515     * next phase
516 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
517     * or greater than the maximum number of parties supported
518     */
519     public Phaser(Phaser parent, int parties) {
520 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
521 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
522 dl 1.39 int phase = 0;
523 jsr166 1.1 this.parent = parent;
524     if (parent != null) {
525 jsr166 1.42 final Phaser root = parent.root;
526     this.root = root;
527     this.evenQ = root.evenQ;
528     this.oddQ = root.oddQ;
529 dl 1.34 if (parties != 0)
530 dl 1.39 phase = parent.doRegister(1);
531 jsr166 1.1 }
532 dl 1.15 else {
533 jsr166 1.1 this.root = this;
534 dl 1.15 this.evenQ = new AtomicReference<QNode>();
535     this.oddQ = new AtomicReference<QNode>();
536     }
537 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
538     ((long)phase << PHASE_SHIFT) |
539     ((long)parties << PARTIES_SHIFT) |
540     ((long)parties);
541 jsr166 1.1 }
542    
543     /**
544 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
545 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
546 dl 1.37 * may await its completion before returning. If this phaser has
547     * a parent, and this phaser previously had no registered parties,
548 dl 1.50 * this child phaser is also registered with its parent. If
549     * this phaser is terminated, the attempt to register has
550     * no effect, and a negative value is returned.
551     *
552     * @return the arrival phase number to which this registration
553     * applied. If this value is negative, then this phaser has
554 jsr166 1.51 * terminated, in which case registration has no effect.
555 jsr166 1.1 * @throws IllegalStateException if attempting to register more
556     * than the maximum supported number of parties
557     */
558     public int register() {
559     return doRegister(1);
560     }
561    
562     /**
563 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
564 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
565 dl 1.34 * this method may await its completion before returning. If this
566 dl 1.50 * phaser has a parent, and the given number of parties is greater
567     * than zero, and this phaser previously had no registered
568 jsr166 1.44 * parties, this child phaser is also registered with its parent.
569 dl 1.50 * If this phaser is terminated, the attempt to register has no
570     * effect, and a negative value is returned.
571 jsr166 1.1 *
572 dl 1.37 * @param parties the number of additional parties required to
573     * advance to the next phase
574 dl 1.50 * @return the arrival phase number to which this registration
575     * applied. If this value is negative, then this phaser has
576 jsr166 1.51 * terminated, in which case registration has no effect.
577 jsr166 1.1 * @throws IllegalStateException if attempting to register more
578     * than the maximum supported number of parties
579 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
580 jsr166 1.1 */
581     public int bulkRegister(int parties) {
582     if (parties < 0)
583     throw new IllegalArgumentException();
584 dl 1.34 if (parties == 0)
585 jsr166 1.1 return getPhase();
586     return doRegister(parties);
587     }
588    
589     /**
590 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
591 dl 1.34 *
592     * <p>It is a usage error for an unregistered party to invoke this
593     * method. However, this error may result in an {@code
594     * IllegalStateException} only upon some subsequent operation on
595 dl 1.37 * this phaser, if ever.
596 jsr166 1.1 *
597 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
598 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
599     * of unarrived parties would become negative
600     */
601     public int arrive() {
602 jsr166 1.66 return doArrive(ONE_ARRIVAL);
603 jsr166 1.1 }
604    
605     /**
606 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
607 dl 1.34 * for others to arrive. Deregistration reduces the number of
608 dl 1.37 * parties required to advance in future phases. If this phaser
609     * has a parent, and deregistration causes this phaser to have
610     * zero parties, this phaser is also deregistered from its parent.
611 dl 1.34 *
612     * <p>It is a usage error for an unregistered party to invoke this
613     * method. However, this error may result in an {@code
614     * IllegalStateException} only upon some subsequent operation on
615 dl 1.37 * this phaser, if ever.
616 jsr166 1.1 *
617 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
618 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
619     * of registered or unarrived parties would become negative
620     */
621     public int arriveAndDeregister() {
622 jsr166 1.66 return doArrive(ONE_DEREGISTER);
623 jsr166 1.1 }
624    
625     /**
626 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
627 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
628     * interruption or timeout, you can arrange this with an analogous
629 jsr166 1.12 * construction using one of the other forms of the {@code
630     * awaitAdvance} method. If instead you need to deregister upon
631 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
632     *
633     * <p>It is a usage error for an unregistered party to invoke this
634     * method. However, this error may result in an {@code
635     * IllegalStateException} only upon some subsequent operation on
636 dl 1.37 * this phaser, if ever.
