ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.77
Committed: Sun Jan 4 01:06:15 2015 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.76: +1 -1 lines
Log Message:
use ReflectiveOperationException for Unsafe mechanics

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.atomic.AtomicReference;
10     import java.util.concurrent.locks.LockSupport;
11    
12     /**
13 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
14 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16     * but supporting more flexible usage.
17     *
18 jsr166 1.73 * <p><b>Registration.</b> Unlike the case for other barriers, the
19 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
20 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
21     * methods {@link #register}, {@link #bulkRegister}, or forms of
22     * constructors establishing initial numbers of parties), and
23     * optionally deregistered upon any arrival (using {@link
24     * #arriveAndDeregister}). As is the case with most basic
25     * synchronization constructs, registration and deregistration affect
26     * only internal counts; they do not establish any further internal
27     * bookkeeping, so tasks cannot query whether they are registered.
28     * (However, you can introduce such bookkeeping by subclassing this
29     * class.)
30     *
31 jsr166 1.73 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32 jsr166 1.10 * Phaser} may be repeatedly awaited. Method {@link
33     * #arriveAndAwaitAdvance} has effect analogous to {@link
34     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35 dl 1.37 * generation of a phaser has an associated phase number. The phase
36     * number starts at zero, and advances when all parties arrive at the
37     * phaser, wrapping around to zero after reaching {@code
38 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
39 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
40 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
41     * registered party:
42     *
43 jsr166 1.1 * <ul>
44     *
45 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
46 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
47     * do not block, but return an associated <em>arrival phase
48     * number</em>; that is, the phase number of the phaser to which
49     * the arrival applied. When the final party for a given phase
50     * arrives, an optional action is performed and the phase
51     * advances. These actions are performed by the party
52     * triggering a phase advance, and are arranged by overriding
53     * method {@link #onAdvance(int, int)}, which also controls
54     * termination. Overriding this method is similar to, but more
55     * flexible than, providing a barrier action to a {@code
56     * CyclicBarrier}.
57 jsr166 1.10 *
58     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
59     * argument indicating an arrival phase number, and returns when
60 dl 1.37 * the phaser advances to (or is already at) a different phase.
61 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
62     * method {@code awaitAdvance} continues to wait even if the
63     * waiting thread is interrupted. Interruptible and timeout
64     * versions are also available, but exceptions encountered while
65     * tasks wait interruptibly or with timeout do not change the
66 dl 1.37 * state of the phaser. If necessary, you can perform any
67 jsr166 1.10 * associated recovery within handlers of those exceptions,
68     * often after invoking {@code forceTermination}. Phasers may
69     * also be used by tasks executing in a {@link ForkJoinPool},
70     * which will ensure sufficient parallelism to execute tasks
71     * when others are blocked waiting for a phase to advance.
72 jsr166 1.1 *
73     * </ul>
74     *
75 jsr166 1.73 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
76 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
77     * termination, all synchronization methods immediately return without
78 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
79     * Similarly, attempts to register upon termination have no effect.
80     * Termination is triggered when an invocation of {@code onAdvance}
81     * returns {@code true}. The default implementation returns {@code
82     * true} if a deregistration has caused the number of registered
83     * parties to become zero. As illustrated below, when phasers control
84     * actions with a fixed number of iterations, it is often convenient
85     * to override this method to cause termination when the current phase
86     * number reaches a threshold. Method {@link #forceTermination} is
87     * also available to abruptly release waiting threads and allow them
88     * to terminate.
89 jsr166 1.1 *
90 jsr166 1.73 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
91 dl 1.32 * constructed in tree structures) to reduce contention. Phasers with
92     * large numbers of parties that would otherwise experience heavy
93 jsr166 1.10 * synchronization contention costs may instead be set up so that
94     * groups of sub-phasers share a common parent. This may greatly
95     * increase throughput even though it incurs greater per-operation
96     * overhead.
97     *
98 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
99     * child phasers with their parent are managed automatically.
100     * Whenever the number of registered parties of a child phaser becomes
101     * non-zero (as established in the {@link #Phaser(Phaser,int)}
102 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
103 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
104     * registered parties becomes zero as the result of an invocation of
105 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
106 jsr166 1.44 * from its parent.
107     *
108 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
109 dl 1.37 * only by registered parties, the current state of a phaser may be
110 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
111     * #getRegisteredParties} parties in total, of which {@link
112     * #getArrivedParties} have arrived at the current phase ({@link
113     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
114     * parties arrive, the phase advances. The values returned by these
115     * methods may reflect transient states and so are not in general
116     * useful for synchronization control. Method {@link #toString}
117     * returns snapshots of these state queries in a form convenient for
118     * informal monitoring.
