ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.79
Committed: Tue Feb 17 18:55:39 2015 UTC (9 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.78: +5 -5 lines
Log Message:
standardize code sample idiom: * <pre> {@code

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.atomic.AtomicReference;
10     import java.util.concurrent.locks.LockSupport;
11    
12     /**
13 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
14 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16     * but supporting more flexible usage.
17     *
18 jsr166 1.73 * <p><b>Registration.</b> Unlike the case for other barriers, the
19 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
20 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
21     * methods {@link #register}, {@link #bulkRegister}, or forms of
22     * constructors establishing initial numbers of parties), and
23     * optionally deregistered upon any arrival (using {@link
24     * #arriveAndDeregister}). As is the case with most basic
25     * synchronization constructs, registration and deregistration affect
26     * only internal counts; they do not establish any further internal
27     * bookkeeping, so tasks cannot query whether they are registered.
28     * (However, you can introduce such bookkeeping by subclassing this
29     * class.)
30     *
31 jsr166 1.73 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32 jsr166 1.10 * Phaser} may be repeatedly awaited. Method {@link
33     * #arriveAndAwaitAdvance} has effect analogous to {@link
34     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35 dl 1.37 * generation of a phaser has an associated phase number. The phase
36     * number starts at zero, and advances when all parties arrive at the
37     * phaser, wrapping around to zero after reaching {@code
38 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
39 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
40 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
41     * registered party:
42     *
43 jsr166 1.1 * <ul>
44     *
45 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
46 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
47     * do not block, but return an associated <em>arrival phase
48     * number</em>; that is, the phase number of the phaser to which
49     * the arrival applied. When the final party for a given phase
50     * arrives, an optional action is performed and the phase
51     * advances. These actions are performed by the party
52     * triggering a phase advance, and are arranged by overriding
53     * method {@link #onAdvance(int, int)}, which also controls
54     * termination. Overriding this method is similar to, but more
55     * flexible than, providing a barrier action to a {@code
56     * CyclicBarrier}.
57 jsr166 1.10 *
58     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
59     * argument indicating an arrival phase number, and returns when
60 dl 1.37 * the phaser advances to (or is already at) a different phase.
61 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
62     * method {@code awaitAdvance} continues to wait even if the
63     * waiting thread is interrupted. Interruptible and timeout
64     * versions are also available, but exceptions encountered while
65     * tasks wait interruptibly or with timeout do not change the
66 dl 1.37 * state of the phaser. If necessary, you can perform any
67 jsr166 1.10 * associated recovery within handlers of those exceptions,
68     * often after invoking {@code forceTermination}. Phasers may
69     * also be used by tasks executing in a {@link ForkJoinPool},
70     * which will ensure sufficient parallelism to execute tasks
71     * when others are blocked waiting for a phase to advance.
72 jsr166 1.1 *
73     * </ul>
74     *
75 jsr166 1.73 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
76 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
77     * termination, all synchronization methods immediately return without
78 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
79     * Similarly, attempts to register upon termination have no effect.
80     * Termination is triggered when an invocation of {@code onAdvance}
81     * returns {@code true}. The default implementation returns {@code
82     * true} if a deregistration has caused the number of registered
83     * parties to become zero. As illustrated below, when phasers control
84     * actions with a fixed number of iterations, it is often convenient
85     * to override this method to cause termination when the current phase
86     * number reaches a threshold. Method {@link #forceTermination} is
87     * also available to abruptly release waiting threads and allow them
88     * to terminate.
89 jsr166 1.1 *
90 jsr166 1.73 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
91 dl 1.32 * constructed in tree structures) to reduce contention. Phasers with
92     * large numbers of parties that would otherwise experience heavy
93 jsr166 1.10 * synchronization contention costs may instead be set up so that
94     * groups of sub-phasers share a common parent. This may greatly
95     * increase throughput even though it incurs greater per-operation
96     * overhead.
97     *
98 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
99     * child phasers with their parent are managed automatically.
100     * Whenever the number of registered parties of a child phaser becomes
101     * non-zero (as established in the {@link #Phaser(Phaser,int)}
102 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
103 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
104     * registered parties becomes zero as the result of an invocation of
105 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
106 jsr166 1.44 * from its parent.
107     *
108 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
109 dl 1.37 * only by registered parties, the current state of a phaser may be
110 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
111     * #getRegisteredParties} parties in total, of which {@link
112     * #getArrivedParties} have arrived at the current phase ({@link
113     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
114     * parties arrive, the phase advances. The values returned by these
115     * methods may reflect transient states and so are not in general
116     * useful for synchronization control. Method {@link #toString}
117     * returns snapshots of these state queries in a form convenient for
118     * informal monitoring.
