ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.81
Committed: Sun Sep 13 11:37:53 2015 UTC (8 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.80: +4 -3 lines
Log Message:
doc clarification

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9     import java.util.concurrent.atomic.AtomicReference;
10     import java.util.concurrent.locks.LockSupport;
11    
12     /**
13 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
14 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16     * but supporting more flexible usage.
17     *
18 jsr166 1.73 * <p><b>Registration.</b> Unlike the case for other barriers, the
19 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
20 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
21     * methods {@link #register}, {@link #bulkRegister}, or forms of
22     * constructors establishing initial numbers of parties), and
23     * optionally deregistered upon any arrival (using {@link
24     * #arriveAndDeregister}). As is the case with most basic
25     * synchronization constructs, registration and deregistration affect
26     * only internal counts; they do not establish any further internal
27     * bookkeeping, so tasks cannot query whether they are registered.
28     * (However, you can introduce such bookkeeping by subclassing this
29     * class.)
30     *
31 jsr166 1.73 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32 jsr166 1.10 * Phaser} may be repeatedly awaited. Method {@link
33     * #arriveAndAwaitAdvance} has effect analogous to {@link
34     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35 dl 1.37 * generation of a phaser has an associated phase number. The phase
36     * number starts at zero, and advances when all parties arrive at the
37     * phaser, wrapping around to zero after reaching {@code
38 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
39 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
40 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
41     * registered party:
42     *
43 jsr166 1.1 * <ul>
44     *
45 jsr166 1.10 * <li> <b>Arrival.</b> Methods {@link #arrive} and
46 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
47     * do not block, but return an associated <em>arrival phase
48     * number</em>; that is, the phase number of the phaser to which
49     * the arrival applied. When the final party for a given phase
50     * arrives, an optional action is performed and the phase
51     * advances. These actions are performed by the party
52     * triggering a phase advance, and are arranged by overriding
53     * method {@link #onAdvance(int, int)}, which also controls
54     * termination. Overriding this method is similar to, but more
55     * flexible than, providing a barrier action to a {@code
56     * CyclicBarrier}.
57 jsr166 1.10 *
58     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
59     * argument indicating an arrival phase number, and returns when
60 dl 1.37 * the phaser advances to (or is already at) a different phase.
61 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
62     * method {@code awaitAdvance} continues to wait even if the
63     * waiting thread is interrupted. Interruptible and timeout
64     * versions are also available, but exceptions encountered while
65     * tasks wait interruptibly or with timeout do not change the
66 dl 1.37 * state of the phaser. If necessary, you can perform any
67 jsr166 1.10 * associated recovery within handlers of those exceptions,
68     * often after invoking {@code forceTermination}. Phasers may
69 dl 1.81 * also be used by tasks executing in a {@link ForkJoinPool}.
70     * Progress is ensured if the pool's parallelismLevel can
71     * accommodate the maximum number of simultaneously blocked
72     * parties.
73 jsr166 1.1 *
74     * </ul>
75     *
76 jsr166 1.73 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
77 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
78     * termination, all synchronization methods immediately return without
79 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
80     * Similarly, attempts to register upon termination have no effect.
81     * Termination is triggered when an invocation of {@code onAdvance}
82     * returns {@code true}. The default implementation returns {@code
83     * true} if a deregistration has caused the number of registered
84     * parties to become zero. As illustrated below, when phasers control
85     * actions with a fixed number of iterations, it is often convenient
86     * to override this method to cause termination when the current phase
87     * number reaches a threshold. Method {@link #forceTermination} is
88     * also available to abruptly release waiting threads and allow them
89     * to terminate.
90 jsr166 1.1 *
91 jsr166 1.73 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 dl 1.32 * constructed in tree structures) to reduce contention. Phasers with
93     * large numbers of parties that would otherwise experience heavy
94 jsr166 1.10 * synchronization contention costs may instead be set up so that
95     * groups of sub-phasers share a common parent. This may greatly
96     * increase throughput even though it incurs greater per-operation
97     * overhead.
98     *
99 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
100     * child phasers with their parent are managed automatically.
101     * Whenever the number of registered parties of a child phaser becomes
102     * non-zero (as established in the {@link #Phaser(Phaser,int)}
103 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
104 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
105     * registered parties becomes zero as the result of an invocation of
106 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
107 jsr166 1.44 * from its parent.
108     *
109 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
110 dl 1.37 * only by registered parties, the current state of a phaser may be
111 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
112     * #getRegisteredParties} parties in total, of which {@link
113     * #getArrivedParties} have arrived at the current phase ({@link
114     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
115     * parties arrive, the phase advances. The values returned by these
116     * methods may reflect transient states and so are not in general
117     * useful for synchronization control. Method {@link #toString}
118     * returns snapshots of these state queries in a form convenient for
119     * informal monitoring.