119 jsr166 1.1 *
120     * <p><b>Sample usages:</b>
121     *
122 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
123 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
124     * The typical idiom is for the method setting this up to first
125     * register, then start the actions, then deregister, as in:
126 jsr166 1.1 *
127     * <pre> {@code
128 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
129 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
130 jsr166 1.7 * // create and start threads
131 dl 1.61 * for (final Runnable task : tasks) {
132 jsr166 1.1 * phaser.register();
133     * new Thread() {
134     * public void run() {
135     * phaser.arriveAndAwaitAdvance(); // await all creation
136 jsr166 1.8 * task.run();
137 jsr166 1.1 * }
138     * }.start();
139     * }
140     *
141 jsr166 1.7 * // allow threads to start and deregister self
142     * phaser.arriveAndDeregister();
143 jsr166 1.1 * }}</pre>
144     *
145     * <p>One way to cause a set of threads to repeatedly perform actions
146     * for a given number of iterations is to override {@code onAdvance}:
147     *
148     * <pre> {@code
149 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
150 jsr166 1.1 * final Phaser phaser = new Phaser() {
151 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
152 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
153     * }
154     * };
155     * phaser.register();
156 jsr166 1.10 * for (final Runnable task : tasks) {
157 jsr166 1.1 * phaser.register();
158     * new Thread() {
159     * public void run() {
160     * do {
161 jsr166 1.8 * task.run();
162 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
163 jsr166 1.10 * } while (!phaser.isTerminated());
164 jsr166 1.1 * }
165     * }.start();
166     * }
167     * phaser.arriveAndDeregister(); // deregister self, don't wait
168     * }}</pre>
169     *
170 jsr166 1.10 * If the main task must later await termination, it
171     * may re-register and then execute a similar loop:
172     * <pre> {@code
173     * // ...
174     * phaser.register();
175     * while (!phaser.isTerminated())
176     * phaser.arriveAndAwaitAdvance();}</pre>
177     *
178     * <p>Related constructions may be used to await particular phase numbers
179     * in contexts where you are sure that the phase will never wrap around
180     * {@code Integer.MAX_VALUE}. For example:
181     *
182     * <pre> {@code
183     * void awaitPhase(Phaser phaser, int phase) {
184     * int p = phaser.register(); // assumes caller not already registered
185     * while (p < phase) {
186     * if (phaser.isTerminated())
187     * // ... deal with unexpected termination
188     * else
189     * p = phaser.arriveAndAwaitAdvance();
190     * }
191     * phaser.arriveAndDeregister();
192     * }}</pre>
193     *
194     *
195 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
196     * could use code of the following form, assuming a Task class with a
197     * constructor accepting a {@code Phaser} that it registers with upon
198     * construction. After invocation of {@code build(new Task[n], 0, n,
199     * new Phaser())}, these tasks could then be started, for example by
200     * submitting to a pool:
201 jsr166 1.10 *
202 jsr166 1.1 * <pre> {@code
203 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
204 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
205     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
206     * int j = Math.min(i + TASKS_PER_PHASER, hi);
207 dl 1.39 * build(tasks, i, j, new Phaser(ph));
208 jsr166 1.1 * }
209     * } else {
210     * for (int i = lo; i < hi; ++i)
211 dl 1.39 * tasks[i] = new Task(ph);
212 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
213 jsr166 1.1 * }
214 dl 1.39 * }}</pre>
215 jsr166 1.1 *
216     * The best value of {@code TASKS_PER_PHASER} depends mainly on
217 dl 1.37 * expected synchronization rates. A value as low as four may
218     * be appropriate for extremely small per-phase task bodies (thus
219 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
220     *
221     * <p><b>Implementation notes</b>: This implementation restricts the
222     * maximum number of parties to 65535. Attempts to register additional
223 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
224 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
225 jsr166 1.1 * of participants.
226     *
227     * @since 1.7
228     * @author Doug Lea
229     */
230     public class Phaser {
231     /*
232     * This class implements an extension of X10 "clocks". Thanks to
233     * Vijay Saraswat for the idea, and to Vivek Sarkar for
234     * enhancements to extend functionality.
235     */
236    
237     /**
238 jsr166 1.55 * Primary state representation, holding four bit-fields:
239 jsr166 1.1 *
240 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
241     * parties -- the number of parties to wait (bits 16-31)
242     * phase -- the generation of the barrier (bits 32-62)
243     * terminated -- set if barrier is terminated (bit 63 / sign)
244 jsr166 1.1 *
245 dl 1.39 * Except that a phaser with no registered parties is
246 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
247 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
248     *
249     * To efficiently maintain atomicity, these values are packed into
250     * a single (atomic) long. Good performance relies on keeping
251     * state decoding and encoding simple, and keeping race windows
252     * short.
253     *
254     * All state updates are performed via CAS except initial
255     * registration of a sub-phaser (i.e., one with a non-null
256     * parent). In this (relatively rare) case, we use built-in
257     * synchronization to lock while first registering with its
258     * parent.
259     *
260     * The phase of a subphaser is allowed to lag that of its
261 dl 1.53 * ancestors until it is actually accessed -- see method
262     * reconcileState.