119 jsr166 1.1 *
120     * <p><b>Sample usages:</b>
121     *
122 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
123 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
124     * The typical idiom is for the method setting this up to first
125     * register, then start the actions, then deregister, as in:
126 jsr166 1.1 *
127 jsr166 1.79 * <pre> {@code
128 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
129 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
130 jsr166 1.7 * // create and start threads
131 dl 1.61 * for (final Runnable task : tasks) {
132 jsr166 1.1 * phaser.register();
133     * new Thread() {
134     * public void run() {
135     * phaser.arriveAndAwaitAdvance(); // await all creation
136 jsr166 1.8 * task.run();
137 jsr166 1.1 * }
138     * }.start();
139     * }
140     *
141 jsr166 1.7 * // allow threads to start and deregister self
142     * phaser.arriveAndDeregister();
143 jsr166 1.1 * }}</pre>
144     *
145     * <p>One way to cause a set of threads to repeatedly perform actions
146     * for a given number of iterations is to override {@code onAdvance}:
147     *
148 jsr166 1.79 * <pre> {@code
149 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
150 jsr166 1.1 * final Phaser phaser = new Phaser() {
151 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
152 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
153     * }
154     * };
155     * phaser.register();
156 jsr166 1.10 * for (final Runnable task : tasks) {
157 jsr166 1.1 * phaser.register();
158     * new Thread() {
159     * public void run() {
160     * do {
161 jsr166 1.8 * task.run();
162 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
163 jsr166 1.10 * } while (!phaser.isTerminated());
164 jsr166 1.1 * }
165     * }.start();
166     * }
167     * phaser.arriveAndDeregister(); // deregister self, don't wait
168     * }}</pre>
169     *
170 jsr166 1.10 * If the main task must later await termination, it
171     * may re-register and then execute a similar loop:
172 jsr166 1.79 * <pre> {@code
173 jsr166 1.10 * // ...
174     * phaser.register();
175     * while (!phaser.isTerminated())
176     * phaser.arriveAndAwaitAdvance();}</pre>
177     *
178     * <p>Related constructions may be used to await particular phase numbers
179     * in contexts where you are sure that the phase will never wrap around
180     * {@code Integer.MAX_VALUE}. For example:
181     *
182 jsr166 1.79 * <pre> {@code
183 jsr166 1.10 * void awaitPhase(Phaser phaser, int phase) {
184     * int p = phaser.register(); // assumes caller not already registered
185     * while (p < phase) {
186     * if (phaser.isTerminated())
187     * // ... deal with unexpected termination
188     * else
189     * p = phaser.arriveAndAwaitAdvance();
190     * }
191     * phaser.arriveAndDeregister();
192     * }}</pre>
193     *
194     *
195 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
196     * could use code of the following form, assuming a Task class with a
197     * constructor accepting a {@code Phaser} that it registers with upon
198     * construction. After invocation of {@code build(new Task[n], 0, n,
199     * new Phaser())}, these tasks could then be started, for example by
200     * submitting to a pool:
201 jsr166 1.10 *
202 jsr166 1.79 * <pre> {@code
203 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
204 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
205     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
206     * int j = Math.min(i + TASKS_PER_PHASER, hi);
207 dl 1.39 * build(tasks, i, j, new Phaser(ph));
208 jsr166 1.1 * }
209     * } else {
210     * for (int i = lo; i < hi; ++i)
211 dl 1.39 * tasks[i] = new Task(ph);
212 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
213 jsr166 1.1 * }
214 dl 1.39 * }}</pre>
215 jsr166 1.1 *
216     * The best value of {@code TASKS_PER_PHASER} depends mainly on
217 dl 1.37 * expected synchronization rates. A value as low as four may
218     * be appropriate for extremely small per-phase task bodies (thus
219 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
220     *
221     * <p><b>Implementation notes</b>: This implementation restricts the
222     * maximum number of parties to 65535. Attempts to register additional
223 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
224 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
225 jsr166 1.1 * of participants.
226     *
227     * @since 1.7
228     * @author Doug Lea
229     */
230     public class Phaser {
231     /*
232     * This class implements an extension of X10 "clocks". Thanks to
233     * Vijay Saraswat for the idea, and to Vivek Sarkar for
234     * enhancements to extend functionality.
235     */
236    
237     /**
238 jsr166 1.55 * Primary state representation, holding four bit-fields:
239 jsr166 1.1 *
240 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
241     * parties -- the number of parties to wait (bits 16-31)
242     * phase -- the generation of the barrier (bits 32-62)
243     * terminated -- set if barrier is terminated (bit 63 / sign)
244 jsr166 1.1 *
245 dl 1.39 * Except that a phaser with no registered parties is
246 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
247 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
248     *
249     * To efficiently maintain atomicity, these values are packed into
250     * a single (atomic) long. Good performance relies on keeping
251     * state decoding and encoding simple, and keeping race windows
252     * short.
253     *
254     * All state updates are performed via CAS except initial
255     * registration of a sub-phaser (i.e., one with a non-null
256     * parent). In this (relatively rare) case, we use built-in
257     * synchronization to lock while first registering with its
258     * parent.
259     *
260     * The phase of a subphaser is allowed to lag that of its
261 dl 1.53 * ancestors until it is actually accessed -- see method
262     * reconcileState.