120 jsr166 1.1 *
121     * <p><b>Sample usages:</b>
122     *
123 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
124 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
125     * The typical idiom is for the method setting this up to first
126     * register, then start the actions, then deregister, as in:
127 jsr166 1.1 *
128 jsr166 1.79 * <pre> {@code
129 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
130 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
131 jsr166 1.7 * // create and start threads
132 dl 1.61 * for (final Runnable task : tasks) {
133 jsr166 1.1 * phaser.register();
134     * new Thread() {
135     * public void run() {
136     * phaser.arriveAndAwaitAdvance(); // await all creation
137 jsr166 1.8 * task.run();
138 jsr166 1.1 * }
139     * }.start();
140     * }
141     *
142 jsr166 1.7 * // allow threads to start and deregister self
143     * phaser.arriveAndDeregister();
144 jsr166 1.1 * }}</pre>
145     *
146     * <p>One way to cause a set of threads to repeatedly perform actions
147     * for a given number of iterations is to override {@code onAdvance}:
148     *
149 jsr166 1.79 * <pre> {@code
150 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
151 jsr166 1.1 * final Phaser phaser = new Phaser() {
152 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
153 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
154     * }
155     * };
156     * phaser.register();
157 jsr166 1.10 * for (final Runnable task : tasks) {
158 jsr166 1.1 * phaser.register();
159     * new Thread() {
160     * public void run() {
161     * do {
162 jsr166 1.8 * task.run();
163 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
164 jsr166 1.10 * } while (!phaser.isTerminated());
165 jsr166 1.1 * }
166     * }.start();
167     * }
168     * phaser.arriveAndDeregister(); // deregister self, don't wait
169     * }}</pre>
170     *
171 jsr166 1.10 * If the main task must later await termination, it
172     * may re-register and then execute a similar loop:
173 jsr166 1.79 * <pre> {@code
174 jsr166 1.10 * // ...
175     * phaser.register();
176     * while (!phaser.isTerminated())
177     * phaser.arriveAndAwaitAdvance();}</pre>
178     *
179     * <p>Related constructions may be used to await particular phase numbers
180     * in contexts where you are sure that the phase will never wrap around
181     * {@code Integer.MAX_VALUE}. For example:
182     *
183 jsr166 1.79 * <pre> {@code
184 jsr166 1.10 * void awaitPhase(Phaser phaser, int phase) {
185     * int p = phaser.register(); // assumes caller not already registered
186     * while (p < phase) {
187     * if (phaser.isTerminated())
188     * // ... deal with unexpected termination
189     * else
190     * p = phaser.arriveAndAwaitAdvance();
191     * }
192     * phaser.arriveAndDeregister();
193     * }}</pre>
194     *
195     *
196 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
197     * could use code of the following form, assuming a Task class with a
198     * constructor accepting a {@code Phaser} that it registers with upon
199     * construction. After invocation of {@code build(new Task[n], 0, n,
200     * new Phaser())}, these tasks could then be started, for example by
201     * submitting to a pool:
202 jsr166 1.10 *
203 jsr166 1.79 * <pre> {@code
204 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
205 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
206     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
207     * int j = Math.min(i + TASKS_PER_PHASER, hi);
208 dl 1.39 * build(tasks, i, j, new Phaser(ph));
209 jsr166 1.1 * }
210     * } else {
211     * for (int i = lo; i < hi; ++i)
212 dl 1.39 * tasks[i] = new Task(ph);
213 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
214 jsr166 1.1 * }
215 dl 1.39 * }}</pre>
216 jsr166 1.1 *
217     * The best value of {@code TASKS_PER_PHASER} depends mainly on
218 dl 1.37 * expected synchronization rates. A value as low as four may
219     * be appropriate for extremely small per-phase task bodies (thus
220 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
221     *
222     * <p><b>Implementation notes</b>: This implementation restricts the
223     * maximum number of parties to 65535. Attempts to register additional
224 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
225 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
226 jsr166 1.1 * of participants.
227     *
228     * @since 1.7
229     * @author Doug Lea
230     */
231     public class Phaser {
232     /*
233     * This class implements an extension of X10 "clocks". Thanks to
234     * Vijay Saraswat for the idea, and to Vivek Sarkar for
235     * enhancements to extend functionality.
236     */
237    
238     /**
239 jsr166 1.55 * Primary state representation, holding four bit-fields:
240 jsr166 1.1 *
241 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
242     * parties -- the number of parties to wait (bits 16-31)
243     * phase -- the generation of the barrier (bits 32-62)
244     * terminated -- set if barrier is terminated (bit 63 / sign)
245 jsr166 1.1 *
246 dl 1.39 * Except that a phaser with no registered parties is
247 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
248 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
249     *
250     * To efficiently maintain atomicity, these values are packed into
251     * a single (atomic) long. Good performance relies on keeping
252     * state decoding and encoding simple, and keeping race windows
253     * short.
254     *
255     * All state updates are performed via CAS except initial
256     * registration of a sub-phaser (i.e., one with a non-null
257     * parent). In this (relatively rare) case, we use built-in
258     * synchronization to lock while first registering with its
259     * parent.
260     *
261     * The phase of a subphaser is allowed to lag that of its
262 dl 1.53 * ancestors until it is actually accessed -- see method
263     * reconcileState.