263 jsr166 1.1 */
264     private volatile long state;
265    
266 dl 1.33 private static final int MAX_PARTIES = 0xffff;
267 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
268 dl 1.33 private static final int PARTIES_SHIFT = 16;
269     private static final int PHASE_SHIFT = 32;
270     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
271     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
272 jsr166 1.71 private static final long COUNTS_MASK = 0xffffffffL;
273 dl 1.33 private static final long TERMINATION_BIT = 1L << 63;
274 dl 1.17
275 dl 1.39 // some special values
276     private static final int ONE_ARRIVAL = 1;
277     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
278 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
279 dl 1.39 private static final int EMPTY = 1;
280    
281 dl 1.17 // The following unpacking methods are usually manually inlined
282 jsr166 1.1
283     private static int unarrivedOf(long s) {
284 dl 1.39 int counts = (int)s;
285 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
286 jsr166 1.1 }
287    
288     private static int partiesOf(long s) {
289 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
290 jsr166 1.1 }
291    
292     private static int phaseOf(long s) {
293 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
294 jsr166 1.1 }
295    
296     private static int arrivedOf(long s) {
297 dl 1.39 int counts = (int)s;
298 jsr166 1.40 return (counts == EMPTY) ? 0 :
299 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 jsr166 1.1 }
301    
302     /**
303     * The parent of this phaser, or null if none
304     */
305     private final Phaser parent;
306    
307     /**
308 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
309 jsr166 1.1 */
310     private final Phaser root;
311    
312     /**
313     * Heads of Treiber stacks for waiting threads. To eliminate
314 dl 1.14 * contention when releasing some threads while adding others, we
315 jsr166 1.1 * use two of them, alternating across even and odd phases.
316 dl 1.14 * Subphasers share queues with root to speed up releases.
317 jsr166 1.1 */
318 dl 1.15 private final AtomicReference<QNode> evenQ;
319     private final AtomicReference<QNode> oddQ;
320 jsr166 1.1
321     private AtomicReference<QNode> queueFor(int phase) {
322 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
323 jsr166 1.1 }
324    
325     /**
326 dl 1.33 * Returns message string for bounds exceptions on arrival.
327     */
328     private String badArrive(long s) {
329     return "Attempted arrival of unregistered party for " +
330     stateToString(s);
331     }
332    
333     /**
334     * Returns message string for bounds exceptions on registration.
335     */
336     private String badRegister(long s) {
337     return "Attempt to register more than " +
338     MAX_PARTIES + " parties for " + stateToString(s);
339     }
340    
341     /**
342 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
343     * Manually tuned to speed up and minimize race windows for the
344     * common case of just decrementing unarrived field.
345     *
346 jsr166 1.66 * @param adjust value to subtract from state;
347     * ONE_ARRIVAL for arrive,
348     * ONE_DEREGISTER for arriveAndDeregister
349 dl 1.17 */
350 jsr166 1.66 private int doArrive(int adjust) {
351 dl 1.50 final Phaser root = this.root;
352     for (;;) {
353     long s = (root == this) ? state : reconcileState();
354     int phase = (int)(s >>> PHASE_SHIFT);
355     if (phase < 0)
356     return phase;
357 jsr166 1.64 int counts = (int)s;
358     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
359     if (unarrived <= 0)
360     throw new IllegalStateException(badArrive(s));
361 jsr166 1.66 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
362 jsr166 1.64 if (unarrived == 1) {
363 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
364     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 dl 1.63 if (root == this) {
366     if (onAdvance(phase, nextUnarrived))
367     n |= TERMINATION_BIT;
368     else if (nextUnarrived == 0)
369     n |= EMPTY;
370     else
371     n |= nextUnarrived;
372 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
373     n |= (long)nextPhase << PHASE_SHIFT;
374 dl 1.63 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375 jsr166 1.68 releaseWaiters(phase);
376 dl 1.63 }
377     else if (nextUnarrived == 0) { // propagate deregistration
378 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
379 dl 1.63 UNSAFE.compareAndSwapLong(this, stateOffset,
380     s, s | EMPTY);
381     }
382 dl 1.50 else
383 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
384 dl 1.17 }
385 dl 1.50 return phase;
386 dl 1.17 }
387     }
388     }
389    
390     /**
391     * Implementation of register, bulkRegister
392     *
393 dl 1.32 * @param registrations number to add to both parties and
394     * unarrived fields. Must be greater than zero.
395 jsr166 1.1 */
396 dl 1.17 private int doRegister(int registrations) {
397 jsr166 1.26 // adjustment to state
398 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
399 jsr166 1.57 final Phaser parent = this.parent;
400 dl 1.39 int phase;
401 dl 1.21 for (;;) {
402 dl 1.63 long s = (parent == null) ? state : reconcileState();
403 dl 1.39 int counts = (int)s;
404     int parties = counts >>> PARTIES_SHIFT;
405     int unarrived = counts & UNARRIVED_MASK;
406     if (registrations > MAX_PARTIES - parties)
407 dl 1.21 throw new IllegalStateException(badRegister(s));
408 jsr166 1.69 phase = (int)(s >>> PHASE_SHIFT);
409     if (phase < 0)
410 dl 1.39 break;
411 jsr166 1.69 if (counts != EMPTY) { // not 1st registration
412 jsr166 1.57 if (parent == null || reconcileState() == s) {
413 dl 1.39 if (unarrived == 0) // wait out advance
414     root.internalAwaitAdvance(phase, null);
415     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
416 jsr166 1.66 s, s + adjust))
417 dl 1.39 break;
418     }
419     }
420 jsr166 1.57 else if (parent == null) { // 1st root registration
421 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
422 dl 1.39 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
423     break;
424     }
425     else {
426 jsr166 1.40 synchronized (this) { // 1st sub registration
427 dl 1.39 if (state == s) { // recheck under lock
428 jsr166 1.70 phase = parent.doRegister(1);
429     if (phase < 0)
430     break;
431     // finish registration whenever parent registration
432     // succeeded, even when racing with termination,
433     // since these are part of the same "transaction".