263 jsr166 1.1 */
264     private volatile long state;
265    
266 dl 1.33 private static final int MAX_PARTIES = 0xffff;
267 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
268 dl 1.33 private static final int PARTIES_SHIFT = 16;
269     private static final int PHASE_SHIFT = 32;
270     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
271     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
272 jsr166 1.71 private static final long COUNTS_MASK = 0xffffffffL;
273 dl 1.33 private static final long TERMINATION_BIT = 1L << 63;
274 dl 1.17
275 dl 1.39 // some special values
276     private static final int ONE_ARRIVAL = 1;
277     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
278 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
279 dl 1.39 private static final int EMPTY = 1;
280    
281 dl 1.17 // The following unpacking methods are usually manually inlined
282 jsr166 1.1
283     private static int unarrivedOf(long s) {
284 dl 1.39 int counts = (int)s;
285 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
286 jsr166 1.1 }
287    
288     private static int partiesOf(long s) {
289 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
290 jsr166 1.1 }
291    
292     private static int phaseOf(long s) {
293 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
294 jsr166 1.1 }
295    
296     private static int arrivedOf(long s) {
297 dl 1.39 int counts = (int)s;
298 jsr166 1.40 return (counts == EMPTY) ? 0 :
299 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 jsr166 1.1 }
301    
302     /**
303     * The parent of this phaser, or null if none
304     */
305     private final Phaser parent;
306    
307     /**
308 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
309 jsr166 1.1 */
310     private final Phaser root;
311    
312     /**
313     * Heads of Treiber stacks for waiting threads. To eliminate
314 dl 1.14 * contention when releasing some threads while adding others, we
315 jsr166 1.1 * use two of them, alternating across even and odd phases.
316 dl 1.14 * Subphasers share queues with root to speed up releases.
317 jsr166 1.1 */
318 dl 1.15 private final AtomicReference<QNode> evenQ;
319     private final AtomicReference<QNode> oddQ;
320 jsr166 1.1
321     private AtomicReference<QNode> queueFor(int phase) {
322 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
323 jsr166 1.1 }
324    
325     /**
326 dl 1.33 * Returns message string for bounds exceptions on arrival.
327     */
328     private String badArrive(long s) {
329     return "Attempted arrival of unregistered party for " +
330     stateToString(s);
331     }
332    
333     /**
334     * Returns message string for bounds exceptions on registration.
335     */
336     private String badRegister(long s) {
337     return "Attempt to register more than " +
338     MAX_PARTIES + " parties for " + stateToString(s);
339     }
340    
341     /**
342 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
343     * Manually tuned to speed up and minimize race windows for the
344     * common case of just decrementing unarrived field.
345     *
346 jsr166 1.66 * @param adjust value to subtract from state;
347     * ONE_ARRIVAL for arrive,
348     * ONE_DEREGISTER for arriveAndDeregister
349 dl 1.17 */
350 jsr166 1.66 private int doArrive(int adjust) {
351 dl 1.50 final Phaser root = this.root;
352     for (;;) {
353     long s = (root == this) ? state : reconcileState();
354     int phase = (int)(s >>> PHASE_SHIFT);
355     if (phase < 0)
356     return phase;
357 jsr166 1.64 int counts = (int)s;
358     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
359     if (unarrived <= 0)
360     throw new IllegalStateException(badArrive(s));
361 jsr166 1.78 if (U.compareAndSwapLong(this, STATE, s, s-=adjust)) {
362 jsr166 1.64 if (unarrived == 1) {
363 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
364     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 dl 1.63 if (root == this) {
366     if (onAdvance(phase, nextUnarrived))
367     n |= TERMINATION_BIT;
368     else if (nextUnarrived == 0)
369     n |= EMPTY;
370     else
371     n |= nextUnarrived;
372 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
373     n |= (long)nextPhase << PHASE_SHIFT;
374 jsr166 1.78 U.compareAndSwapLong(this, STATE, s, n);
375 jsr166 1.68 releaseWaiters(phase);
376 dl 1.63 }
377     else if (nextUnarrived == 0) { // propagate deregistration
378 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
379 jsr166 1.78 U.compareAndSwapLong(this, STATE, s, s | EMPTY);
380 dl 1.63 }
381 dl 1.50 else
382 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
383 dl 1.17 }
384 dl 1.50 return phase;
385 dl 1.17 }
386     }
387     }
388    
389     /**
390     * Implementation of register, bulkRegister
391     *
392 dl 1.32 * @param registrations number to add to both parties and
393     * unarrived fields. Must be greater than zero.
394 jsr166 1.1 */
395 dl 1.17 private int doRegister(int registrations) {
396 jsr166 1.26 // adjustment to state
397 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
398 jsr166 1.57 final Phaser parent = this.parent;
399 dl 1.39 int phase;
400 dl 1.21 for (;;) {
401 dl 1.63 long s = (parent == null) ? state : reconcileState();
402 dl 1.39 int counts = (int)s;
403     int parties = counts >>> PARTIES_SHIFT;
404     int unarrived = counts & UNARRIVED_MASK;
405     if (registrations > MAX_PARTIES - parties)
406 dl 1.21 throw new IllegalStateException(badRegister(s));
407 jsr166 1.69 phase = (int)(s >>> PHASE_SHIFT);
408     if (phase < 0)
409 dl 1.39 break;
410 jsr166 1.69 if (counts != EMPTY) { // not 1st registration
411 jsr166 1.57 if (parent == null || reconcileState() == s) {
412 dl 1.39 if (unarrived == 0) // wait out advance
413     root.internalAwaitAdvance(phase, null);
414 jsr166 1.78 else if (U.compareAndSwapLong(this, STATE, s, s + adjust))
415 dl 1.39 break;
416     }
417     }
418 jsr166 1.57 else if (parent == null) { // 1st root registration
419 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
420 jsr166 1.78 if (U.compareAndSwapLong(this, STATE, s, next))
421 dl 1.39 break;
422     }
423     else {
424 jsr166 1.40 synchronized (this) { // 1st sub registration
425 dl 1.39 if (state == s) { // recheck under lock
426 jsr166 1.70 phase = parent.doRegister(1);
427     if (phase < 0)
428     break;
429     // finish registration whenever parent registration
430     // succeeded, even when racing with termination,
431     // since these are part of the same "transaction".