264 jsr166 1.1 */
265     private volatile long state;
266    
267 dl 1.33 private static final int MAX_PARTIES = 0xffff;
268 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
269 dl 1.33 private static final int PARTIES_SHIFT = 16;
270     private static final int PHASE_SHIFT = 32;
271     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
272     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
273 jsr166 1.71 private static final long COUNTS_MASK = 0xffffffffL;
274 dl 1.33 private static final long TERMINATION_BIT = 1L << 63;
275 dl 1.17
276 dl 1.39 // some special values
277     private static final int ONE_ARRIVAL = 1;
278     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
280 dl 1.39 private static final int EMPTY = 1;
281    
282 dl 1.17 // The following unpacking methods are usually manually inlined
283 jsr166 1.1
284     private static int unarrivedOf(long s) {
285 dl 1.39 int counts = (int)s;
286 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287 jsr166 1.1 }
288    
289     private static int partiesOf(long s) {
290 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
291 jsr166 1.1 }
292    
293     private static int phaseOf(long s) {
294 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
295 jsr166 1.1 }
296    
297     private static int arrivedOf(long s) {
298 dl 1.39 int counts = (int)s;
299 jsr166 1.40 return (counts == EMPTY) ? 0 :
300 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 jsr166 1.1 }
302    
303     /**
304     * The parent of this phaser, or null if none
305     */
306     private final Phaser parent;
307    
308     /**
309 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
310 jsr166 1.1 */
311     private final Phaser root;
312    
313     /**
314     * Heads of Treiber stacks for waiting threads. To eliminate
315 dl 1.14 * contention when releasing some threads while adding others, we
316 jsr166 1.1 * use two of them, alternating across even and odd phases.
317 dl 1.14 * Subphasers share queues with root to speed up releases.
318 jsr166 1.1 */
319 dl 1.15 private final AtomicReference<QNode> evenQ;
320     private final AtomicReference<QNode> oddQ;
321 jsr166 1.1
322     private AtomicReference<QNode> queueFor(int phase) {
323 dl 1.15 return ((phase & 1) == 0) ? evenQ : oddQ;
324 jsr166 1.1 }
325    
326     /**
327 dl 1.33 * Returns message string for bounds exceptions on arrival.
328     */
329     private String badArrive(long s) {
330     return "Attempted arrival of unregistered party for " +
331     stateToString(s);
332     }
333    
334     /**
335     * Returns message string for bounds exceptions on registration.
336     */
337     private String badRegister(long s) {
338     return "Attempt to register more than " +
339     MAX_PARTIES + " parties for " + stateToString(s);
340     }
341    
342     /**
343 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
344     * Manually tuned to speed up and minimize race windows for the
345     * common case of just decrementing unarrived field.
346     *
347 jsr166 1.66 * @param adjust value to subtract from state;
348     * ONE_ARRIVAL for arrive,
349     * ONE_DEREGISTER for arriveAndDeregister
350 dl 1.17 */
351 jsr166 1.66 private int doArrive(int adjust) {
352 dl 1.50 final Phaser root = this.root;
353     for (;;) {
354     long s = (root == this) ? state : reconcileState();
355     int phase = (int)(s >>> PHASE_SHIFT);
356     if (phase < 0)
357     return phase;
358 jsr166 1.64 int counts = (int)s;
359     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360     if (unarrived <= 0)
361     throw new IllegalStateException(badArrive(s));
362 jsr166 1.78 if (U.compareAndSwapLong(this, STATE, s, s-=adjust)) {
363 jsr166 1.64 if (unarrived == 1) {
364 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
365     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 dl 1.63 if (root == this) {
367     if (onAdvance(phase, nextUnarrived))
368     n |= TERMINATION_BIT;
369     else if (nextUnarrived == 0)
370     n |= EMPTY;
371     else
372     n |= nextUnarrived;
373 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
374     n |= (long)nextPhase << PHASE_SHIFT;
375 jsr166 1.78 U.compareAndSwapLong(this, STATE, s, n);
376 jsr166 1.68 releaseWaiters(phase);
377 dl 1.63 }
378     else if (nextUnarrived == 0) { // propagate deregistration
379 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
380 jsr166 1.78 U.compareAndSwapLong(this, STATE, s, s | EMPTY);
381 dl 1.63 }
382 dl 1.50 else
383 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
384 dl 1.17 }
385 dl 1.50 return phase;
386 dl 1.17 }
387     }
388     }
389    
390     /**
391     * Implementation of register, bulkRegister
392     *
393 dl 1.32 * @param registrations number to add to both parties and
394     * unarrived fields. Must be greater than zero.
395 jsr166 1.1 */
396 dl 1.17 private int doRegister(int registrations) {
397 jsr166 1.26 // adjustment to state
398 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
399 jsr166 1.57 final Phaser parent = this.parent;
400 dl 1.39 int phase;
401 dl 1.21 for (;;) {
402 dl 1.63 long s = (parent == null) ? state : reconcileState();
403 dl 1.39 int counts = (int)s;
404     int parties = counts >>> PARTIES_SHIFT;
405     int unarrived = counts & UNARRIVED_MASK;
406     if (registrations > MAX_PARTIES - parties)
407 dl 1.21 throw new IllegalStateException(badRegister(s));
408 jsr166 1.69 phase = (int)(s >>> PHASE_SHIFT);
409     if (phase < 0)
410 dl 1.39 break;
411 jsr166 1.69 if (counts != EMPTY) { // not 1st registration
412 jsr166 1.57 if (parent == null || reconcileState() == s) {
413 dl 1.39 if (unarrived == 0) // wait out advance
414     root.internalAwaitAdvance(phase, null);
415 jsr166 1.78 else if (U.compareAndSwapLong(this, STATE, s, s + adjust))
416 dl 1.39 break;
417     }
418     }
419 jsr166 1.57 else if (parent == null) { // 1st root registration
420 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
421 jsr166 1.78 if (U.compareAndSwapLong(this, STATE, s, next))
422 dl 1.39 break;
423     }
424     else {
425 jsr166 1.40 synchronized (this) { // 1st sub registration
426 dl 1.39 if (state == s) { // recheck under lock
427 jsr166 1.70 phase = parent.doRegister(1);
428     if (phase < 0)
429     break;
430     // finish registration whenever parent registration
431     // succeeded, even when racing with termination,
432     // since these are part of the same "transaction".
