ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.87
Committed: Thu Jun 2 13:16:27 2016 UTC (8 years ago) by dl
Branch: MAIN
Changes since 1.86: +20 -18 lines
Log Message:
VarHandles conversion; pass 1

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.87 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.73 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
22 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33 jsr166 1.73 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 jsr166 1.10 * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.37 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
42 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.82 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 jsr166 1.10 *
60 jsr166 1.82 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 jsr166 1.10 * argument indicating an arrival phase number, and returns when
62 dl 1.37 * the phaser advances to (or is already at) a different phase.
63 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68 dl 1.37 * state of the phaser. If necessary, you can perform any
69 jsr166 1.10 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71 dl 1.81 * also be used by tasks executing in a {@link ForkJoinPool}.
72     * Progress is ensured if the pool's parallelismLevel can
73     * accommodate the maximum number of simultaneously blocked
74     * parties.
75 jsr166 1.1 *
76     * </ul>
77     *
78 jsr166 1.73 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
79 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
80     * termination, all synchronization methods immediately return without
81 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
82     * Similarly, attempts to register upon termination have no effect.
83     * Termination is triggered when an invocation of {@code onAdvance}
84     * returns {@code true}. The default implementation returns {@code
85     * true} if a deregistration has caused the number of registered
86     * parties to become zero. As illustrated below, when phasers control
87     * actions with a fixed number of iterations, it is often convenient
88     * to override this method to cause termination when the current phase
89     * number reaches a threshold. Method {@link #forceTermination} is
90     * also available to abruptly release waiting threads and allow them
91     * to terminate.
92 jsr166 1.1 *
93 jsr166 1.73 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
94 dl 1.32 * constructed in tree structures) to reduce contention. Phasers with
95     * large numbers of parties that would otherwise experience heavy
96 jsr166 1.10 * synchronization contention costs may instead be set up so that
97     * groups of sub-phasers share a common parent. This may greatly
98     * increase throughput even though it incurs greater per-operation
99     * overhead.
100     *
101 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
102     * child phasers with their parent are managed automatically.
103     * Whenever the number of registered parties of a child phaser becomes
104     * non-zero (as established in the {@link #Phaser(Phaser,int)}
105 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
106 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
107     * registered parties becomes zero as the result of an invocation of
108 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
109 jsr166 1.44 * from its parent.
110     *
111 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
112 dl 1.37 * only by registered parties, the current state of a phaser may be
113 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
114     * #getRegisteredParties} parties in total, of which {@link
115     * #getArrivedParties} have arrived at the current phase ({@link
116     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
117     * parties arrive, the phase advances. The values returned by these
118     * methods may reflect transient states and so are not in general
119     * useful for synchronization control. Method {@link #toString}
120     * returns snapshots of these state queries in a form convenient for
121     * informal monitoring.
122 jsr166 1.1 *
123     * <p><b>Sample usages:</b>
124     *
125 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
126 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
127     * The typical idiom is for the method setting this up to first
128     * register, then start the actions, then deregister, as in:
129 jsr166 1.1 *
130 jsr166 1.79 * <pre> {@code
131 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
132 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
133 jsr166 1.7 * // create and start threads
134 dl 1.61 * for (final Runnable task : tasks) {
135 jsr166 1.1 * phaser.register();
136     * new Thread() {
137     * public void run() {
138     * phaser.arriveAndAwaitAdvance(); // await all creation
139 jsr166 1.8 * task.run();
140 jsr166 1.1 * }
141     * }.start();
142     * }
143     *
144 jsr166 1.7 * // allow threads to start and deregister self
145     * phaser.arriveAndDeregister();
146 jsr166 1.1 * }}</pre>
147     *
148     * <p>One way to cause a set of threads to repeatedly perform actions
149     * for a given number of iterations is to override {@code onAdvance}:
150     *
151 jsr166 1.79 * <pre> {@code
152 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
153 jsr166 1.1 * final Phaser phaser = new Phaser() {
154 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
155 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
156     * }
157     * };
158     * phaser.register();
159 jsr166 1.10 * for (final Runnable task : tasks) {
160 jsr166 1.1 * phaser.register();
161     * new Thread() {
162     * public void run() {
163     * do {
164 jsr166 1.8 * task.run();
165 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
166 jsr166 1.10 * } while (!phaser.isTerminated());
167 jsr166 1.1 * }
168     * }.start();
169     * }
170     * phaser.arriveAndDeregister(); // deregister self, don't wait
171     * }}</pre>
172     *
173 jsr166 1.10 * If the main task must later await termination, it
174     * may re-register and then execute a similar loop:
175 jsr166 1.79 * <pre> {@code
176 jsr166 1.10 * // ...