434     while (!UNSAFE.compareAndSwapLong
435     (this, stateOffset, s,
436     ((long)phase << PHASE_SHIFT) | adjust)) {
437     s = state;
438 dl 1.39 phase = (int)(root.state >>> PHASE_SHIFT);
439 jsr166 1.70 // assert (int)s == EMPTY;
440     }
441 dl 1.39 break;
442 dl 1.33 }
443     }
444     }
445 dl 1.17 }
446 dl 1.39 return phase;
447 dl 1.17 }
448    
449     /**
450 dl 1.39 * Resolves lagged phase propagation from root if necessary.
451 dl 1.53 * Reconciliation normally occurs when root has advanced but
452     * subphasers have not yet done so, in which case they must finish
453     * their own advance by setting unarrived to parties (or if
454     * parties is zero, resetting to unregistered EMPTY state).
455     *
456     * @return reconciled state
457 jsr166 1.1 */
458     private long reconcileState() {
459 jsr166 1.52 final Phaser root = this.root;
460 dl 1.31 long s = state;
461 jsr166 1.52 if (root != this) {
462 jsr166 1.71 int phase, p;
463     // CAS to root phase with current parties, tripping unarrived
464 dl 1.53 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
465     (int)(s >>> PHASE_SHIFT) &&
466     !UNSAFE.compareAndSwapLong
467     (this, stateOffset, s,
468 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
469 jsr166 1.71 ((phase < 0) ? (s & COUNTS_MASK) :
470     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
471     ((s & PARTIES_MASK) | p))))))
472 dl 1.53 s = state;
473 jsr166 1.1 }
474 dl 1.31 return s;
475 jsr166 1.1 }
476    
477     /**
478 dl 1.37 * Creates a new phaser with no initially registered parties, no
479     * parent, and initial phase number 0. Any thread using this
480     * phaser will need to first register for it.
481 jsr166 1.1 */
482     public Phaser() {
483 dl 1.15 this(null, 0);
484 jsr166 1.1 }
485    
486     /**
487 dl 1.37 * Creates a new phaser with the given number of registered
488     * unarrived parties, no parent, and initial phase number 0.
489 jsr166 1.1 *
490 dl 1.37 * @param parties the number of parties required to advance to the
491     * next phase
492 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
493     * or greater than the maximum number of parties supported
494     */
495     public Phaser(int parties) {
496     this(null, parties);
497     }
498    
499     /**
500 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
501 jsr166 1.1 *
502 dl 1.37 * @param parent the parent phaser
503 jsr166 1.1 */
504     public Phaser(Phaser parent) {
505 dl 1.15 this(parent, 0);
506 jsr166 1.1 }
507    
508     /**
509 dl 1.37 * Creates a new phaser with the given parent and number of
510 dl 1.50 * registered unarrived parties. When the given parent is non-null
511 jsr166 1.44 * and the given number of parties is greater than zero, this
512     * child phaser is registered with its parent.
513 jsr166 1.1 *
514 dl 1.37 * @param parent the parent phaser
515     * @param parties the number of parties required to advance to the
516     * next phase
517 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
518     * or greater than the maximum number of parties supported
519     */
520     public Phaser(Phaser parent, int parties) {
521 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
522 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
523 dl 1.39 int phase = 0;
524 jsr166 1.1 this.parent = parent;
525     if (parent != null) {
526 jsr166 1.42 final Phaser root = parent.root;
527     this.root = root;
528     this.evenQ = root.evenQ;
529     this.oddQ = root.oddQ;
530 dl 1.34 if (parties != 0)
531 dl 1.39 phase = parent.doRegister(1);
532 jsr166 1.1 }
533 dl 1.15 else {
534 jsr166 1.1 this.root = this;
535 dl 1.15 this.evenQ = new AtomicReference<QNode>();
536     this.oddQ = new AtomicReference<QNode>();
537     }
538 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
539     ((long)phase << PHASE_SHIFT) |
540     ((long)parties << PARTIES_SHIFT) |
541     ((long)parties);
542 jsr166 1.1 }
543    
544     /**
545 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
546 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
547 dl 1.37 * may await its completion before returning. If this phaser has
548     * a parent, and this phaser previously had no registered parties,
549 dl 1.50 * this child phaser is also registered with its parent. If
550     * this phaser is terminated, the attempt to register has
551     * no effect, and a negative value is returned.
552     *
553     * @return the arrival phase number to which this registration
554     * applied. If this value is negative, then this phaser has
555 jsr166 1.51 * terminated, in which case registration has no effect.
556 jsr166 1.1 * @throws IllegalStateException if attempting to register more
557     * than the maximum supported number of parties
558     */
559     public int register() {
560     return doRegister(1);
561     }
562    
563     /**
564 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
565 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
566 dl 1.34 * this method may await its completion before returning. If this
567 dl 1.50 * phaser has a parent, and the given number of parties is greater
568     * than zero, and this phaser previously had no registered
569 jsr166 1.44 * parties, this child phaser is also registered with its parent.