432 jsr166 1.78 while (!U.compareAndSwapLong
433     (this, STATE, s,
434 jsr166 1.70 ((long)phase << PHASE_SHIFT) | adjust)) {
435     s = state;
436 dl 1.39 phase = (int)(root.state >>> PHASE_SHIFT);
437 jsr166 1.70 // assert (int)s == EMPTY;
438     }
439 dl 1.39 break;
440 dl 1.33 }
441     }
442     }
443 dl 1.17 }
444 dl 1.39 return phase;
445 dl 1.17 }
446    
447     /**
448 dl 1.39 * Resolves lagged phase propagation from root if necessary.
449 dl 1.53 * Reconciliation normally occurs when root has advanced but
450     * subphasers have not yet done so, in which case they must finish
451     * their own advance by setting unarrived to parties (or if
452     * parties is zero, resetting to unregistered EMPTY state).
453     *
454     * @return reconciled state
455 jsr166 1.1 */
456     private long reconcileState() {
457 jsr166 1.52 final Phaser root = this.root;
458 dl 1.31 long s = state;
459 jsr166 1.52 if (root != this) {
460 jsr166 1.71 int phase, p;
461     // CAS to root phase with current parties, tripping unarrived
462 dl 1.53 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
463     (int)(s >>> PHASE_SHIFT) &&
464 jsr166 1.78 !U.compareAndSwapLong
465     (this, STATE, s,
466 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
467 jsr166 1.71 ((phase < 0) ? (s & COUNTS_MASK) :
468     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
469     ((s & PARTIES_MASK) | p))))))
470 dl 1.53 s = state;
471 jsr166 1.1 }
472 dl 1.31 return s;
473 jsr166 1.1 }
474    
475     /**
476 dl 1.37 * Creates a new phaser with no initially registered parties, no
477     * parent, and initial phase number 0. Any thread using this
478     * phaser will need to first register for it.
479 jsr166 1.1 */
480     public Phaser() {
481 dl 1.15 this(null, 0);
482 jsr166 1.1 }
483    
484     /**
485 dl 1.37 * Creates a new phaser with the given number of registered
486     * unarrived parties, no parent, and initial phase number 0.
487 jsr166 1.1 *
488 dl 1.37 * @param parties the number of parties required to advance to the
489     * next phase
490 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
491     * or greater than the maximum number of parties supported
492     */
493     public Phaser(int parties) {
494     this(null, parties);
495     }
496    
497     /**
498 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
499 jsr166 1.1 *
500 dl 1.37 * @param parent the parent phaser
501 jsr166 1.1 */
502     public Phaser(Phaser parent) {
503 dl 1.15 this(parent, 0);
504 jsr166 1.1 }
505    
506     /**
507 dl 1.37 * Creates a new phaser with the given parent and number of
508 dl 1.50 * registered unarrived parties. When the given parent is non-null
509 jsr166 1.44 * and the given number of parties is greater than zero, this
510     * child phaser is registered with its parent.
511 jsr166 1.1 *
512 dl 1.37 * @param parent the parent phaser
513     * @param parties the number of parties required to advance to the
514     * next phase
515 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
516     * or greater than the maximum number of parties supported
517     */
518     public Phaser(Phaser parent, int parties) {
519 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
520 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
521 dl 1.39 int phase = 0;
522 jsr166 1.1 this.parent = parent;
523     if (parent != null) {
524 jsr166 1.42 final Phaser root = parent.root;
525     this.root = root;
526     this.evenQ = root.evenQ;
527     this.oddQ = root.oddQ;
528 dl 1.34 if (parties != 0)
529 dl 1.39 phase = parent.doRegister(1);
530 jsr166 1.1 }
531 dl 1.15 else {
532 jsr166 1.1 this.root = this;
533 dl 1.15 this.evenQ = new AtomicReference<QNode>();
534     this.oddQ = new AtomicReference<QNode>();
535     }
536 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
537     ((long)phase << PHASE_SHIFT) |
538     ((long)parties << PARTIES_SHIFT) |
539     ((long)parties);
540 jsr166 1.1 }
541    
542     /**
543 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
544 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
545 dl 1.37 * may await its completion before returning. If this phaser has
546     * a parent, and this phaser previously had no registered parties,
547 dl 1.50 * this child phaser is also registered with its parent. If
548     * this phaser is terminated, the attempt to register has
549     * no effect, and a negative value is returned.
550     *
551     * @return the arrival phase number to which this registration
552     * applied. If this value is negative, then this phaser has
553 jsr166 1.51 * terminated, in which case registration has no effect.