637 jsr166 1.1 *
638 jsr166 1.49 * @return the arrival phase number, or the (negative)
639     * {@linkplain #getPhase() current phase} if terminated
640 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
641     * of unarrived parties would become negative
642     */
643     public int arriveAndAwaitAdvance() {
644 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
645     final Phaser root = this.root;
646     for (;;) {
647     long s = (root == this) ? state : reconcileState();
648     int phase = (int)(s >>> PHASE_SHIFT);
649     if (phase < 0)
650     return phase;
651 jsr166 1.64 int counts = (int)s;
652     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
653     if (unarrived <= 0)
654     throw new IllegalStateException(badArrive(s));
655     if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
656     s -= ONE_ARRIVAL)) {
657     if (unarrived > 1)
658 dl 1.50 return root.internalAwaitAdvance(phase, null);
659     if (root != this)
660     return parent.arriveAndAwaitAdvance();
661     long n = s & PARTIES_MASK; // base of next state
662 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
663 dl 1.50 if (onAdvance(phase, nextUnarrived))
664     n |= TERMINATION_BIT;
665     else if (nextUnarrived == 0)
666     n |= EMPTY;
667     else
668     n |= nextUnarrived;
669     int nextPhase = (phase + 1) & MAX_PHASE;
670     n |= (long)nextPhase << PHASE_SHIFT;
671     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
672     return (int)(state >>> PHASE_SHIFT); // terminated
673     releaseWaiters(phase);
674     return nextPhase;
675     }
676     }
677 jsr166 1.1 }
678    
679     /**
680 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
681     * value, returning immediately if the current phase is not equal
682     * to the given phase value or this phaser is terminated.
683 jsr166 1.1 *
684 jsr166 1.10 * @param phase an arrival phase number, or negative value if
685     * terminated; this argument is normally the value returned by a
686 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
687 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
688     * negative, or the (negative) {@linkplain #getPhase() current phase}
689     * if terminated
690 jsr166 1.1 */
691     public int awaitAdvance(int phase) {
692 dl 1.50 final Phaser root = this.root;
693 jsr166 1.51 long s = (root == this) ? state : reconcileState();
694     int p = (int)(s >>> PHASE_SHIFT);
695 jsr166 1.1 if (phase < 0)
696     return phase;
697 dl 1.50 if (p == phase)
698     return root.internalAwaitAdvance(phase, null);
699 dl 1.34 return p;
700 jsr166 1.1 }
701    
702     /**
703 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
704 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
705 dl 1.37 * while waiting, or returning immediately if the current phase is
706     * not equal to the given phase value or this phaser is
707     * terminated.
708 jsr166 1.10 *
709     * @param phase an arrival phase number, or negative value if
710     * terminated; this argument is normally the value returned by a
711 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
712 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
713     * negative, or the (negative) {@linkplain #getPhase() current phase}
714     * if terminated
715 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
716     */
717     public int awaitAdvanceInterruptibly(int phase)
718     throws InterruptedException {
719 dl 1.50 final Phaser root = this.root;
720 jsr166 1.51 long s = (root == this) ? state : reconcileState();
721     int p = (int)(s >>> PHASE_SHIFT);
722 jsr166 1.1 if (phase < 0)
723     return phase;
724 dl 1.39 if (p == phase) {
725 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
726     p = root.internalAwaitAdvance(phase, node);
727     if (node.wasInterrupted)
728     throw new InterruptedException();
729 dl 1.24 }
730     return p;
731 jsr166 1.1 }
732    
733     /**
734 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
735 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
736     * InterruptedException} if interrupted while waiting, or
737 dl 1.37 * returning immediately if the current phase is not equal to the
738     * given phase value or this phaser is terminated.