570 dl 1.50 * If this phaser is terminated, the attempt to register has no
571     * effect, and a negative value is returned.
572 jsr166 1.1 *
573 dl 1.37 * @param parties the number of additional parties required to
574     * advance to the next phase
575 dl 1.50 * @return the arrival phase number to which this registration
576     * applied. If this value is negative, then this phaser has
577 jsr166 1.51 * terminated, in which case registration has no effect.
578 jsr166 1.1 * @throws IllegalStateException if attempting to register more
579     * than the maximum supported number of parties
580 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
581 jsr166 1.1 */
582     public int bulkRegister(int parties) {
583     if (parties < 0)
584     throw new IllegalArgumentException();
585 dl 1.34 if (parties == 0)
586 jsr166 1.1 return getPhase();
587     return doRegister(parties);
588     }
589    
590     /**
591 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
592 dl 1.34 *
593     * <p>It is a usage error for an unregistered party to invoke this
594     * method. However, this error may result in an {@code
595     * IllegalStateException} only upon some subsequent operation on
596 dl 1.37 * this phaser, if ever.
597 jsr166 1.1 *
598 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
599 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
600     * of unarrived parties would become negative
601     */
602     public int arrive() {
603 jsr166 1.66 return doArrive(ONE_ARRIVAL);
604 jsr166 1.1 }
605    
606     /**
607 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
608 dl 1.34 * for others to arrive. Deregistration reduces the number of
609 dl 1.37 * parties required to advance in future phases. If this phaser
610     * has a parent, and deregistration causes this phaser to have
611     * zero parties, this phaser is also deregistered from its parent.
612 dl 1.34 *
613     * <p>It is a usage error for an unregistered party to invoke this
614     * method. However, this error may result in an {@code
615     * IllegalStateException} only upon some subsequent operation on
616 dl 1.37 * this phaser, if ever.
617 jsr166 1.1 *
618 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
619 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
620     * of registered or unarrived parties would become negative
621     */
622     public int arriveAndDeregister() {
623 jsr166 1.66 return doArrive(ONE_DEREGISTER);
624 jsr166 1.1 }
625    
626     /**
627 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
628 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
629     * interruption or timeout, you can arrange this with an analogous
630 jsr166 1.12 * construction using one of the other forms of the {@code
631     * awaitAdvance} method. If instead you need to deregister upon
632 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
633     *
634     * <p>It is a usage error for an unregistered party to invoke this
635     * method. However, this error may result in an {@code
636     * IllegalStateException} only upon some subsequent operation on
637 dl 1.37 * this phaser, if ever.
638 jsr166 1.1 *
639 jsr166 1.49 * @return the arrival phase number, or the (negative)
640     * {@linkplain #getPhase() current phase} if terminated
641 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
642     * of unarrived parties would become negative
643     */
644     public int arriveAndAwaitAdvance() {
645 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
646     final Phaser root = this.root;
647     for (;;) {
648     long s = (root == this) ? state : reconcileState();
649     int phase = (int)(s >>> PHASE_SHIFT);
650     if (phase < 0)
651     return phase;
652 jsr166 1.64 int counts = (int)s;
653     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
654     if (unarrived <= 0)
655     throw new IllegalStateException(badArrive(s));
656     if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657     s -= ONE_ARRIVAL)) {
658     if (unarrived > 1)
659 dl 1.50 return root.internalAwaitAdvance(phase, null);
660     if (root != this)
661     return parent.arriveAndAwaitAdvance();
662     long n = s & PARTIES_MASK; // base of next state
663 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 dl 1.50 if (onAdvance(phase, nextUnarrived))
665     n |= TERMINATION_BIT;
666     else if (nextUnarrived == 0)
667     n |= EMPTY;
668     else
669     n |= nextUnarrived;
670     int nextPhase = (phase + 1) & MAX_PHASE;
671     n |= (long)nextPhase << PHASE_SHIFT;
672     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673     return (int)(state >>> PHASE_SHIFT); // terminated
674     releaseWaiters(phase);
675     return nextPhase;
676     }
677     }
678 jsr166 1.1 }
679    
680     /**
681 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
682     * value, returning immediately if the current phase is not equal
683     * to the given phase value or this phaser is terminated.
684 jsr166 1.1 *
685 jsr166 1.10 * @param phase an arrival phase number, or negative value if
686     * terminated; this argument is normally the value returned by a
687 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
689     * negative, or the (negative) {@linkplain #getPhase() current phase}
690     * if terminated
691 jsr166 1.1 */
692     public int awaitAdvance(int phase) {
693 dl 1.50 final Phaser root = this.root;
694 jsr166 1.51 long s = (root == this) ? state : reconcileState();
695     int p = (int)(s >>> PHASE_SHIFT);
696 jsr166 1.1 if (phase < 0)
697     return phase;
698 dl 1.50 if (p == phase)
699     return root.internalAwaitAdvance(phase, null);
700 dl 1.34 return p;
701 jsr166 1.1 }
702    
703     /**
704 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
705 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
706 dl 1.37 * while waiting, or returning immediately if the current phase is
707     * not equal to the given phase value or this phaser is
708     * terminated.