554 jsr166 1.1 * @throws IllegalStateException if attempting to register more
555     * than the maximum supported number of parties
556     */
557     public int register() {
558     return doRegister(1);
559     }
560    
561     /**
562 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
563 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
564 dl 1.34 * this method may await its completion before returning. If this
565 dl 1.50 * phaser has a parent, and the given number of parties is greater
566     * than zero, and this phaser previously had no registered
567 jsr166 1.44 * parties, this child phaser is also registered with its parent.
568 dl 1.50 * If this phaser is terminated, the attempt to register has no
569     * effect, and a negative value is returned.
570 jsr166 1.1 *
571 dl 1.37 * @param parties the number of additional parties required to
572     * advance to the next phase
573 dl 1.50 * @return the arrival phase number to which this registration
574     * applied. If this value is negative, then this phaser has
575 jsr166 1.51 * terminated, in which case registration has no effect.
576 jsr166 1.1 * @throws IllegalStateException if attempting to register more
577     * than the maximum supported number of parties
578 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
579 jsr166 1.1 */
580     public int bulkRegister(int parties) {
581     if (parties < 0)
582     throw new IllegalArgumentException();
583 dl 1.34 if (parties == 0)
584 jsr166 1.1 return getPhase();
585     return doRegister(parties);
586     }
587    
588     /**
589 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
590 dl 1.34 *
591     * <p>It is a usage error for an unregistered party to invoke this
592     * method. However, this error may result in an {@code
593     * IllegalStateException} only upon some subsequent operation on
594 dl 1.37 * this phaser, if ever.
595 jsr166 1.1 *
596 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
597 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
598     * of unarrived parties would become negative
599     */
600     public int arrive() {
601 jsr166 1.66 return doArrive(ONE_ARRIVAL);
602 jsr166 1.1 }
603    
604     /**
605 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
606 dl 1.34 * for others to arrive. Deregistration reduces the number of
607 dl 1.37 * parties required to advance in future phases. If this phaser
608     * has a parent, and deregistration causes this phaser to have
609     * zero parties, this phaser is also deregistered from its parent.
610 dl 1.34 *
611     * <p>It is a usage error for an unregistered party to invoke this
612     * method. However, this error may result in an {@code
613     * IllegalStateException} only upon some subsequent operation on
614 dl 1.37 * this phaser, if ever.
615 jsr166 1.1 *
616 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
617 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
618     * of registered or unarrived parties would become negative
619     */
620     public int arriveAndDeregister() {
621 jsr166 1.66 return doArrive(ONE_DEREGISTER);
622 jsr166 1.1 }
623    
624     /**
625 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
626 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
627     * interruption or timeout, you can arrange this with an analogous
628 jsr166 1.12 * construction using one of the other forms of the {@code
629     * awaitAdvance} method. If instead you need to deregister upon
630 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
631     *
632     * <p>It is a usage error for an unregistered party to invoke this
633     * method. However, this error may result in an {@code
634     * IllegalStateException} only upon some subsequent operation on
635 dl 1.37 * this phaser, if ever.
636 jsr166 1.1 *
637 jsr166 1.49 * @return the arrival phase number, or the (negative)
638     * {@linkplain #getPhase() current phase} if terminated
639 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
640     * of unarrived parties would become negative
641     */
642     public int arriveAndAwaitAdvance() {
643 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644     final Phaser root = this.root;
645     for (;;) {
646     long s = (root == this) ? state : reconcileState();
647     int phase = (int)(s >>> PHASE_SHIFT);
648     if (phase < 0)
649     return phase;
650 jsr166 1.64 int counts = (int)s;
651     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
652     if (unarrived <= 0)
653     throw new IllegalStateException(badArrive(s));
654 jsr166 1.78 if (U.compareAndSwapLong(this, STATE, s, s -= ONE_ARRIVAL)) {
655 jsr166 1.64 if (unarrived > 1)
656 dl 1.50 return root.internalAwaitAdvance(phase, null);
657     if (root != this)
658     return parent.arriveAndAwaitAdvance();
659     long n = s & PARTIES_MASK; // base of next state
660 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
661 dl 1.50 if (onAdvance(phase, nextUnarrived))
662     n |= TERMINATION_BIT;
663     else if (nextUnarrived == 0)
664     n |= EMPTY;
665     else
666     n |= nextUnarrived;
667     int nextPhase = (phase + 1) & MAX_PHASE;
668     n |= (long)nextPhase << PHASE_SHIFT;
669 jsr166 1.78 if (!U.compareAndSwapLong(this, STATE, s, n))
670 dl 1.50 return (int)(state >>> PHASE_SHIFT); // terminated
671     releaseWaiters(phase);
672     return nextPhase;
673     }
674     }
675 jsr166 1.1 }
676    
677     /**
678 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
679     * value, returning immediately if the current phase is not equal
680     * to the given phase value or this phaser is terminated.
681 jsr166 1.1 *
682 jsr166 1.10 * @param phase an arrival phase number, or negative value if
683     * terminated; this argument is normally the value returned by a
684 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
685 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
686     * negative, or the (negative) {@linkplain #getPhase() current phase}
687     * if terminated
688 jsr166 1.1 */
689     public int awaitAdvance(int phase) {
690 dl 1.50 final Phaser root = this.root;
691 jsr166 1.51 long s = (root == this) ? state : reconcileState();
692     int p = (int)(s >>> PHASE_SHIFT);
693 jsr166 1.1 if (phase < 0)
694     return phase;
695 dl 1.50 if (p == phase)
696     return root.internalAwaitAdvance(phase, null);
697 dl 1.34 return p;
698 jsr166 1.1 }
699    
700     /**
701 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
702 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
703 dl 1.37 * while waiting, or returning immediately if the current phase is
704     * not equal to the given phase value or this phaser is
705     * terminated.