433 jsr166 1.78 while (!U.compareAndSwapLong
434     (this, STATE, s,
435 jsr166 1.70 ((long)phase << PHASE_SHIFT) | adjust)) {
436     s = state;
437 dl 1.39 phase = (int)(root.state >>> PHASE_SHIFT);
438 jsr166 1.70 // assert (int)s == EMPTY;
439     }
440 dl 1.39 break;
441 dl 1.33 }
442     }
443     }
444 dl 1.17 }
445 dl 1.39 return phase;
446 dl 1.17 }
447    
448     /**
449 dl 1.39 * Resolves lagged phase propagation from root if necessary.
450 dl 1.53 * Reconciliation normally occurs when root has advanced but
451     * subphasers have not yet done so, in which case they must finish
452     * their own advance by setting unarrived to parties (or if
453     * parties is zero, resetting to unregistered EMPTY state).
454     *
455     * @return reconciled state
456 jsr166 1.1 */
457     private long reconcileState() {
458 jsr166 1.52 final Phaser root = this.root;
459 dl 1.31 long s = state;
460 jsr166 1.52 if (root != this) {
461 jsr166 1.71 int phase, p;
462     // CAS to root phase with current parties, tripping unarrived
463 dl 1.53 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
464     (int)(s >>> PHASE_SHIFT) &&
465 jsr166 1.78 !U.compareAndSwapLong
466     (this, STATE, s,
467 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
468 jsr166 1.71 ((phase < 0) ? (s & COUNTS_MASK) :
469     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
470     ((s & PARTIES_MASK) | p))))))
471 dl 1.53 s = state;
472 jsr166 1.1 }
473 dl 1.31 return s;
474 jsr166 1.1 }
475    
476     /**
477 dl 1.37 * Creates a new phaser with no initially registered parties, no
478     * parent, and initial phase number 0. Any thread using this
479     * phaser will need to first register for it.
480 jsr166 1.1 */
481     public Phaser() {
482 dl 1.15 this(null, 0);
483 jsr166 1.1 }
484    
485     /**
486 dl 1.37 * Creates a new phaser with the given number of registered
487     * unarrived parties, no parent, and initial phase number 0.
488 jsr166 1.1 *
489 dl 1.37 * @param parties the number of parties required to advance to the
490     * next phase
491 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
492     * or greater than the maximum number of parties supported
493     */
494     public Phaser(int parties) {
495     this(null, parties);
496     }
497    
498     /**
499 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
500 jsr166 1.1 *
501 dl 1.37 * @param parent the parent phaser
502 jsr166 1.1 */
503     public Phaser(Phaser parent) {
504 dl 1.15 this(parent, 0);
505 jsr166 1.1 }
506    
507     /**
508 dl 1.37 * Creates a new phaser with the given parent and number of
509 dl 1.50 * registered unarrived parties. When the given parent is non-null
510 jsr166 1.44 * and the given number of parties is greater than zero, this
511     * child phaser is registered with its parent.
512 jsr166 1.1 *
513 dl 1.37 * @param parent the parent phaser
514     * @param parties the number of parties required to advance to the
515     * next phase
516 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
517     * or greater than the maximum number of parties supported
518     */
519     public Phaser(Phaser parent, int parties) {
520 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
521 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
522 dl 1.39 int phase = 0;
523 jsr166 1.1 this.parent = parent;
524     if (parent != null) {
525 jsr166 1.42 final Phaser root = parent.root;
526     this.root = root;
527     this.evenQ = root.evenQ;
528     this.oddQ = root.oddQ;
529 dl 1.34 if (parties != 0)
530 dl 1.39 phase = parent.doRegister(1);
531 jsr166 1.1 }
532 dl 1.15 else {
533 jsr166 1.1 this.root = this;
534 dl 1.15 this.evenQ = new AtomicReference<QNode>();
535     this.oddQ = new AtomicReference<QNode>();
536     }
537 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
538     ((long)phase << PHASE_SHIFT) |
539     ((long)parties << PARTIES_SHIFT) |
540     ((long)parties);
541 jsr166 1.1 }
542    
543     /**
544 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
545 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
546 dl 1.37 * may await its completion before returning. If this phaser has
547     * a parent, and this phaser previously had no registered parties,
548 dl 1.50 * this child phaser is also registered with its parent. If
549     * this phaser is terminated, the attempt to register has
550     * no effect, and a negative value is returned.
551     *
552     * @return the arrival phase number to which this registration
553     * applied. If this value is negative, then this phaser has
554 jsr166 1.51 * terminated, in which case registration has no effect.