709 jsr166 1.10 *
710     * @param phase an arrival phase number, or negative value if
711     * terminated; this argument is normally the value returned by a
712 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
714     * negative, or the (negative) {@linkplain #getPhase() current phase}
715     * if terminated
716 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
717     */
718     public int awaitAdvanceInterruptibly(int phase)
719     throws InterruptedException {
720 dl 1.50 final Phaser root = this.root;
721 jsr166 1.51 long s = (root == this) ? state : reconcileState();
722     int p = (int)(s >>> PHASE_SHIFT);
723 jsr166 1.1 if (phase < 0)
724     return phase;
725 dl 1.39 if (p == phase) {
726 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
727     p = root.internalAwaitAdvance(phase, node);
728     if (node.wasInterrupted)
729     throw new InterruptedException();
730 dl 1.24 }
731     return p;
732 jsr166 1.1 }
733    
734     /**
735 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
736 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
737     * InterruptedException} if interrupted while waiting, or
738 dl 1.37 * returning immediately if the current phase is not equal to the
739     * given phase value or this phaser is terminated.
740 jsr166 1.10 *
741     * @param phase an arrival phase number, or negative value if
742     * terminated; this argument is normally the value returned by a
743 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
744 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
745     * {@code unit}
746     * @param unit a {@code TimeUnit} determining how to interpret the
747     * {@code timeout} parameter
748 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
749     * negative, or the (negative) {@linkplain #getPhase() current phase}
750     * if terminated
751 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
752     * @throws TimeoutException if timed out while waiting
753     */
754     public int awaitAdvanceInterruptibly(int phase,
755     long timeout, TimeUnit unit)
756     throws InterruptedException, TimeoutException {
757 dl 1.50 long nanos = unit.toNanos(timeout);
758     final Phaser root = this.root;
759 jsr166 1.51 long s = (root == this) ? state : reconcileState();
760     int p = (int)(s >>> PHASE_SHIFT);
761 jsr166 1.47 if (phase < 0)
762     return phase;
763 dl 1.39 if (p == phase) {
764 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
765     p = root.internalAwaitAdvance(phase, node);
766     if (node.wasInterrupted)
767     throw new InterruptedException();
768     else if (p == phase)
769     throw new TimeoutException();
770 dl 1.24 }
771     return p;
772 jsr166 1.1 }
773    
774     /**
775 dl 1.37 * Forces this phaser to enter termination state. Counts of
776 dl 1.39 * registered parties are unaffected. If this phaser is a member
777     * of a tiered set of phasers, then all of the phasers in the set
778     * are terminated. If this phaser is already terminated, this
779     * method has no effect. This method may be useful for
780     * coordinating recovery after one or more tasks encounter
781     * unexpected exceptions.
782 jsr166 1.1 */
783     public void forceTermination() {
784 jsr166 1.23 // Only need to change root state
785     final Phaser root = this.root;
786 dl 1.14 long s;
787 jsr166 1.23 while ((s = root.state) >= 0) {
788 dl 1.53 if (UNSAFE.compareAndSwapLong(root, stateOffset,
789     s, s | TERMINATION_BIT)) {
790 jsr166 1.45 // signal all threads
791 jsr166 1.67 releaseWaiters(0); // Waiters on evenQ
792     releaseWaiters(1); // Waiters on oddQ
793 jsr166 1.23 return;
794     }
795     }
796 jsr166 1.1 }
797    
798     /**
799     * Returns the current phase number. The maximum phase number is
800     * {@code Integer.MAX_VALUE}, after which it restarts at
801 dl 1.37 * zero. Upon termination, the phase number is negative,
802     * in which case the prevailing phase prior to termination
803     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804 jsr166 1.1 *
805     * @return the phase number, or a negative value if terminated
806     */
807     public final int getPhase() {
808 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
809 jsr166 1.1 }
810    
811     /**
812 dl 1.37 * Returns the number of parties registered at this phaser.
813 jsr166 1.1 *
814     * @return the number of parties
815     */
816     public int getRegisteredParties() {
817 dl 1.31 return partiesOf(state);
818 jsr166 1.1 }
819    
820     /**
821 jsr166 1.10 * Returns the number of registered parties that have arrived at
822 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
823     * the returned value is meaningless and arbitrary.
824 jsr166 1.1 *
825     * @return the number of arrived parties
826     */
827     public int getArrivedParties() {
828 dl 1.39 return arrivedOf(reconcileState());
829 jsr166 1.1 }
830    
831     /**
832     * Returns the number of registered parties that have not yet
833 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
834     * terminated, the returned value is meaningless and arbitrary.
835 jsr166 1.1 *
836     * @return the number of unarrived parties
837     */
838     public int getUnarrivedParties() {
839 dl 1.39 return unarrivedOf(reconcileState());
840 jsr166 1.1 }
841    
842     /**
843 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
844 jsr166 1.1 *
845 dl 1.37 * @return the parent of this phaser, or {@code null} if none
846 jsr166 1.1 */
847     public Phaser getParent() {
848     return parent;
849     }
850    
851     /**
852 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
853     * this phaser if it has no parent.