177     * phaser.register();
178     * while (!phaser.isTerminated())
179     * phaser.arriveAndAwaitAdvance();}</pre>
180     *
181     * <p>Related constructions may be used to await particular phase numbers
182     * in contexts where you are sure that the phase will never wrap around
183     * {@code Integer.MAX_VALUE}. For example:
184     *
185 jsr166 1.79 * <pre> {@code
186 jsr166 1.10 * void awaitPhase(Phaser phaser, int phase) {
187     * int p = phaser.register(); // assumes caller not already registered
188     * while (p < phase) {
189     * if (phaser.isTerminated())
190     * // ... deal with unexpected termination
191     * else
192     * p = phaser.arriveAndAwaitAdvance();
193     * }
194     * phaser.arriveAndDeregister();
195     * }}</pre>
196     *
197     *
198 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
199     * could use code of the following form, assuming a Task class with a
200     * constructor accepting a {@code Phaser} that it registers with upon
201     * construction. After invocation of {@code build(new Task[n], 0, n,
202     * new Phaser())}, these tasks could then be started, for example by
203     * submitting to a pool:
204 jsr166 1.10 *
205 jsr166 1.79 * <pre> {@code
206 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
207 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
208     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
209     * int j = Math.min(i + TASKS_PER_PHASER, hi);
210 dl 1.39 * build(tasks, i, j, new Phaser(ph));
211 jsr166 1.1 * }
212     * } else {
213     * for (int i = lo; i < hi; ++i)
214 dl 1.39 * tasks[i] = new Task(ph);
215 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
216 jsr166 1.1 * }
217 dl 1.39 * }}</pre>
218 jsr166 1.1 *
219     * The best value of {@code TASKS_PER_PHASER} depends mainly on
220 dl 1.37 * expected synchronization rates. A value as low as four may
221     * be appropriate for extremely small per-phase task bodies (thus
222 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
223     *
224     * <p><b>Implementation notes</b>: This implementation restricts the
225     * maximum number of parties to 65535. Attempts to register additional
226 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
227 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
228 jsr166 1.1 * of participants.
229     *
230     * @since 1.7
231     * @author Doug Lea
232     */
233     public class Phaser {
234     /*
235     * This class implements an extension of X10 "clocks". Thanks to
236     * Vijay Saraswat for the idea, and to Vivek Sarkar for
237     * enhancements to extend functionality.
238     */
239    
240     /**
241 jsr166 1.55 * Primary state representation, holding four bit-fields:
242 jsr166 1.1 *
243 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
244     * parties -- the number of parties to wait (bits 16-31)
245     * phase -- the generation of the barrier (bits 32-62)
246     * terminated -- set if barrier is terminated (bit 63 / sign)
247 jsr166 1.1 *
248 dl 1.39 * Except that a phaser with no registered parties is
249 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
250 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
251     *
252     * To efficiently maintain atomicity, these values are packed into
253     * a single (atomic) long. Good performance relies on keeping
254     * state decoding and encoding simple, and keeping race windows
255     * short.
256     *
257     * All state updates are performed via CAS except initial
258     * registration of a sub-phaser (i.e., one with a non-null
259     * parent). In this (relatively rare) case, we use built-in
260     * synchronization to lock while first registering with its
261     * parent.
262     *
263     * The phase of a subphaser is allowed to lag that of its
264 dl 1.53 * ancestors until it is actually accessed -- see method
265     * reconcileState.
266 jsr166 1.1 */
267     private volatile long state;
268    
269 dl 1.33 private static final int MAX_PARTIES = 0xffff;
270 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
271 dl 1.33 private static final int PARTIES_SHIFT = 16;
272     private static final int PHASE_SHIFT = 32;
273     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
274     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
275 jsr166 1.71 private static final long COUNTS_MASK = 0xffffffffL;
276 dl 1.33 private static final long TERMINATION_BIT = 1L << 63;
277 dl 1.17
278 dl 1.39 // some special values
279     private static final int ONE_ARRIVAL = 1;
280     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
281 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
282 dl 1.39 private static final int EMPTY = 1;
283    
284 dl 1.17 // The following unpacking methods are usually manually inlined
285 jsr166 1.1
286     private static int unarrivedOf(long s) {
287 dl 1.39 int counts = (int)s;
288 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
289 jsr166 1.1 }
290    
291     private static int partiesOf(long s) {
292 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
293 jsr166 1.1 }
294    
295     private static int phaseOf(long s) {
296 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
297 jsr166 1.1 }
298    
299     private static int arrivedOf(long s) {
300 dl 1.39 int counts = (int)s;
301 jsr166 1.40 return (counts == EMPTY) ? 0 :
302 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
303 jsr166 1.1 }
304    
305     /**
306 jsr166 1.83 * The parent of this phaser, or null if none.
307 jsr166 1.1 */
308     private final Phaser parent;
309    
310     /**
311 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
312 jsr166 1.1 */
313     private final Phaser root;
314    
315     /**
316     * Heads of Treiber stacks for waiting threads. To eliminate
317 dl 1.14 * contention when releasing some threads while adding others, we
318 jsr166 1.1 * use two of them, alternating across even and odd phases.
319 dl 1.14 * Subphasers share queues with root to speed up releases.