739 jsr166 1.10 *
740     * @param phase an arrival phase number, or negative value if
741     * terminated; this argument is normally the value returned by a
742 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
743 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
744     * {@code unit}
745     * @param unit a {@code TimeUnit} determining how to interpret the
746     * {@code timeout} parameter
747 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
748     * negative, or the (negative) {@linkplain #getPhase() current phase}
749     * if terminated
750 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
751     * @throws TimeoutException if timed out while waiting
752     */
753     public int awaitAdvanceInterruptibly(int phase,
754     long timeout, TimeUnit unit)
755     throws InterruptedException, TimeoutException {
756 dl 1.50 long nanos = unit.toNanos(timeout);
757     final Phaser root = this.root;
758 jsr166 1.51 long s = (root == this) ? state : reconcileState();
759     int p = (int)(s >>> PHASE_SHIFT);
760 jsr166 1.47 if (phase < 0)
761     return phase;
762 dl 1.39 if (p == phase) {
763 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
764     p = root.internalAwaitAdvance(phase, node);
765     if (node.wasInterrupted)
766     throw new InterruptedException();
767     else if (p == phase)
768     throw new TimeoutException();
769 dl 1.24 }
770     return p;
771 jsr166 1.1 }
772    
773     /**
774 dl 1.37 * Forces this phaser to enter termination state. Counts of
775 dl 1.39 * registered parties are unaffected. If this phaser is a member
776     * of a tiered set of phasers, then all of the phasers in the set
777     * are terminated. If this phaser is already terminated, this
778     * method has no effect. This method may be useful for
779     * coordinating recovery after one or more tasks encounter
780     * unexpected exceptions.
781 jsr166 1.1 */
782     public void forceTermination() {
783 jsr166 1.23 // Only need to change root state
784     final Phaser root = this.root;
785 dl 1.14 long s;
786 jsr166 1.23 while ((s = root.state) >= 0) {
787 dl 1.53 if (UNSAFE.compareAndSwapLong(root, stateOffset,
788     s, s | TERMINATION_BIT)) {
789 jsr166 1.45 // signal all threads
790     releaseWaiters(0);
791 jsr166 1.23 releaseWaiters(1);
792     return;
793     }
794     }
795 jsr166 1.1 }
796    
797     /**
798     * Returns the current phase number. The maximum phase number is
799     * {@code Integer.MAX_VALUE}, after which it restarts at
800 dl 1.37 * zero. Upon termination, the phase number is negative,
801     * in which case the prevailing phase prior to termination
802     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
803 jsr166 1.1 *
804     * @return the phase number, or a negative value if terminated
805     */
806     public final int getPhase() {
807 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
808 jsr166 1.1 }
809    
810     /**
811 dl 1.37 * Returns the number of parties registered at this phaser.
812 jsr166 1.1 *
813     * @return the number of parties
814     */
815     public int getRegisteredParties() {
816 dl 1.31 return partiesOf(state);
817 jsr166 1.1 }
818    
819     /**
820 jsr166 1.10 * Returns the number of registered parties that have arrived at
821 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
822     * the returned value is meaningless and arbitrary.
823 jsr166 1.1 *
824     * @return the number of arrived parties
825     */
826     public int getArrivedParties() {
827 dl 1.39 return arrivedOf(reconcileState());
828 jsr166 1.1 }
829    
830     /**
831     * Returns the number of registered parties that have not yet
832 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
833     * terminated, the returned value is meaningless and arbitrary.
834 jsr166 1.1 *
835     * @return the number of unarrived parties
836     */
837     public int getUnarrivedParties() {
838 dl 1.39 return unarrivedOf(reconcileState());
839 jsr166 1.1 }
840    
841     /**
842 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
843 jsr166 1.1 *
844 dl 1.37 * @return the parent of this phaser, or {@code null} if none
845 jsr166 1.1 */
846     public Phaser getParent() {
847     return parent;
848     }
849    
850     /**
851 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
852     * this phaser if it has no parent.
853 jsr166 1.1 *
854 dl 1.37 * @return the root ancestor of this phaser
855 jsr166 1.1 */
856     public Phaser getRoot() {
857     return root;
858     }
859    
860     /**
861 dl 1.37 * Returns {@code true} if this phaser has been terminated.
862 jsr166 1.1 *
863 dl 1.37 * @return {@code true} if this phaser has been terminated
864 jsr166 1.1 */
865     public boolean isTerminated() {
866 dl 1.31 return root.state < 0L;
867 jsr166 1.1 }
868    
869     /**
870 jsr166 1.10 * Overridable method to perform an action upon impending phase
871     * advance, and to control termination. This method is invoked
872 dl 1.37 * upon arrival of the party advancing this phaser (when all other
873 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
874 dl 1.39 * true}, this phaser will be set to a final termination state
875     * upon advance, and subsequent calls to {@link #isTerminated}
876     * will return true. Any (unchecked) Exception or Error thrown by
877     * an invocation of this method is propagated to the party
878     * attempting to advance this phaser, in which case no advance
879     * occurs.
880 jsr166 1.10 *
881 dl 1.37 * <p>The arguments to this method provide the state of the phaser
882 dl 1.17 * prevailing for the current transition. The effects of invoking
883 dl 1.37 * arrival, registration, and waiting methods on this phaser from
884 dl 1.15 * within {@code onAdvance} are unspecified and should not be
885 dl 1.17 * relied on.