854 jsr166 1.1 *
855 dl 1.37 * @return the root ancestor of this phaser
856 jsr166 1.1 */
857     public Phaser getRoot() {
858     return root;
859     }
860    
861     /**
862 dl 1.37 * Returns {@code true} if this phaser has been terminated.
863 jsr166 1.1 *
864 dl 1.37 * @return {@code true} if this phaser has been terminated
865 jsr166 1.1 */
866     public boolean isTerminated() {
867 dl 1.31 return root.state < 0L;
868 jsr166 1.1 }
869    
870     /**
871 jsr166 1.10 * Overridable method to perform an action upon impending phase
872     * advance, and to control termination. This method is invoked
873 dl 1.37 * upon arrival of the party advancing this phaser (when all other
874 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
875 dl 1.39 * true}, this phaser will be set to a final termination state
876     * upon advance, and subsequent calls to {@link #isTerminated}
877     * will return true. Any (unchecked) Exception or Error thrown by
878     * an invocation of this method is propagated to the party
879     * attempting to advance this phaser, in which case no advance
880     * occurs.
881 jsr166 1.10 *
882 dl 1.37 * <p>The arguments to this method provide the state of the phaser
883 dl 1.17 * prevailing for the current transition. The effects of invoking
884 dl 1.37 * arrival, registration, and waiting methods on this phaser from
885 dl 1.15 * within {@code onAdvance} are unspecified and should not be
886 dl 1.17 * relied on.
887     *
888 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
889     * {@code onAdvance} is invoked only for its root phaser on each
890 dl 1.17 * advance.
891 jsr166 1.1 *
892 dl 1.33 * <p>To support the most common use cases, the default
893     * implementation of this method returns {@code true} when the
894     * number of registered parties has become zero as the result of a
895     * party invoking {@code arriveAndDeregister}. You can disable
896     * this behavior, thus enabling continuation upon future
897     * registrations, by overriding this method to always return
898     * {@code false}:
899     *
900     * <pre> {@code
901     * Phaser phaser = new Phaser() {
902     * protected boolean onAdvance(int phase, int parties) { return false; }
903     * }}</pre>
904 jsr166 1.1 *
905 dl 1.37 * @param phase the current phase number on entry to this method,
906     * before this phaser is advanced
907 jsr166 1.1 * @param registeredParties the current number of registered parties
908 dl 1.37 * @return {@code true} if this phaser should terminate
909 jsr166 1.1 */
910     protected boolean onAdvance(int phase, int registeredParties) {
911 dl 1.36 return registeredParties == 0;
912 jsr166 1.1 }
913    
914     /**
915 dl 1.37 * Returns a string identifying this phaser, as well as its
916 dl 1.21 * state. The state, in brackets, includes the String {@code
917     * "phase = "} followed by the phase number, {@code "parties = "}
918     * followed by the number of registered parties, and {@code
919     * "arrived = "} followed by the number of arrived parties.
920 jsr166 1.1 *
921 dl 1.37 * @return a string identifying this phaser, as well as its state
922 jsr166 1.1 */
923     public String toString() {
924 dl 1.21 return stateToString(reconcileState());
925     }
926    
927     /**
928     * Implementation of toString and string-based error messages
929     */
930     private String stateToString(long s) {
931 jsr166 1.1 return super.toString() +
932     "[phase = " + phaseOf(s) +
933     " parties = " + partiesOf(s) +
934     " arrived = " + arrivedOf(s) + "]";
935     }
936    
937 dl 1.21 // Waiting mechanics
938    
939 jsr166 1.1 /**
940 jsr166 1.30 * Removes and signals threads from queue for phase.
941 jsr166 1.1 */
942     private void releaseWaiters(int phase) {
943 dl 1.37 QNode q; // first element of queue
944     Thread t; // its thread
945 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946 dl 1.17 while ((q = head.get()) != null &&
947 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 dl 1.37 if (head.compareAndSet(q, q.next) &&
949     (t = q.thread) != null) {
950     q.thread = null;
951     LockSupport.unpark(t);
952     }
953 jsr166 1.1 }
954     }
955    
956 dl 1.50 /**
957     * Variant of releaseWaiters that additionally tries to remove any
958     * nodes no longer waiting for advance due to timeout or
959     * interrupt. Currently, nodes are removed only if they are at
960     * head of queue, which suffices to reduce memory footprint in
961     * most usages.
962     *
963     * @return current phase on exit
964     */
965     private int abortWait(int phase) {
966     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967     for (;;) {
968     Thread t;
969     QNode q = head.get();
970     int p = (int)(root.state >>> PHASE_SHIFT);
971     if (q == null || ((t = q.thread) != null && q.phase == p))
972     return p;
973     if (head.compareAndSet(q, q.next) && t != null) {
974     q.thread = null;
975     LockSupport.unpark(t);
976     }
977     }
978     }
979    
980 dl 1.17 /** The number of CPUs, for spin control */
981     private static final int NCPU = Runtime.getRuntime().availableProcessors();
982    
983 jsr166 1.1 /**
984 dl 1.17 * The number of times to spin before blocking while waiting for
985     * advance, per arrival while waiting. On multiprocessors, fully
986     * blocking and waking up a large number of threads all at once is
987     * usually a very slow process, so we use rechargeable spins to
988     * avoid it when threads regularly arrive: When a thread in
989     * internalAwaitAdvance notices another arrival before blocking,
990     * and there appear to be enough CPUs available, it spins
991 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
992     * off good-citizenship vs big unnecessary slowdowns.