320 jsr166 1.1 */
321 dl 1.15 private final AtomicReference<QNode> evenQ;
322     private final AtomicReference<QNode> oddQ;
323 jsr166 1.1
324     /**
325 dl 1.33 * Returns message string for bounds exceptions on arrival.
326     */
327     private String badArrive(long s) {
328     return "Attempted arrival of unregistered party for " +
329     stateToString(s);
330     }
331    
332     /**
333     * Returns message string for bounds exceptions on registration.
334     */
335     private String badRegister(long s) {
336     return "Attempt to register more than " +
337     MAX_PARTIES + " parties for " + stateToString(s);
338     }
339    
340     /**
341 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
342     * Manually tuned to speed up and minimize race windows for the
343     * common case of just decrementing unarrived field.
344     *
345 jsr166 1.66 * @param adjust value to subtract from state;
346     * ONE_ARRIVAL for arrive,
347     * ONE_DEREGISTER for arriveAndDeregister
348 dl 1.17 */
349 jsr166 1.66 private int doArrive(int adjust) {
350 dl 1.50 final Phaser root = this.root;
351     for (;;) {
352     long s = (root == this) ? state : reconcileState();
353     int phase = (int)(s >>> PHASE_SHIFT);
354     if (phase < 0)
355     return phase;
356 jsr166 1.64 int counts = (int)s;
357     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
358     if (unarrived <= 0)
359     throw new IllegalStateException(badArrive(s));
360 dl 1.87 if (STATE.compareAndSet(this, s, s-=adjust)) {
361 jsr166 1.64 if (unarrived == 1) {
362 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
363     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
364 dl 1.63 if (root == this) {
365     if (onAdvance(phase, nextUnarrived))
366     n |= TERMINATION_BIT;
367     else if (nextUnarrived == 0)
368     n |= EMPTY;
369     else
370     n |= nextUnarrived;
371 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
372     n |= (long)nextPhase << PHASE_SHIFT;
373 dl 1.87 STATE.compareAndSet(this, s, n);
374 jsr166 1.68 releaseWaiters(phase);
375 dl 1.63 }
376     else if (nextUnarrived == 0) { // propagate deregistration
377 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
378 dl 1.87 STATE.compareAndSet(this, s, s | EMPTY);
379 dl 1.63 }
380 dl 1.50 else
381 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
382 dl 1.17 }
383 dl 1.50 return phase;
384 dl 1.17 }
385     }
386     }
387    
388     /**
389 jsr166 1.83 * Implementation of register, bulkRegister.
390 dl 1.17 *
391 dl 1.32 * @param registrations number to add to both parties and
392     * unarrived fields. Must be greater than zero.
393 jsr166 1.1 */
394 dl 1.17 private int doRegister(int registrations) {
395 jsr166 1.26 // adjustment to state
396 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
397 jsr166 1.57 final Phaser parent = this.parent;
398 dl 1.39 int phase;
399 dl 1.21 for (;;) {
400 dl 1.63 long s = (parent == null) ? state : reconcileState();
401 dl 1.39 int counts = (int)s;
402     int parties = counts >>> PARTIES_SHIFT;
403     int unarrived = counts & UNARRIVED_MASK;
404     if (registrations > MAX_PARTIES - parties)
405 dl 1.21 throw new IllegalStateException(badRegister(s));
406 jsr166 1.69 phase = (int)(s >>> PHASE_SHIFT);
407     if (phase < 0)
408 dl 1.39 break;
409 jsr166 1.69 if (counts != EMPTY) { // not 1st registration
410 jsr166 1.57 if (parent == null || reconcileState() == s) {
411 dl 1.39 if (unarrived == 0) // wait out advance
412     root.internalAwaitAdvance(phase, null);
413 dl 1.87 else if (STATE.compareAndSet(this, s, s + adjust))
414 dl 1.39 break;
415     }
416     }
417 jsr166 1.57 else if (parent == null) { // 1st root registration
418 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
419 dl 1.87 if (STATE.compareAndSet(this, s, next))
420 dl 1.39 break;
421     }
422     else {
423 jsr166 1.40 synchronized (this) { // 1st sub registration
424 dl 1.39 if (state == s) { // recheck under lock
425 jsr166 1.70 phase = parent.doRegister(1);
426     if (phase < 0)
427     break;
428     // finish registration whenever parent registration
429     // succeeded, even when racing with termination,
430     // since these are part of the same "transaction".
431 dl 1.87 while (!STATE.compareAndSet
432     (this, s,
433 jsr166 1.70 ((long)phase << PHASE_SHIFT) | adjust)) {
434     s = state;
435 dl 1.39 phase = (int)(root.state >>> PHASE_SHIFT);
436 jsr166 1.70 // assert (int)s == EMPTY;
437     }
438 dl 1.39 break;
439 dl 1.33 }
440     }
441     }
442 dl 1.17 }
443 dl 1.39 return phase;
444 dl 1.17 }
445    
446     /**
447 dl 1.39 * Resolves lagged phase propagation from root if necessary.
448 dl 1.53 * Reconciliation normally occurs when root has advanced but
449     * subphasers have not yet done so, in which case they must finish
450     * their own advance by setting unarrived to parties (or if
451     * parties is zero, resetting to unregistered EMPTY state).