886     *
887 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
888     * {@code onAdvance} is invoked only for its root phaser on each
889 dl 1.17 * advance.
890 jsr166 1.1 *
891 dl 1.33 * <p>To support the most common use cases, the default
892     * implementation of this method returns {@code true} when the
893     * number of registered parties has become zero as the result of a
894     * party invoking {@code arriveAndDeregister}. You can disable
895     * this behavior, thus enabling continuation upon future
896     * registrations, by overriding this method to always return
897     * {@code false}:
898     *
899     * <pre> {@code
900     * Phaser phaser = new Phaser() {
901     * protected boolean onAdvance(int phase, int parties) { return false; }
902     * }}</pre>
903 jsr166 1.1 *
904 dl 1.37 * @param phase the current phase number on entry to this method,
905     * before this phaser is advanced
906 jsr166 1.1 * @param registeredParties the current number of registered parties
907 dl 1.37 * @return {@code true} if this phaser should terminate
908 jsr166 1.1 */
909     protected boolean onAdvance(int phase, int registeredParties) {
910 dl 1.36 return registeredParties == 0;
911 jsr166 1.1 }
912    
913     /**
914 dl 1.37 * Returns a string identifying this phaser, as well as its
915 dl 1.21 * state. The state, in brackets, includes the String {@code
916     * "phase = "} followed by the phase number, {@code "parties = "}
917     * followed by the number of registered parties, and {@code
918     * "arrived = "} followed by the number of arrived parties.
919 jsr166 1.1 *
920 dl 1.37 * @return a string identifying this phaser, as well as its state
921 jsr166 1.1 */
922     public String toString() {
923 dl 1.21 return stateToString(reconcileState());
924     }
925    
926     /**
927     * Implementation of toString and string-based error messages
928     */
929     private String stateToString(long s) {
930 jsr166 1.1 return super.toString() +
931     "[phase = " + phaseOf(s) +
932     " parties = " + partiesOf(s) +
933     " arrived = " + arrivedOf(s) + "]";
934     }
935    
936 dl 1.21 // Waiting mechanics
937    
938 jsr166 1.1 /**
939 jsr166 1.30 * Removes and signals threads from queue for phase.
940 jsr166 1.1 */
941     private void releaseWaiters(int phase) {
942 dl 1.37 QNode q; // first element of queue
943     Thread t; // its thread
944 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
945 dl 1.17 while ((q = head.get()) != null &&
946 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
947 dl 1.37 if (head.compareAndSet(q, q.next) &&
948     (t = q.thread) != null) {
949     q.thread = null;
950     LockSupport.unpark(t);
951     }
952 jsr166 1.1 }
953     }
954    
955 dl 1.50 /**
956     * Variant of releaseWaiters that additionally tries to remove any
957     * nodes no longer waiting for advance due to timeout or
958     * interrupt. Currently, nodes are removed only if they are at
959     * head of queue, which suffices to reduce memory footprint in
960     * most usages.
961     *
962     * @return current phase on exit
963     */
964     private int abortWait(int phase) {
965     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
966     for (;;) {
967     Thread t;
968     QNode q = head.get();
969     int p = (int)(root.state >>> PHASE_SHIFT);
970     if (q == null || ((t = q.thread) != null && q.phase == p))
971     return p;
972     if (head.compareAndSet(q, q.next) && t != null) {
973     q.thread = null;
974     LockSupport.unpark(t);
975     }
976     }
977     }
978    
979 dl 1.17 /** The number of CPUs, for spin control */
980     private static final int NCPU = Runtime.getRuntime().availableProcessors();
981    
982 jsr166 1.1 /**
983 dl 1.17 * The number of times to spin before blocking while waiting for
984     * advance, per arrival while waiting. On multiprocessors, fully
985     * blocking and waking up a large number of threads all at once is
986     * usually a very slow process, so we use rechargeable spins to
987     * avoid it when threads regularly arrive: When a thread in
988     * internalAwaitAdvance notices another arrival before blocking,
989     * and there appear to be enough CPUs available, it spins
990 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
991     * off good-citizenship vs big unnecessary slowdowns.
992 dl 1.15 */
993 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
994 dl 1.15
995     /**
996 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
997 jsr166 1.64 * Call only on root phaser.