555 jsr166 1.1 * @throws IllegalStateException if attempting to register more
556     * than the maximum supported number of parties
557     */
558     public int register() {
559     return doRegister(1);
560     }
561    
562     /**
563 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
564 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
565 dl 1.34 * this method may await its completion before returning. If this
566 dl 1.50 * phaser has a parent, and the given number of parties is greater
567     * than zero, and this phaser previously had no registered
568 jsr166 1.44 * parties, this child phaser is also registered with its parent.
569 dl 1.50 * If this phaser is terminated, the attempt to register has no
570     * effect, and a negative value is returned.
571 jsr166 1.1 *
572 dl 1.37 * @param parties the number of additional parties required to
573     * advance to the next phase
574 dl 1.50 * @return the arrival phase number to which this registration
575     * applied. If this value is negative, then this phaser has
576 jsr166 1.51 * terminated, in which case registration has no effect.
577 jsr166 1.1 * @throws IllegalStateException if attempting to register more
578     * than the maximum supported number of parties
579 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
580 jsr166 1.1 */
581     public int bulkRegister(int parties) {
582     if (parties < 0)
583     throw new IllegalArgumentException();
584 dl 1.34 if (parties == 0)
585 jsr166 1.1 return getPhase();
586     return doRegister(parties);
587     }
588    
589     /**
590 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
591 dl 1.34 *
592     * <p>It is a usage error for an unregistered party to invoke this
593     * method. However, this error may result in an {@code
594     * IllegalStateException} only upon some subsequent operation on
595 dl 1.37 * this phaser, if ever.
596 jsr166 1.1 *
597 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
598 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
599     * of unarrived parties would become negative
600     */
601     public int arrive() {
602 jsr166 1.66 return doArrive(ONE_ARRIVAL);
603 jsr166 1.1 }
604    
605     /**
606 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
607 dl 1.34 * for others to arrive. Deregistration reduces the number of
608 dl 1.37 * parties required to advance in future phases. If this phaser
609     * has a parent, and deregistration causes this phaser to have
610     * zero parties, this phaser is also deregistered from its parent.
611 dl 1.34 *
612     * <p>It is a usage error for an unregistered party to invoke this
613     * method. However, this error may result in an {@code
614     * IllegalStateException} only upon some subsequent operation on
615 dl 1.37 * this phaser, if ever.
616 jsr166 1.1 *
617 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
618 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
619     * of registered or unarrived parties would become negative
620     */
621     public int arriveAndDeregister() {
622 jsr166 1.66 return doArrive(ONE_DEREGISTER);
623 jsr166 1.1 }
624    
625     /**
626 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
627 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
628     * interruption or timeout, you can arrange this with an analogous
629 jsr166 1.12 * construction using one of the other forms of the {@code
630     * awaitAdvance} method. If instead you need to deregister upon
631 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
632     *
633     * <p>It is a usage error for an unregistered party to invoke this
634     * method. However, this error may result in an {@code
635     * IllegalStateException} only upon some subsequent operation on
636 dl 1.37 * this phaser, if ever.
637 jsr166 1.1 *
638 jsr166 1.49 * @return the arrival phase number, or the (negative)
639     * {@linkplain #getPhase() current phase} if terminated
640 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
641     * of unarrived parties would become negative
642     */
643     public int arriveAndAwaitAdvance() {
644 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
645     final Phaser root = this.root;
646     for (;;) {
647     long s = (root == this) ? state : reconcileState();
648     int phase = (int)(s >>> PHASE_SHIFT);
649     if (phase < 0)
650     return phase;
651 jsr166 1.64 int counts = (int)s;
652     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
653     if (unarrived <= 0)
654     throw new IllegalStateException(badArrive(s));
655 jsr166 1.78 if (U.compareAndSwapLong(this, STATE, s, s -= ONE_ARRIVAL)) {
656 jsr166 1.64 if (unarrived > 1)
657 dl 1.50 return root.internalAwaitAdvance(phase, null);
658     if (root != this)
659     return parent.arriveAndAwaitAdvance();
660     long n = s & PARTIES_MASK; // base of next state
661 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
662 dl 1.50 if (onAdvance(phase, nextUnarrived))
663     n |= TERMINATION_BIT;
664     else if (nextUnarrived == 0)
665     n |= EMPTY;
666     else
667     n |= nextUnarrived;
668     int nextPhase = (phase + 1) & MAX_PHASE;
669     n |= (long)nextPhase << PHASE_SHIFT;
670 jsr166 1.78 if (!U.compareAndSwapLong(this, STATE, s, n))
671 dl 1.50 return (int)(state >>> PHASE_SHIFT); // terminated
672     releaseWaiters(phase);
673     return nextPhase;
674     }
675     }
676 jsr166 1.1 }
677    
678     /**
679 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
680     * value, returning immediately if the current phase is not equal
681     * to the given phase value or this phaser is terminated.
682 jsr166 1.1 *
683 jsr166 1.10 * @param phase an arrival phase number, or negative value if
684     * terminated; this argument is normally the value returned by a
685 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
686 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
687     * negative, or the (negative) {@linkplain #getPhase() current phase}
688     * if terminated
689 jsr166 1.1 */
690     public int awaitAdvance(int phase) {
691 dl 1.50 final Phaser root = this.root;
692 jsr166 1.51 long s = (root == this) ? state : reconcileState();
693     int p = (int)(s >>> PHASE_SHIFT);
694 jsr166 1.1 if (phase < 0)
695     return phase;
696 dl 1.50 if (p == phase)
697     return root.internalAwaitAdvance(phase, null);
698 dl 1.34 return p;
699 jsr166 1.1 }
700    
701     /**
702 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
703 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
704 dl 1.37 * while waiting, or returning immediately if the current phase is
705     * not equal to the given phase value or this phaser is
706     * terminated.