452     *
453     * @return reconciled state
454 jsr166 1.1 */
455     private long reconcileState() {
456 jsr166 1.52 final Phaser root = this.root;
457 dl 1.31 long s = state;
458 jsr166 1.52 if (root != this) {
459 jsr166 1.71 int phase, p;
460     // CAS to root phase with current parties, tripping unarrived
461 dl 1.53 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462     (int)(s >>> PHASE_SHIFT) &&
463 dl 1.87 !STATE.compareAndSet
464     (this, s,
465 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
466 jsr166 1.71 ((phase < 0) ? (s & COUNTS_MASK) :
467     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
468     ((s & PARTIES_MASK) | p))))))
469 dl 1.53 s = state;
470 jsr166 1.1 }
471 dl 1.31 return s;
472 jsr166 1.1 }
473    
474     /**
475 dl 1.37 * Creates a new phaser with no initially registered parties, no
476     * parent, and initial phase number 0. Any thread using this
477     * phaser will need to first register for it.
478 jsr166 1.1 */
479     public Phaser() {
480 dl 1.15 this(null, 0);
481 jsr166 1.1 }
482    
483     /**
484 dl 1.37 * Creates a new phaser with the given number of registered
485     * unarrived parties, no parent, and initial phase number 0.
486 jsr166 1.1 *
487 dl 1.37 * @param parties the number of parties required to advance to the
488     * next phase
489 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
490     * or greater than the maximum number of parties supported
491     */
492     public Phaser(int parties) {
493     this(null, parties);
494     }
495    
496     /**
497 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
498 jsr166 1.1 *
499 dl 1.37 * @param parent the parent phaser
500 jsr166 1.1 */
501     public Phaser(Phaser parent) {
502 dl 1.15 this(parent, 0);
503 jsr166 1.1 }
504    
505     /**
506 dl 1.37 * Creates a new phaser with the given parent and number of
507 dl 1.50 * registered unarrived parties. When the given parent is non-null
508 jsr166 1.44 * and the given number of parties is greater than zero, this
509     * child phaser is registered with its parent.
510 jsr166 1.1 *
511 dl 1.37 * @param parent the parent phaser
512     * @param parties the number of parties required to advance to the
513     * next phase
514 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
515     * or greater than the maximum number of parties supported
516     */
517     public Phaser(Phaser parent, int parties) {
518 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
519 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
520 dl 1.39 int phase = 0;
521 jsr166 1.1 this.parent = parent;
522     if (parent != null) {
523 jsr166 1.42 final Phaser root = parent.root;
524     this.root = root;
525     this.evenQ = root.evenQ;
526     this.oddQ = root.oddQ;
527 dl 1.34 if (parties != 0)
528 dl 1.39 phase = parent.doRegister(1);
529 jsr166 1.1 }
530 dl 1.15 else {
531 jsr166 1.1 this.root = this;
532 dl 1.15 this.evenQ = new AtomicReference<QNode>();
533     this.oddQ = new AtomicReference<QNode>();
534     }
535 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
536     ((long)phase << PHASE_SHIFT) |
537     ((long)parties << PARTIES_SHIFT) |
538     ((long)parties);
539 jsr166 1.1 }
540    
541     /**
542 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
543 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
544 dl 1.37 * may await its completion before returning. If this phaser has
545     * a parent, and this phaser previously had no registered parties,
546 dl 1.50 * this child phaser is also registered with its parent. If
547     * this phaser is terminated, the attempt to register has
548     * no effect, and a negative value is returned.
549     *
550     * @return the arrival phase number to which this registration
551     * applied. If this value is negative, then this phaser has
552 jsr166 1.51 * terminated, in which case registration has no effect.
553 jsr166 1.1 * @throws IllegalStateException if attempting to register more
554     * than the maximum supported number of parties
555     */
556     public int register() {
557     return doRegister(1);
558     }
559    
560     /**
561 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
562 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
563 dl 1.34 * this method may await its completion before returning. If this
564 dl 1.50 * phaser has a parent, and the given number of parties is greater
565     * than zero, and this phaser previously had no registered
566 jsr166 1.44 * parties, this child phaser is also registered with its parent.
567 dl 1.50 * If this phaser is terminated, the attempt to register has no
568     * effect, and a negative value is returned.
569 jsr166 1.1 *
570 dl 1.37 * @param parties the number of additional parties required to
571     * advance to the next phase
572 dl 1.50 * @return the arrival phase number to which this registration
573     * applied. If this value is negative, then this phaser has
574 jsr166 1.51 * terminated, in which case registration has no effect.
575 jsr166 1.1 * @throws IllegalStateException if attempting to register more
576     * than the maximum supported number of parties
577 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
578 jsr166 1.1 */
579     public int bulkRegister(int parties) {
580     if (parties < 0)
581     throw new IllegalArgumentException();
582 dl 1.34 if (parties == 0)
583 jsr166 1.1 return getPhase();
584     return doRegister(parties);
585     }
586    
587     /**
588 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
589 dl 1.34 *
590     * <p>It is a usage error for an unregistered party to invoke this
591     * method. However, this error may result in an {@code
592     * IllegalStateException} only upon some subsequent operation on
593 dl 1.37 * this phaser, if ever.