993 dl 1.15 */
994 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
995 dl 1.15
996     /**
997 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
998 jsr166 1.64 * Call only on root phaser.
999 jsr166 1.1 *
1000 dl 1.17 * @param phase current phase
1001 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
1002 dl 1.17 * if null, denotes noninterruptible wait
1003 jsr166 1.1 * @return current phase
1004     */
1005 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
1006 jsr166 1.64 // assert root == this;
1007 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1008     boolean queued = false; // true when node is enqueued
1009     int lastUnarrived = 0; // to increase spins upon change
1010 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1011 dl 1.31 long s;
1012     int p;
1013 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1014 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1015     int unarrived = (int)s & UNARRIVED_MASK;
1016     if (unarrived != lastUnarrived &&
1017     (lastUnarrived = unarrived) < NCPU)
1018 dl 1.31 spins += SPINS_PER_ARRIVAL;
1019 dl 1.37 boolean interrupted = Thread.interrupted();
1020     if (interrupted || --spins < 0) { // need node to record intr
1021     node = new QNode(this, phase, false, false, 0L);
1022     node.wasInterrupted = interrupted;
1023     }
1024 dl 1.21 }
1025 dl 1.37 else if (node.isReleasable()) // done or aborted
1026     break;
1027     else if (!queued) { // push onto queue
1028 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1029 dl 1.37 QNode q = node.next = head.get();
1030     if ((q == null || q.phase == phase) &&
1031     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1032 dl 1.36 queued = head.compareAndSet(q, node);
1033 dl 1.31 }
1034 dl 1.17 else {
1035     try {
1036     ForkJoinPool.managedBlock(node);
1037 jsr166 1.74 } catch (InterruptedException cantHappen) {
1038 dl 1.17 node.wasInterrupted = true;
1039     }
1040     }
1041     }
1042 dl 1.34
1043     if (node != null) {
1044     if (node.thread != null)
1045 dl 1.37 node.thread = null; // avoid need for unpark()
1046 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1047 dl 1.34 Thread.currentThread().interrupt();
1048 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1049 dl 1.50 return abortWait(phase); // possibly clean up on abort
1050 dl 1.34 }
1051 dl 1.37 releaseWaiters(phase);
1052 dl 1.31 return p;
1053 jsr166 1.1 }
1054    
1055     /**
1056 dl 1.17 * Wait nodes for Treiber stack representing wait queue
1057 jsr166 1.1 */
1058 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1059     final Phaser phaser;
1060     final int phase;
1061     final boolean interruptible;
1062     final boolean timed;
1063     boolean wasInterrupted;
1064     long nanos;
1065 jsr166 1.72 final long deadline;
1066 dl 1.17 volatile Thread thread; // nulled to cancel wait
1067     QNode next;
1068    
1069     QNode(Phaser phaser, int phase, boolean interruptible,
1070     boolean timed, long nanos) {
1071     this.phaser = phaser;
1072     this.phase = phase;
1073     this.interruptible = interruptible;
1074     this.nanos = nanos;
1075     this.timed = timed;
1076 jsr166 1.72 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1077 dl 1.17 thread = Thread.currentThread();
1078     }
1079    
1080     public boolean isReleasable() {
1081 dl 1.37 if (thread == null)
1082     return true;
1083     if (phaser.getPhase() != phase) {
1084     thread = null;
1085     return true;
1086     }
1087     if (Thread.interrupted())
1088     wasInterrupted = true;
1089     if (wasInterrupted && interruptible) {
1090     thread = null;
1091     return true;
1092     }
1093     if (timed) {
1094     if (nanos > 0L) {
1095 jsr166 1.72 nanos = deadline - System.nanoTime();
1096 dl 1.37 }
1097     if (nanos <= 0L) {
1098     thread = null;
1099     return true;
1100 dl 1.17 }
1101 dl 1.15 }
1102 dl 1.37 return false;
1103 dl 1.17 }
1104    
1105     public boolean block() {
1106 jsr166 1.74 while (!isReleasable()) {
1107 jsr166 1.75 if (timed)
1108     LockSupport.parkNanos(this, nanos);
1109     else
1110 jsr166 1.74 LockSupport.park(this);
1111     }
1112     return true;
1113 dl 1.17 }
1114 jsr166 1.1 }
1115    
1116     // Unsafe mechanics
1117    
1118 dl 1.59 private static final sun.misc.Unsafe UNSAFE;
1119     private static final long stateOffset;
1120     static {
1121 jsr166 1.3 try {
1122 dl 1.59 UNSAFE = sun.misc.Unsafe.getUnsafe();
1123 jsr166 1.62 Class<?> k = Phaser.class;
1124 dl 1.59 stateOffset = UNSAFE.objectFieldOffset
1125     (k.getDeclaredField("state"));
1126 jsr166 1.77 } catch (ReflectiveOperationException e) {
1127 dl 1.59 throw new Error(e);
1128 jsr166 1.3 }
1129     }
1130 jsr166 1.1 }