707 jsr166 1.10 *
708     * @param phase an arrival phase number, or negative value if
709     * terminated; this argument is normally the value returned by a
710 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
711 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
712     * negative, or the (negative) {@linkplain #getPhase() current phase}
713     * if terminated
714 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
715     */
716     public int awaitAdvanceInterruptibly(int phase)
717     throws InterruptedException {
718 dl 1.50 final Phaser root = this.root;
719 jsr166 1.51 long s = (root == this) ? state : reconcileState();
720     int p = (int)(s >>> PHASE_SHIFT);
721 jsr166 1.1 if (phase < 0)
722     return phase;
723 dl 1.39 if (p == phase) {
724 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
725     p = root.internalAwaitAdvance(phase, node);
726     if (node.wasInterrupted)
727     throw new InterruptedException();
728 dl 1.24 }
729     return p;
730 jsr166 1.1 }
731    
732     /**
733 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
734 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
735     * InterruptedException} if interrupted while waiting, or
736 dl 1.37 * returning immediately if the current phase is not equal to the
737     * given phase value or this phaser is terminated.
738 jsr166 1.10 *
739     * @param phase an arrival phase number, or negative value if
740     * terminated; this argument is normally the value returned by a
741 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
742 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
743     * {@code unit}
744     * @param unit a {@code TimeUnit} determining how to interpret the
745     * {@code timeout} parameter
746 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
747     * negative, or the (negative) {@linkplain #getPhase() current phase}
748     * if terminated
749 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
750     * @throws TimeoutException if timed out while waiting
751     */
752     public int awaitAdvanceInterruptibly(int phase,
753     long timeout, TimeUnit unit)
754     throws InterruptedException, TimeoutException {
755 dl 1.50 long nanos = unit.toNanos(timeout);
756     final Phaser root = this.root;
757 jsr166 1.51 long s = (root == this) ? state : reconcileState();
758     int p = (int)(s >>> PHASE_SHIFT);
759 jsr166 1.47 if (phase < 0)
760     return phase;
761 dl 1.39 if (p == phase) {
762 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
763     p = root.internalAwaitAdvance(phase, node);
764     if (node.wasInterrupted)
765     throw new InterruptedException();
766     else if (p == phase)
767     throw new TimeoutException();
768 dl 1.24 }
769     return p;
770 jsr166 1.1 }
771    
772     /**
773 dl 1.37 * Forces this phaser to enter termination state. Counts of
774 dl 1.39 * registered parties are unaffected. If this phaser is a member
775     * of a tiered set of phasers, then all of the phasers in the set
776     * are terminated. If this phaser is already terminated, this
777     * method has no effect. This method may be useful for
778     * coordinating recovery after one or more tasks encounter
779     * unexpected exceptions.
780 jsr166 1.1 */
781     public void forceTermination() {
782 jsr166 1.23 // Only need to change root state
783     final Phaser root = this.root;
784 dl 1.14 long s;
785 jsr166 1.23 while ((s = root.state) >= 0) {
786 jsr166 1.78 if (U.compareAndSwapLong(root, STATE, s, s | TERMINATION_BIT)) {
787 jsr166 1.45 // signal all threads
788 jsr166 1.67 releaseWaiters(0); // Waiters on evenQ
789     releaseWaiters(1); // Waiters on oddQ
790 jsr166 1.23 return;
791     }
792     }
793 jsr166 1.1 }
794    
795     /**
796     * Returns the current phase number. The maximum phase number is
797     * {@code Integer.MAX_VALUE}, after which it restarts at
798 dl 1.37 * zero. Upon termination, the phase number is negative,
799     * in which case the prevailing phase prior to termination
800     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
801 jsr166 1.1 *
802     * @return the phase number, or a negative value if terminated
803     */
804     public final int getPhase() {
805 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
806 jsr166 1.1 }
807    
808     /**
809 dl 1.37 * Returns the number of parties registered at this phaser.
810 jsr166 1.1 *
811     * @return the number of parties
812     */
813     public int getRegisteredParties() {
814 dl 1.31 return partiesOf(state);
815 jsr166 1.1 }
816    
817     /**
818 jsr166 1.10 * Returns the number of registered parties that have arrived at
819 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
820     * the returned value is meaningless and arbitrary.
821 jsr166 1.1 *
822     * @return the number of arrived parties
823     */
824     public int getArrivedParties() {
825 dl 1.39 return arrivedOf(reconcileState());
826 jsr166 1.1 }
827    
828     /**
829     * Returns the number of registered parties that have not yet
830 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
831     * terminated, the returned value is meaningless and arbitrary.
832 jsr166 1.1 *
833     * @return the number of unarrived parties
834     */
835     public int getUnarrivedParties() {
836 dl 1.39 return unarrivedOf(reconcileState());
837 jsr166 1.1 }
838    
839     /**
840 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
841 jsr166 1.1 *
842 dl 1.37 * @return the parent of this phaser, or {@code null} if none
843 jsr166 1.1 */
844     public Phaser getParent() {
845     return parent;
846     }
847    
848     /**
849 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
850     * this phaser if it has no parent.