594 jsr166 1.1 *
595 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
596 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
597     * of unarrived parties would become negative
598     */
599     public int arrive() {
600 jsr166 1.66 return doArrive(ONE_ARRIVAL);
601 jsr166 1.1 }
602    
603     /**
604 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
605 dl 1.34 * for others to arrive. Deregistration reduces the number of
606 dl 1.37 * parties required to advance in future phases. If this phaser
607     * has a parent, and deregistration causes this phaser to have
608     * zero parties, this phaser is also deregistered from its parent.
609 dl 1.34 *
610     * <p>It is a usage error for an unregistered party to invoke this
611     * method. However, this error may result in an {@code
612     * IllegalStateException} only upon some subsequent operation on
613 dl 1.37 * this phaser, if ever.
614 jsr166 1.1 *
615 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
616 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
617     * of registered or unarrived parties would become negative
618     */
619     public int arriveAndDeregister() {
620 jsr166 1.66 return doArrive(ONE_DEREGISTER);
621 jsr166 1.1 }
622    
623     /**
624 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
625 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
626     * interruption or timeout, you can arrange this with an analogous
627 jsr166 1.12 * construction using one of the other forms of the {@code
628     * awaitAdvance} method. If instead you need to deregister upon
629 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
630     *
631     * <p>It is a usage error for an unregistered party to invoke this
632     * method. However, this error may result in an {@code
633     * IllegalStateException} only upon some subsequent operation on
634 dl 1.37 * this phaser, if ever.
635 jsr166 1.1 *
636 jsr166 1.49 * @return the arrival phase number, or the (negative)
637     * {@linkplain #getPhase() current phase} if terminated
638 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
639     * of unarrived parties would become negative
640     */
641     public int arriveAndAwaitAdvance() {
642 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
643     final Phaser root = this.root;
644     for (;;) {
645     long s = (root == this) ? state : reconcileState();
646     int phase = (int)(s >>> PHASE_SHIFT);
647     if (phase < 0)
648     return phase;
649 jsr166 1.64 int counts = (int)s;
650     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
651     if (unarrived <= 0)
652     throw new IllegalStateException(badArrive(s));
653 dl 1.87 if (STATE.compareAndSet(this, s, s -= ONE_ARRIVAL)) {
654 jsr166 1.64 if (unarrived > 1)
655 dl 1.50 return root.internalAwaitAdvance(phase, null);
656     if (root != this)
657     return parent.arriveAndAwaitAdvance();
658     long n = s & PARTIES_MASK; // base of next state
659 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
660 dl 1.50 if (onAdvance(phase, nextUnarrived))
661     n |= TERMINATION_BIT;
662     else if (nextUnarrived == 0)
663     n |= EMPTY;
664     else
665     n |= nextUnarrived;
666     int nextPhase = (phase + 1) & MAX_PHASE;
667     n |= (long)nextPhase << PHASE_SHIFT;
668 dl 1.87 if (!STATE.compareAndSet(this, s, n))
669 dl 1.50 return (int)(state >>> PHASE_SHIFT); // terminated
670     releaseWaiters(phase);
671     return nextPhase;
672     }
673     }
674 jsr166 1.1 }
675    
676     /**
677 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
678     * value, returning immediately if the current phase is not equal
679     * to the given phase value or this phaser is terminated.
680 jsr166 1.1 *
681 jsr166 1.10 * @param phase an arrival phase number, or negative value if
682     * terminated; this argument is normally the value returned by a
683 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
684 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
685     * negative, or the (negative) {@linkplain #getPhase() current phase}
686     * if terminated
687 jsr166 1.1 */
688     public int awaitAdvance(int phase) {
689 dl 1.50 final Phaser root = this.root;
690 jsr166 1.51 long s = (root == this) ? state : reconcileState();
691     int p = (int)(s >>> PHASE_SHIFT);
692 jsr166 1.1 if (phase < 0)
693     return phase;
694 dl 1.50 if (p == phase)
695     return root.internalAwaitAdvance(phase, null);
696 dl 1.34 return p;
697 jsr166 1.1 }
698    
699     /**
700 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
701 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
702 dl 1.37 * while waiting, or returning immediately if the current phase is
703     * not equal to the given phase value or this phaser is
704     * terminated.