998 jsr166 1.1 *
999 dl 1.17 * @param phase current phase
1000 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
1001 dl 1.17 * if null, denotes noninterruptible wait
1002 jsr166 1.1 * @return current phase
1003     */
1004 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
1005 jsr166 1.64 // assert root == this;
1006 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1007     boolean queued = false; // true when node is enqueued
1008     int lastUnarrived = 0; // to increase spins upon change
1009 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1010 dl 1.31 long s;
1011     int p;
1012 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1014     int unarrived = (int)s & UNARRIVED_MASK;
1015     if (unarrived != lastUnarrived &&
1016     (lastUnarrived = unarrived) < NCPU)
1017 dl 1.31 spins += SPINS_PER_ARRIVAL;
1018 dl 1.37 boolean interrupted = Thread.interrupted();
1019     if (interrupted || --spins < 0) { // need node to record intr
1020     node = new QNode(this, phase, false, false, 0L);
1021     node.wasInterrupted = interrupted;
1022     }
1023 dl 1.21 }
1024 dl 1.37 else if (node.isReleasable()) // done or aborted
1025     break;
1026     else if (!queued) { // push onto queue
1027 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 dl 1.37 QNode q = node.next = head.get();
1029     if ((q == null || q.phase == phase) &&
1030     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031 dl 1.36 queued = head.compareAndSet(q, node);
1032 dl 1.31 }
1033 dl 1.17 else {
1034     try {
1035     ForkJoinPool.managedBlock(node);
1036     } catch (InterruptedException ie) {
1037     node.wasInterrupted = true;
1038     }
1039     }
1040     }
1041 dl 1.34
1042     if (node != null) {
1043     if (node.thread != null)
1044 dl 1.37 node.thread = null; // avoid need for unpark()
1045 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1046 dl 1.34 Thread.currentThread().interrupt();
1047 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 dl 1.50 return abortWait(phase); // possibly clean up on abort
1049 dl 1.34 }
1050 dl 1.37 releaseWaiters(phase);
1051 dl 1.31 return p;
1052 jsr166 1.1 }
1053    
1054     /**
1055 dl 1.17 * Wait nodes for Treiber stack representing wait queue
1056 jsr166 1.1 */
1057 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1058     final Phaser phaser;
1059     final int phase;
1060     final boolean interruptible;
1061     final boolean timed;
1062     boolean wasInterrupted;
1063     long nanos;
1064     long lastTime;
1065     volatile Thread thread; // nulled to cancel wait
1066     QNode next;
1067    
1068     QNode(Phaser phaser, int phase, boolean interruptible,
1069     boolean timed, long nanos) {
1070     this.phaser = phaser;
1071     this.phase = phase;
1072     this.interruptible = interruptible;
1073     this.nanos = nanos;
1074     this.timed = timed;
1075 jsr166 1.38 this.lastTime = timed ? System.nanoTime() : 0L;
1076 dl 1.17 thread = Thread.currentThread();
1077     }
1078    
1079     public boolean isReleasable() {
1080 dl 1.37 if (thread == null)
1081     return true;
1082     if (phaser.getPhase() != phase) {
1083     thread = null;
1084     return true;
1085     }
1086     if (Thread.interrupted())
1087     wasInterrupted = true;
1088     if (wasInterrupted && interruptible) {
1089     thread = null;
1090     return true;
1091     }
1092     if (timed) {
1093     if (nanos > 0L) {
1094     long now = System.nanoTime();
1095     nanos -= now - lastTime;
1096     lastTime = now;
1097     }
1098     if (nanos <= 0L) {
1099     thread = null;
1100     return true;
1101 dl 1.17 }
1102 dl 1.15 }
1103 dl 1.37 return false;
1104 dl 1.17 }
1105    
1106     public boolean block() {
1107     if (isReleasable())
1108     return true;
1109     else if (!timed)
1110     LockSupport.park(this);
1111     else if (nanos > 0)
1112     LockSupport.parkNanos(this, nanos);
1113     return isReleasable();
1114     }
1115 jsr166 1.1 }
1116    
1117     // Unsafe mechanics
1118    
1119 dl 1.59 private static final sun.misc.Unsafe UNSAFE;
1120     private static final long stateOffset;
1121     static {
1122 jsr166 1.3 try {
1123 dl 1.59 UNSAFE = sun.misc.Unsafe.getUnsafe();
1124 jsr166 1.62 Class<?> k = Phaser.class;
1125 dl 1.59 stateOffset = UNSAFE.objectFieldOffset
1126     (k.getDeclaredField("state"));
1127     } catch (Exception e) {
1128     throw new Error(e);
1129 jsr166 1.3 }
1130     }
1131 jsr166 1.1 }