851 jsr166 1.1 *
852 dl 1.37 * @return the root ancestor of this phaser
853 jsr166 1.1 */
854     public Phaser getRoot() {
855     return root;
856     }
857    
858     /**
859 dl 1.37 * Returns {@code true} if this phaser has been terminated.
860 jsr166 1.1 *
861 dl 1.37 * @return {@code true} if this phaser has been terminated
862 jsr166 1.1 */
863     public boolean isTerminated() {
864 dl 1.31 return root.state < 0L;
865 jsr166 1.1 }
866    
867     /**
868 jsr166 1.10 * Overridable method to perform an action upon impending phase
869     * advance, and to control termination. This method is invoked
870 dl 1.37 * upon arrival of the party advancing this phaser (when all other
871 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
872 dl 1.39 * true}, this phaser will be set to a final termination state
873     * upon advance, and subsequent calls to {@link #isTerminated}
874     * will return true. Any (unchecked) Exception or Error thrown by
875     * an invocation of this method is propagated to the party
876     * attempting to advance this phaser, in which case no advance
877     * occurs.
878 jsr166 1.10 *
879 dl 1.37 * <p>The arguments to this method provide the state of the phaser
880 dl 1.17 * prevailing for the current transition. The effects of invoking
881 dl 1.37 * arrival, registration, and waiting methods on this phaser from
882 dl 1.15 * within {@code onAdvance} are unspecified and should not be
883 dl 1.17 * relied on.
884     *
885 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
886     * {@code onAdvance} is invoked only for its root phaser on each
887 dl 1.17 * advance.
888 jsr166 1.1 *
889 dl 1.33 * <p>To support the most common use cases, the default
890     * implementation of this method returns {@code true} when the
891     * number of registered parties has become zero as the result of a
892     * party invoking {@code arriveAndDeregister}. You can disable
893     * this behavior, thus enabling continuation upon future
894     * registrations, by overriding this method to always return
895     * {@code false}:
896     *
897     * <pre> {@code
898     * Phaser phaser = new Phaser() {
899     * protected boolean onAdvance(int phase, int parties) { return false; }
900     * }}</pre>
901 jsr166 1.1 *
902 dl 1.37 * @param phase the current phase number on entry to this method,
903     * before this phaser is advanced
904 jsr166 1.1 * @param registeredParties the current number of registered parties
905 dl 1.37 * @return {@code true} if this phaser should terminate
906 jsr166 1.1 */
907     protected boolean onAdvance(int phase, int registeredParties) {
908 dl 1.36 return registeredParties == 0;
909 jsr166 1.1 }
910    
911     /**
912 dl 1.37 * Returns a string identifying this phaser, as well as its
913 dl 1.21 * state. The state, in brackets, includes the String {@code
914     * "phase = "} followed by the phase number, {@code "parties = "}
915     * followed by the number of registered parties, and {@code
916     * "arrived = "} followed by the number of arrived parties.
917 jsr166 1.1 *
918 dl 1.37 * @return a string identifying this phaser, as well as its state
919 jsr166 1.1 */
920     public String toString() {
921 dl 1.21 return stateToString(reconcileState());
922     }
923    
924     /**
925     * Implementation of toString and string-based error messages
926     */
927     private String stateToString(long s) {
928 jsr166 1.1 return super.toString() +
929     "[phase = " + phaseOf(s) +
930     " parties = " + partiesOf(s) +
931     " arrived = " + arrivedOf(s) + "]";
932     }
933    
934 dl 1.21 // Waiting mechanics
935    
936 jsr166 1.1 /**
937 jsr166 1.30 * Removes and signals threads from queue for phase.
938 jsr166 1.1 */
939     private void releaseWaiters(int phase) {
940 dl 1.37 QNode q; // first element of queue
941     Thread t; // its thread
942 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
943 dl 1.17 while ((q = head.get()) != null &&
944 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
945 dl 1.37 if (head.compareAndSet(q, q.next) &&
946     (t = q.thread) != null) {
947     q.thread = null;
948     LockSupport.unpark(t);
949     }
950 jsr166 1.1 }
951     }
952    
953 dl 1.50 /**
954     * Variant of releaseWaiters that additionally tries to remove any
955     * nodes no longer waiting for advance due to timeout or
956     * interrupt. Currently, nodes are removed only if they are at
957     * head of queue, which suffices to reduce memory footprint in
958     * most usages.
959     *
960     * @return current phase on exit
961     */
962     private int abortWait(int phase) {
963     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
964     for (;;) {
965     Thread t;
966     QNode q = head.get();
967     int p = (int)(root.state >>> PHASE_SHIFT);
968     if (q == null || ((t = q.thread) != null && q.phase == p))
969     return p;
970     if (head.compareAndSet(q, q.next) && t != null) {
971     q.thread = null;
972     LockSupport.unpark(t);
973     }
974     }
975     }
976    
977 dl 1.17 /** The number of CPUs, for spin control */
978     private static final int NCPU = Runtime.getRuntime().availableProcessors();
979    
980 jsr166 1.1 /**
981 dl 1.17 * The number of times to spin before blocking while waiting for
982     * advance, per arrival while waiting. On multiprocessors, fully
983     * blocking and waking up a large number of threads all at once is
984     * usually a very slow process, so we use rechargeable spins to
985     * avoid it when threads regularly arrive: When a thread in
986     * internalAwaitAdvance notices another arrival before blocking,
987     * and there appear to be enough CPUs available, it spins
988 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
989     * off good-citizenship vs big unnecessary slowdowns.