705 jsr166 1.10 *
706     * @param phase an arrival phase number, or negative value if
707     * terminated; this argument is normally the value returned by a
708 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
709 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
710     * negative, or the (negative) {@linkplain #getPhase() current phase}
711     * if terminated
712 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
713     */
714     public int awaitAdvanceInterruptibly(int phase)
715     throws InterruptedException {
716 dl 1.50 final Phaser root = this.root;
717 jsr166 1.51 long s = (root == this) ? state : reconcileState();
718     int p = (int)(s >>> PHASE_SHIFT);
719 jsr166 1.1 if (phase < 0)
720     return phase;
721 dl 1.39 if (p == phase) {
722 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
723     p = root.internalAwaitAdvance(phase, node);
724     if (node.wasInterrupted)
725     throw new InterruptedException();
726 dl 1.24 }
727     return p;
728 jsr166 1.1 }
729    
730     /**
731 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
732 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
733     * InterruptedException} if interrupted while waiting, or
734 dl 1.37 * returning immediately if the current phase is not equal to the
735     * given phase value or this phaser is terminated.
736 jsr166 1.10 *
737     * @param phase an arrival phase number, or negative value if
738     * terminated; this argument is normally the value returned by a
739 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
740 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
741     * {@code unit}
742     * @param unit a {@code TimeUnit} determining how to interpret the
743     * {@code timeout} parameter
744 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
745     * negative, or the (negative) {@linkplain #getPhase() current phase}
746     * if terminated
747 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
748     * @throws TimeoutException if timed out while waiting
749     */
750     public int awaitAdvanceInterruptibly(int phase,
751     long timeout, TimeUnit unit)
752     throws InterruptedException, TimeoutException {
753 dl 1.50 long nanos = unit.toNanos(timeout);
754     final Phaser root = this.root;
755 jsr166 1.51 long s = (root == this) ? state : reconcileState();
756     int p = (int)(s >>> PHASE_SHIFT);
757 jsr166 1.47 if (phase < 0)
758     return phase;
759 dl 1.39 if (p == phase) {
760 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
761     p = root.internalAwaitAdvance(phase, node);
762     if (node.wasInterrupted)
763     throw new InterruptedException();
764     else if (p == phase)
765     throw new TimeoutException();
766 dl 1.24 }
767     return p;
768 jsr166 1.1 }
769    
770     /**
771 dl 1.37 * Forces this phaser to enter termination state. Counts of
772 dl 1.39 * registered parties are unaffected. If this phaser is a member
773     * of a tiered set of phasers, then all of the phasers in the set
774     * are terminated. If this phaser is already terminated, this
775     * method has no effect. This method may be useful for
776     * coordinating recovery after one or more tasks encounter
777     * unexpected exceptions.
778 jsr166 1.1 */
779     public void forceTermination() {
780 jsr166 1.23 // Only need to change root state
781     final Phaser root = this.root;
782 dl 1.14 long s;
783 jsr166 1.23 while ((s = root.state) >= 0) {
784 dl 1.87 if (STATE.compareAndSet(root, s, s | TERMINATION_BIT)) {
785 jsr166 1.45 // signal all threads
786 jsr166 1.67 releaseWaiters(0); // Waiters on evenQ
787     releaseWaiters(1); // Waiters on oddQ
788 jsr166 1.23 return;
789     }
790     }
791 jsr166 1.1 }
792    
793     /**
794     * Returns the current phase number. The maximum phase number is
795     * {@code Integer.MAX_VALUE}, after which it restarts at
796 dl 1.37 * zero. Upon termination, the phase number is negative,
797     * in which case the prevailing phase prior to termination
798     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
799 jsr166 1.1 *
800     * @return the phase number, or a negative value if terminated
801     */
802     public final int getPhase() {
803 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
804 jsr166 1.1 }
805    
806     /**
807 dl 1.37 * Returns the number of parties registered at this phaser.
808 jsr166 1.1 *
809     * @return the number of parties
810     */
811     public int getRegisteredParties() {
812 dl 1.31 return partiesOf(state);
813 jsr166 1.1 }
814    
815     /**
816 jsr166 1.10 * Returns the number of registered parties that have arrived at
817 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
818     * the returned value is meaningless and arbitrary.
819 jsr166 1.1 *
820     * @return the number of arrived parties
821     */
822     public int getArrivedParties() {
823 dl 1.39 return arrivedOf(reconcileState());
824 jsr166 1.1 }
825    
826     /**
827     * Returns the number of registered parties that have not yet
828 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
829     * terminated, the returned value is meaningless and arbitrary.
830 jsr166 1.1 *
831     * @return the number of unarrived parties
832     */
833     public int getUnarrivedParties() {
834 dl 1.39 return unarrivedOf(reconcileState());
835 jsr166 1.1 }
836    
837     /**
838 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
839 jsr166 1.1 *
840 dl 1.37 * @return the parent of this phaser, or {@code null} if none
841 jsr166 1.1 */
842     public Phaser getParent() {
843     return parent;
844     }
845    
846     /**
847 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
848     * this phaser if it has no parent.
849 jsr166 1.1 *
850 dl 1.37 * @return the root ancestor of this phaser
851 jsr166 1.1 */
852     public Phaser getRoot() {
853     return root;
854     }
855    
856     /**
857 dl 1.37 * Returns {@code true} if this phaser has been terminated.