706 jsr166 1.10 *
707     * @param phase an arrival phase number, or negative value if
708     * terminated; this argument is normally the value returned by a
709 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
710 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
711     * negative, or the (negative) {@linkplain #getPhase() current phase}
712     * if terminated
713 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
714     */
715     public int awaitAdvanceInterruptibly(int phase)
716     throws InterruptedException {
717 dl 1.50 final Phaser root = this.root;
718 jsr166 1.51 long s = (root == this) ? state : reconcileState();
719     int p = (int)(s >>> PHASE_SHIFT);
720 jsr166 1.1 if (phase < 0)
721     return phase;
722 dl 1.39 if (p == phase) {
723 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
724     p = root.internalAwaitAdvance(phase, node);
725     if (node.wasInterrupted)
726     throw new InterruptedException();
727 dl 1.24 }
728     return p;
729 jsr166 1.1 }
730    
731     /**
732 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
733 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
734     * InterruptedException} if interrupted while waiting, or
735 dl 1.37 * returning immediately if the current phase is not equal to the
736     * given phase value or this phaser is terminated.
737 jsr166 1.10 *
738     * @param phase an arrival phase number, or negative value if
739     * terminated; this argument is normally the value returned by a
740 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
741 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
742     * {@code unit}
743     * @param unit a {@code TimeUnit} determining how to interpret the
744     * {@code timeout} parameter
745 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
746     * negative, or the (negative) {@linkplain #getPhase() current phase}
747     * if terminated
748 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
749     * @throws TimeoutException if timed out while waiting
750     */
751     public int awaitAdvanceInterruptibly(int phase,
752     long timeout, TimeUnit unit)
753     throws InterruptedException, TimeoutException {
754 dl 1.50 long nanos = unit.toNanos(timeout);
755     final Phaser root = this.root;
756 jsr166 1.51 long s = (root == this) ? state : reconcileState();
757     int p = (int)(s >>> PHASE_SHIFT);
758 jsr166 1.47 if (phase < 0)
759     return phase;
760 dl 1.39 if (p == phase) {
761 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
762     p = root.internalAwaitAdvance(phase, node);
763     if (node.wasInterrupted)
764     throw new InterruptedException();
765     else if (p == phase)
766     throw new TimeoutException();
767 dl 1.24 }
768     return p;
769 jsr166 1.1 }
770    
771     /**
772 dl 1.37 * Forces this phaser to enter termination state. Counts of
773 dl 1.39 * registered parties are unaffected. If this phaser is a member
774     * of a tiered set of phasers, then all of the phasers in the set
775     * are terminated. If this phaser is already terminated, this
776     * method has no effect. This method may be useful for
777     * coordinating recovery after one or more tasks encounter
778     * unexpected exceptions.
779 jsr166 1.1 */
780     public void forceTermination() {
781 jsr166 1.23 // Only need to change root state
782     final Phaser root = this.root;
783 dl 1.14 long s;
784 jsr166 1.23 while ((s = root.state) >= 0) {
785 jsr166 1.78 if (U.compareAndSwapLong(root, STATE, s, s | TERMINATION_BIT)) {
786 jsr166 1.45 // signal all threads
787 jsr166 1.67 releaseWaiters(0); // Waiters on evenQ
788     releaseWaiters(1); // Waiters on oddQ
789 jsr166 1.23 return;
790     }
791     }
792 jsr166 1.1 }
793    
794     /**
795     * Returns the current phase number. The maximum phase number is
796     * {@code Integer.MAX_VALUE}, after which it restarts at
797 dl 1.37 * zero. Upon termination, the phase number is negative,
798     * in which case the prevailing phase prior to termination
799     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
800 jsr166 1.1 *
801     * @return the phase number, or a negative value if terminated
802     */
803     public final int getPhase() {
804 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
805 jsr166 1.1 }
806    
807     /**
808 dl 1.37 * Returns the number of parties registered at this phaser.
809 jsr166 1.1 *
810     * @return the number of parties
811     */
812     public int getRegisteredParties() {
813 dl 1.31 return partiesOf(state);
814 jsr166 1.1 }
815    
816     /**
817 jsr166 1.10 * Returns the number of registered parties that have arrived at
818 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
819     * the returned value is meaningless and arbitrary.
820 jsr166 1.1 *
821     * @return the number of arrived parties
822     */
823     public int getArrivedParties() {
824 dl 1.39 return arrivedOf(reconcileState());
825 jsr166 1.1 }
826    
827     /**
828     * Returns the number of registered parties that have not yet
829 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
830     * terminated, the returned value is meaningless and arbitrary.
831 jsr166 1.1 *
832     * @return the number of unarrived parties
833     */
834     public int getUnarrivedParties() {
835 dl 1.39 return unarrivedOf(reconcileState());
836 jsr166 1.1 }
837    
838     /**
839 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
840 jsr166 1.1 *
841 dl 1.37 * @return the parent of this phaser, or {@code null} if none
842 jsr166 1.1 */
843     public Phaser getParent() {
844     return parent;
845     }
846    
847     /**
848 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
849     * this phaser if it has no parent.