990 dl 1.15 */
991 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
992 dl 1.15
993     /**
994 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
995 jsr166 1.64 * Call only on root phaser.
996 jsr166 1.1 *
997 dl 1.17 * @param phase current phase
998 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
999 dl 1.17 * if null, denotes noninterruptible wait
1000 jsr166 1.1 * @return current phase
1001     */
1002 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
1003 jsr166 1.64 // assert root == this;
1004 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1005     boolean queued = false; // true when node is enqueued
1006     int lastUnarrived = 0; // to increase spins upon change
1007 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1008 dl 1.31 long s;
1009     int p;
1010 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1011 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1012     int unarrived = (int)s & UNARRIVED_MASK;
1013     if (unarrived != lastUnarrived &&
1014     (lastUnarrived = unarrived) < NCPU)
1015 dl 1.31 spins += SPINS_PER_ARRIVAL;
1016 dl 1.37 boolean interrupted = Thread.interrupted();
1017     if (interrupted || --spins < 0) { // need node to record intr
1018     node = new QNode(this, phase, false, false, 0L);
1019     node.wasInterrupted = interrupted;
1020     }
1021 dl 1.21 }
1022 dl 1.37 else if (node.isReleasable()) // done or aborted
1023     break;
1024     else if (!queued) { // push onto queue
1025 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1026 dl 1.37 QNode q = node.next = head.get();
1027     if ((q == null || q.phase == phase) &&
1028     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1029 dl 1.36 queued = head.compareAndSet(q, node);
1030 dl 1.31 }
1031 dl 1.17 else {
1032     try {
1033     ForkJoinPool.managedBlock(node);
1034 jsr166 1.74 } catch (InterruptedException cantHappen) {
1035 dl 1.17 node.wasInterrupted = true;
1036     }
1037     }
1038     }
1039 dl 1.34
1040     if (node != null) {
1041     if (node.thread != null)
1042 dl 1.37 node.thread = null; // avoid need for unpark()
1043 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1044 dl 1.34 Thread.currentThread().interrupt();
1045 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1046 dl 1.50 return abortWait(phase); // possibly clean up on abort
1047 dl 1.34 }
1048 dl 1.37 releaseWaiters(phase);
1049 dl 1.31 return p;
1050 jsr166 1.1 }
1051    
1052     /**
1053 dl 1.17 * Wait nodes for Treiber stack representing wait queue
1054 jsr166 1.1 */
1055 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1056     final Phaser phaser;
1057     final int phase;
1058     final boolean interruptible;
1059     final boolean timed;
1060     boolean wasInterrupted;
1061     long nanos;
1062 jsr166 1.72 final long deadline;
1063 dl 1.17 volatile Thread thread; // nulled to cancel wait
1064     QNode next;
1065    
1066     QNode(Phaser phaser, int phase, boolean interruptible,
1067     boolean timed, long nanos) {
1068     this.phaser = phaser;
1069     this.phase = phase;
1070     this.interruptible = interruptible;
1071     this.nanos = nanos;
1072     this.timed = timed;
1073 jsr166 1.72 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1074 dl 1.17 thread = Thread.currentThread();
1075     }
1076    
1077     public boolean isReleasable() {
1078 dl 1.37 if (thread == null)
1079     return true;
1080     if (phaser.getPhase() != phase) {
1081     thread = null;
1082     return true;
1083     }
1084     if (Thread.interrupted())
1085     wasInterrupted = true;
1086     if (wasInterrupted && interruptible) {
1087     thread = null;
1088     return true;
1089     }
1090     if (timed) {
1091     if (nanos > 0L) {
1092 jsr166 1.72 nanos = deadline - System.nanoTime();
1093 dl 1.37 }
1094     if (nanos <= 0L) {
1095     thread = null;
1096     return true;
1097 dl 1.17 }
1098 dl 1.15 }
1099 dl 1.37 return false;
1100 dl 1.17 }
1101    
1102     public boolean block() {
1103 jsr166 1.74 while (!isReleasable()) {
1104 jsr166 1.75 if (timed)
1105     LockSupport.parkNanos(this, nanos);
1106     else
1107 jsr166 1.74 LockSupport.park(this);
1108     }
1109     return true;
1110 dl 1.17 }
1111 jsr166 1.1 }
1112    
1113     // Unsafe mechanics
1114    
1115 jsr166 1.78 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1116     private static final long STATE;
1117 dl 1.59 static {
1118 jsr166 1.3 try {
1119 jsr166 1.78 STATE = U.objectFieldOffset
1120     (Phaser.class.getDeclaredField("state"));
1121 jsr166 1.77 } catch (ReflectiveOperationException e) {
1122 dl 1.59 throw new Error(e);
1123 jsr166 1.3 }
1124 jsr166 1.80
1125     // Reduce the risk of rare disastrous classloading in first call to
1126     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1127     Class<?> ensureLoaded = LockSupport.class;
1128 jsr166 1.3 }
1129 jsr166 1.1 }