858 jsr166 1.1 *
859 dl 1.37 * @return {@code true} if this phaser has been terminated
860 jsr166 1.1 */
861     public boolean isTerminated() {
862 dl 1.31 return root.state < 0L;
863 jsr166 1.1 }
864    
865     /**
866 jsr166 1.10 * Overridable method to perform an action upon impending phase
867     * advance, and to control termination. This method is invoked
868 dl 1.37 * upon arrival of the party advancing this phaser (when all other
869 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
870 dl 1.39 * true}, this phaser will be set to a final termination state
871     * upon advance, and subsequent calls to {@link #isTerminated}
872     * will return true. Any (unchecked) Exception or Error thrown by
873     * an invocation of this method is propagated to the party
874     * attempting to advance this phaser, in which case no advance
875     * occurs.
876 jsr166 1.10 *
877 dl 1.37 * <p>The arguments to this method provide the state of the phaser
878 dl 1.17 * prevailing for the current transition. The effects of invoking
879 dl 1.37 * arrival, registration, and waiting methods on this phaser from
880 dl 1.15 * within {@code onAdvance} are unspecified and should not be
881 dl 1.17 * relied on.
882     *
883 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
884     * {@code onAdvance} is invoked only for its root phaser on each
885 dl 1.17 * advance.
886 jsr166 1.1 *
887 dl 1.33 * <p>To support the most common use cases, the default
888     * implementation of this method returns {@code true} when the
889     * number of registered parties has become zero as the result of a
890     * party invoking {@code arriveAndDeregister}. You can disable
891     * this behavior, thus enabling continuation upon future
892     * registrations, by overriding this method to always return
893     * {@code false}:
894     *
895     * <pre> {@code
896     * Phaser phaser = new Phaser() {
897     * protected boolean onAdvance(int phase, int parties) { return false; }
898     * }}</pre>
899 jsr166 1.1 *
900 dl 1.37 * @param phase the current phase number on entry to this method,
901     * before this phaser is advanced
902 jsr166 1.1 * @param registeredParties the current number of registered parties
903 dl 1.37 * @return {@code true} if this phaser should terminate
904 jsr166 1.1 */
905     protected boolean onAdvance(int phase, int registeredParties) {
906 dl 1.36 return registeredParties == 0;
907 jsr166 1.1 }
908    
909     /**
910 dl 1.37 * Returns a string identifying this phaser, as well as its
911 dl 1.21 * state. The state, in brackets, includes the String {@code
912     * "phase = "} followed by the phase number, {@code "parties = "}
913     * followed by the number of registered parties, and {@code
914     * "arrived = "} followed by the number of arrived parties.
915 jsr166 1.1 *
916 dl 1.37 * @return a string identifying this phaser, as well as its state
917 jsr166 1.1 */
918     public String toString() {
919 dl 1.21 return stateToString(reconcileState());
920     }
921    
922     /**
923 jsr166 1.83 * Implementation of toString and string-based error messages.
924 dl 1.21 */
925     private String stateToString(long s) {
926 jsr166 1.1 return super.toString() +
927     "[phase = " + phaseOf(s) +
928     " parties = " + partiesOf(s) +
929     " arrived = " + arrivedOf(s) + "]";
930     }
931    
932 dl 1.21 // Waiting mechanics
933    
934 jsr166 1.1 /**
935 jsr166 1.30 * Removes and signals threads from queue for phase.
936 jsr166 1.1 */
937     private void releaseWaiters(int phase) {
938 dl 1.37 QNode q; // first element of queue
939     Thread t; // its thread
940 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
941 dl 1.17 while ((q = head.get()) != null &&
942 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
943 dl 1.37 if (head.compareAndSet(q, q.next) &&
944     (t = q.thread) != null) {
945     q.thread = null;
946     LockSupport.unpark(t);
947     }
948 jsr166 1.1 }
949     }
950    
951 dl 1.50 /**
952     * Variant of releaseWaiters that additionally tries to remove any
953     * nodes no longer waiting for advance due to timeout or
954     * interrupt. Currently, nodes are removed only if they are at
955     * head of queue, which suffices to reduce memory footprint in
956     * most usages.
957     *
958     * @return current phase on exit
959     */
960     private int abortWait(int phase) {
961     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
962     for (;;) {
963     Thread t;
964     QNode q = head.get();
965     int p = (int)(root.state >>> PHASE_SHIFT);
966     if (q == null || ((t = q.thread) != null && q.phase == p))
967     return p;
968     if (head.compareAndSet(q, q.next) && t != null) {
969     q.thread = null;
970     LockSupport.unpark(t);
971     }
972     }
973     }
974    
975 dl 1.17 /** The number of CPUs, for spin control */
976     private static final int NCPU = Runtime.getRuntime().availableProcessors();
977    
978 jsr166 1.1 /**
979 dl 1.17 * The number of times to spin before blocking while waiting for
980     * advance, per arrival while waiting. On multiprocessors, fully
981     * blocking and waking up a large number of threads all at once is
982     * usually a very slow process, so we use rechargeable spins to
983     * avoid it when threads regularly arrive: When a thread in
984     * internalAwaitAdvance notices another arrival before blocking,
985     * and there appear to be enough CPUs available, it spins
986 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
987     * off good-citizenship vs big unnecessary slowdowns.