850 jsr166 1.1 *
851 dl 1.37 * @return the root ancestor of this phaser
852 jsr166 1.1 */
853     public Phaser getRoot() {
854     return root;
855     }
856    
857     /**
858 dl 1.37 * Returns {@code true} if this phaser has been terminated.
859 jsr166 1.1 *
860 dl 1.37 * @return {@code true} if this phaser has been terminated
861 jsr166 1.1 */
862     public boolean isTerminated() {
863 dl 1.31 return root.state < 0L;
864 jsr166 1.1 }
865    
866     /**
867 jsr166 1.10 * Overridable method to perform an action upon impending phase
868     * advance, and to control termination. This method is invoked
869 dl 1.37 * upon arrival of the party advancing this phaser (when all other
870 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
871 dl 1.39 * true}, this phaser will be set to a final termination state
872     * upon advance, and subsequent calls to {@link #isTerminated}
873     * will return true. Any (unchecked) Exception or Error thrown by
874     * an invocation of this method is propagated to the party
875     * attempting to advance this phaser, in which case no advance
876     * occurs.
877 jsr166 1.10 *
878 dl 1.37 * <p>The arguments to this method provide the state of the phaser
879 dl 1.17 * prevailing for the current transition. The effects of invoking
880 dl 1.37 * arrival, registration, and waiting methods on this phaser from
881 dl 1.15 * within {@code onAdvance} are unspecified and should not be
882 dl 1.17 * relied on.
883     *
884 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
885     * {@code onAdvance} is invoked only for its root phaser on each
886 dl 1.17 * advance.
887 jsr166 1.1 *
888 dl 1.33 * <p>To support the most common use cases, the default
889     * implementation of this method returns {@code true} when the
890     * number of registered parties has become zero as the result of a
891     * party invoking {@code arriveAndDeregister}. You can disable
892     * this behavior, thus enabling continuation upon future
893     * registrations, by overriding this method to always return
894     * {@code false}:
895     *
896     * <pre> {@code
897     * Phaser phaser = new Phaser() {
898     * protected boolean onAdvance(int phase, int parties) { return false; }
899     * }}</pre>
900 jsr166 1.1 *
901 dl 1.37 * @param phase the current phase number on entry to this method,
902     * before this phaser is advanced
903 jsr166 1.1 * @param registeredParties the current number of registered parties
904 dl 1.37 * @return {@code true} if this phaser should terminate
905 jsr166 1.1 */
906     protected boolean onAdvance(int phase, int registeredParties) {
907 dl 1.36 return registeredParties == 0;
908 jsr166 1.1 }
909    
910     /**
911 dl 1.37 * Returns a string identifying this phaser, as well as its
912 dl 1.21 * state. The state, in brackets, includes the String {@code
913     * "phase = "} followed by the phase number, {@code "parties = "}
914     * followed by the number of registered parties, and {@code
915     * "arrived = "} followed by the number of arrived parties.
916 jsr166 1.1 *
917 dl 1.37 * @return a string identifying this phaser, as well as its state
918 jsr166 1.1 */
919     public String toString() {
920 dl 1.21 return stateToString(reconcileState());
921     }
922    
923     /**
924     * Implementation of toString and string-based error messages
925     */
926     private String stateToString(long s) {
927 jsr166 1.1 return super.toString() +
928     "[phase = " + phaseOf(s) +
929     " parties = " + partiesOf(s) +
930     " arrived = " + arrivedOf(s) + "]";
931     }
932    
933 dl 1.21 // Waiting mechanics
934    
935 jsr166 1.1 /**
936 jsr166 1.30 * Removes and signals threads from queue for phase.
937 jsr166 1.1 */
938     private void releaseWaiters(int phase) {
939 dl 1.37 QNode q; // first element of queue
940     Thread t; // its thread
941 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
942 dl 1.17 while ((q = head.get()) != null &&
943 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
944 dl 1.37 if (head.compareAndSet(q, q.next) &&
945     (t = q.thread) != null) {
946     q.thread = null;
947     LockSupport.unpark(t);
948     }
949 jsr166 1.1 }
950     }
951    
952 dl 1.50 /**
953     * Variant of releaseWaiters that additionally tries to remove any
954     * nodes no longer waiting for advance due to timeout or
955     * interrupt. Currently, nodes are removed only if they are at
956     * head of queue, which suffices to reduce memory footprint in
957     * most usages.
958     *
959     * @return current phase on exit
960     */
961     private int abortWait(int phase) {
962     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
963     for (;;) {
964     Thread t;
965     QNode q = head.get();
966     int p = (int)(root.state >>> PHASE_SHIFT);
967     if (q == null || ((t = q.thread) != null && q.phase == p))
968     return p;
969     if (head.compareAndSet(q, q.next) && t != null) {
970     q.thread = null;
971     LockSupport.unpark(t);
972     }
973     }
974     }
975    
976 dl 1.17 /** The number of CPUs, for spin control */
977     private static final int NCPU = Runtime.getRuntime().availableProcessors();
978    
979 jsr166 1.1 /**
980 dl 1.17 * The number of times to spin before blocking while waiting for
981     * advance, per arrival while waiting. On multiprocessors, fully
982     * blocking and waking up a large number of threads all at once is
983     * usually a very slow process, so we use rechargeable spins to
984     * avoid it when threads regularly arrive: When a thread in
985     * internalAwaitAdvance notices another arrival before blocking,
986     * and there appear to be enough CPUs available, it spins
987 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
988     * off good-citizenship vs big unnecessary slowdowns.