988 dl 1.15 */
989 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
990 dl 1.15
991     /**
992 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
993 jsr166 1.64 * Call only on root phaser.
994 jsr166 1.1 *
995 dl 1.17 * @param phase current phase
996 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
997 dl 1.17 * if null, denotes noninterruptible wait
998 jsr166 1.1 * @return current phase
999     */
1000 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
1001 jsr166 1.64 // assert root == this;
1002 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1003     boolean queued = false; // true when node is enqueued
1004     int lastUnarrived = 0; // to increase spins upon change
1005 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1006 dl 1.31 long s;
1007     int p;
1008 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1009 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1010     int unarrived = (int)s & UNARRIVED_MASK;
1011     if (unarrived != lastUnarrived &&
1012     (lastUnarrived = unarrived) < NCPU)
1013 dl 1.31 spins += SPINS_PER_ARRIVAL;
1014 dl 1.37 boolean interrupted = Thread.interrupted();
1015     if (interrupted || --spins < 0) { // need node to record intr
1016     node = new QNode(this, phase, false, false, 0L);
1017     node.wasInterrupted = interrupted;
1018     }
1019 dl 1.87 else
1020     Thread.onSpinWait();
1021 dl 1.21 }
1022 dl 1.37 else if (node.isReleasable()) // done or aborted
1023     break;
1024     else if (!queued) { // push onto queue
1025 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1026 dl 1.37 QNode q = node.next = head.get();
1027     if ((q == null || q.phase == phase) &&
1028     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1029 dl 1.36 queued = head.compareAndSet(q, node);
1030 dl 1.31 }
1031 dl 1.17 else {
1032     try {
1033     ForkJoinPool.managedBlock(node);
1034 jsr166 1.74 } catch (InterruptedException cantHappen) {
1035 dl 1.17 node.wasInterrupted = true;
1036     }
1037     }
1038     }
1039 dl 1.34
1040     if (node != null) {
1041     if (node.thread != null)
1042 dl 1.37 node.thread = null; // avoid need for unpark()
1043 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1044 dl 1.34 Thread.currentThread().interrupt();
1045 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1046 dl 1.50 return abortWait(phase); // possibly clean up on abort
1047 dl 1.34 }
1048 dl 1.37 releaseWaiters(phase);
1049 dl 1.31 return p;
1050 jsr166 1.1 }
1051    
1052     /**
1053 jsr166 1.83 * Wait nodes for Treiber stack representing wait queue.
1054 jsr166 1.1 */
1055 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1056     final Phaser phaser;
1057     final int phase;
1058     final boolean interruptible;
1059     final boolean timed;
1060     boolean wasInterrupted;
1061     long nanos;
1062 jsr166 1.72 final long deadline;
1063 dl 1.17 volatile Thread thread; // nulled to cancel wait
1064     QNode next;
1065    
1066     QNode(Phaser phaser, int phase, boolean interruptible,
1067     boolean timed, long nanos) {
1068     this.phaser = phaser;
1069     this.phase = phase;
1070     this.interruptible = interruptible;
1071     this.nanos = nanos;
1072     this.timed = timed;
1073 jsr166 1.72 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1074 dl 1.17 thread = Thread.currentThread();
1075     }
1076    
1077     public boolean isReleasable() {
1078 dl 1.37 if (thread == null)
1079     return true;
1080     if (phaser.getPhase() != phase) {
1081     thread = null;
1082     return true;
1083     }
1084     if (Thread.interrupted())
1085     wasInterrupted = true;
1086     if (wasInterrupted && interruptible) {
1087     thread = null;
1088     return true;
1089     }
1090 jsr166 1.84 if (timed &&
1091     (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1092     thread = null;
1093     return true;
1094 dl 1.15 }
1095 dl 1.37 return false;
1096 dl 1.17 }
1097    
1098     public boolean block() {
1099 jsr166 1.74 while (!isReleasable()) {
1100 jsr166 1.75 if (timed)
1101     LockSupport.parkNanos(this, nanos);
1102     else
1103 jsr166 1.74 LockSupport.park(this);
1104     }
1105     return true;
1106 dl 1.17 }
1107 jsr166 1.1 }
1108    
1109 dl 1.87 // VarHandle mechanics
1110     private static final VarHandle STATE;
1111 dl 1.59 static {
1112 jsr166 1.3 try {
1113 dl 1.87 MethodHandles.Lookup l = MethodHandles.lookup();
1114     STATE = l.findVarHandle(Phaser.class, "state", long.class);
1115 jsr166 1.77 } catch (ReflectiveOperationException e) {
1116 dl 1.59 throw new Error(e);
1117 jsr166 1.3 }
1118 jsr166 1.80
1119     // Reduce the risk of rare disastrous classloading in first call to
1120     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1121     Class<?> ensureLoaded = LockSupport.class;
1122 jsr166 1.3 }
1123 jsr166 1.1 }