989 dl 1.15 */
990 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
991 dl 1.15
992     /**
993 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
994 jsr166 1.64 * Call only on root phaser.
995 jsr166 1.1 *
996 dl 1.17 * @param phase current phase
997 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
998 dl 1.17 * if null, denotes noninterruptible wait
999 jsr166 1.1 * @return current phase
1000     */
1001 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
1002 jsr166 1.64 // assert root == this;
1003 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1004     boolean queued = false; // true when node is enqueued
1005     int lastUnarrived = 0; // to increase spins upon change
1006 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1007 dl 1.31 long s;
1008     int p;
1009 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1010 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1011     int unarrived = (int)s & UNARRIVED_MASK;
1012     if (unarrived != lastUnarrived &&
1013     (lastUnarrived = unarrived) < NCPU)
1014 dl 1.31 spins += SPINS_PER_ARRIVAL;
1015 dl 1.37 boolean interrupted = Thread.interrupted();
1016     if (interrupted || --spins < 0) { // need node to record intr
1017     node = new QNode(this, phase, false, false, 0L);
1018     node.wasInterrupted = interrupted;
1019     }
1020 dl 1.21 }
1021 dl 1.37 else if (node.isReleasable()) // done or aborted
1022     break;
1023     else if (!queued) { // push onto queue
1024 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1025 dl 1.37 QNode q = node.next = head.get();
1026     if ((q == null || q.phase == phase) &&
1027     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1028 dl 1.36 queued = head.compareAndSet(q, node);
1029 dl 1.31 }
1030 dl 1.17 else {
1031     try {
1032     ForkJoinPool.managedBlock(node);
1033 jsr166 1.74 } catch (InterruptedException cantHappen) {
1034 dl 1.17 node.wasInterrupted = true;
1035     }
1036     }
1037     }
1038 dl 1.34
1039     if (node != null) {
1040     if (node.thread != null)
1041 dl 1.37 node.thread = null; // avoid need for unpark()
1042 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1043 dl 1.34 Thread.currentThread().interrupt();
1044 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1045 dl 1.50 return abortWait(phase); // possibly clean up on abort
1046 dl 1.34 }
1047 dl 1.37 releaseWaiters(phase);
1048 dl 1.31 return p;
1049 jsr166 1.1 }
1050    
1051     /**
1052 dl 1.17 * Wait nodes for Treiber stack representing wait queue
1053 jsr166 1.1 */
1054 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1055     final Phaser phaser;
1056     final int phase;
1057     final boolean interruptible;
1058     final boolean timed;
1059     boolean wasInterrupted;
1060     long nanos;
1061 jsr166 1.72 final long deadline;
1062 dl 1.17 volatile Thread thread; // nulled to cancel wait
1063     QNode next;
1064    
1065     QNode(Phaser phaser, int phase, boolean interruptible,
1066     boolean timed, long nanos) {
1067     this.phaser = phaser;
1068     this.phase = phase;
1069     this.interruptible = interruptible;
1070     this.nanos = nanos;
1071     this.timed = timed;
1072 jsr166 1.72 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1073 dl 1.17 thread = Thread.currentThread();
1074     }
1075    
1076     public boolean isReleasable() {
1077 dl 1.37 if (thread == null)
1078     return true;
1079     if (phaser.getPhase() != phase) {
1080     thread = null;
1081     return true;
1082     }
1083     if (Thread.interrupted())
1084     wasInterrupted = true;
1085     if (wasInterrupted && interruptible) {
1086     thread = null;
1087     return true;
1088     }
1089     if (timed) {
1090     if (nanos > 0L) {
1091 jsr166 1.72 nanos = deadline - System.nanoTime();
1092 dl 1.37 }
1093     if (nanos <= 0L) {
1094     thread = null;
1095     return true;
1096 dl 1.17 }
1097 dl 1.15 }
1098 dl 1.37 return false;
1099 dl 1.17 }
1100    
1101     public boolean block() {
1102 jsr166 1.74 while (!isReleasable()) {
1103 jsr166 1.75 if (timed)
1104     LockSupport.parkNanos(this, nanos);
1105     else
1106 jsr166 1.74 LockSupport.park(this);
1107     }
1108     return true;
1109 dl 1.17 }
1110 jsr166 1.1 }
1111    
1112     // Unsafe mechanics
1113    
1114 jsr166 1.78 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1115     private static final long STATE;
1116 dl 1.59 static {
1117 jsr166 1.3 try {
1118 jsr166 1.78 STATE = U.objectFieldOffset
1119     (Phaser.class.getDeclaredField("state"));
1120 jsr166 1.77 } catch (ReflectiveOperationException e) {
1121 dl 1.59 throw new Error(e);
1122 jsr166 1.3 }
1123     }
1124 jsr166 1.1 }