ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.89
Committed: Fri Jul 8 20:02:54 2016 UTC (7 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.88: +0 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.87 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.73 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
22 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33 jsr166 1.73 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 jsr166 1.10 * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.37 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
42 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.82 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 jsr166 1.10 *
60 jsr166 1.82 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 jsr166 1.10 * argument indicating an arrival phase number, and returns when
62 dl 1.37 * the phaser advances to (or is already at) a different phase.
63 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68 dl 1.37 * state of the phaser. If necessary, you can perform any
69 jsr166 1.10 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71 dl 1.81 * also be used by tasks executing in a {@link ForkJoinPool}.
72     * Progress is ensured if the pool's parallelismLevel can
73     * accommodate the maximum number of simultaneously blocked
74     * parties.
75 jsr166 1.1 *
76     * </ul>
77     *
78 jsr166 1.73 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
79 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
80     * termination, all synchronization methods immediately return without
81 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
82     * Similarly, attempts to register upon termination have no effect.
83     * Termination is triggered when an invocation of {@code onAdvance}
84     * returns {@code true}. The default implementation returns {@code
85     * true} if a deregistration has caused the number of registered
86     * parties to become zero. As illustrated below, when phasers control
87     * actions with a fixed number of iterations, it is often convenient
88     * to override this method to cause termination when the current phase
89     * number reaches a threshold. Method {@link #forceTermination} is
90     * also available to abruptly release waiting threads and allow them
91     * to terminate.
92 jsr166 1.1 *
93 jsr166 1.73 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
94 dl 1.32 * constructed in tree structures) to reduce contention. Phasers with
95     * large numbers of parties that would otherwise experience heavy
96 jsr166 1.10 * synchronization contention costs may instead be set up so that
97     * groups of sub-phasers share a common parent. This may greatly
98     * increase throughput even though it incurs greater per-operation
99     * overhead.
100     *
101 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
102     * child phasers with their parent are managed automatically.
103     * Whenever the number of registered parties of a child phaser becomes
104     * non-zero (as established in the {@link #Phaser(Phaser,int)}
105 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
106 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
107     * registered parties becomes zero as the result of an invocation of
108 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
109 jsr166 1.44 * from its parent.
110     *
111 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
112 dl 1.37 * only by registered parties, the current state of a phaser may be
113 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
114     * #getRegisteredParties} parties in total, of which {@link
115     * #getArrivedParties} have arrived at the current phase ({@link
116     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
117     * parties arrive, the phase advances. The values returned by these
118     * methods may reflect transient states and so are not in general
119     * useful for synchronization control. Method {@link #toString}
120     * returns snapshots of these state queries in a form convenient for
121     * informal monitoring.
122 jsr166 1.1 *
123     * <p><b>Sample usages:</b>
124     *
125 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
126 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
127     * The typical idiom is for the method setting this up to first
128     * register, then start the actions, then deregister, as in:
129 jsr166 1.1 *
130 jsr166 1.79 * <pre> {@code
131 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
132 jsr166 1.1 * final Phaser phaser = new Phaser(1); // "1" to register self
133 jsr166 1.7 * // create and start threads
134 dl 1.61 * for (final Runnable task : tasks) {
135 jsr166 1.1 * phaser.register();
136     * new Thread() {
137     * public void run() {
138     * phaser.arriveAndAwaitAdvance(); // await all creation
139 jsr166 1.8 * task.run();
140 jsr166 1.1 * }
141     * }.start();
142     * }
143     *
144 jsr166 1.7 * // allow threads to start and deregister self
145     * phaser.arriveAndDeregister();
146 jsr166 1.1 * }}</pre>
147     *
148     * <p>One way to cause a set of threads to repeatedly perform actions
149     * for a given number of iterations is to override {@code onAdvance}:
150     *
151 jsr166 1.79 * <pre> {@code
152 jsr166 1.8 * void startTasks(List<Runnable> tasks, final int iterations) {
153 jsr166 1.1 * final Phaser phaser = new Phaser() {
154 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
155 jsr166 1.1 * return phase >= iterations || registeredParties == 0;
156     * }
157     * };
158     * phaser.register();
159 jsr166 1.10 * for (final Runnable task : tasks) {
160 jsr166 1.1 * phaser.register();
161     * new Thread() {
162     * public void run() {
163     * do {
164 jsr166 1.8 * task.run();
165 jsr166 1.1 * phaser.arriveAndAwaitAdvance();
166 jsr166 1.10 * } while (!phaser.isTerminated());
167 jsr166 1.1 * }
168     * }.start();
169     * }
170     * phaser.arriveAndDeregister(); // deregister self, don't wait
171     * }}</pre>
172     *
173 jsr166 1.10 * If the main task must later await termination, it
174     * may re-register and then execute a similar loop:
175 jsr166 1.79 * <pre> {@code
176 jsr166 1.10 * // ...
177     * phaser.register();
178     * while (!phaser.isTerminated())
179     * phaser.arriveAndAwaitAdvance();}</pre>
180     *
181     * <p>Related constructions may be used to await particular phase numbers
182     * in contexts where you are sure that the phase will never wrap around
183     * {@code Integer.MAX_VALUE}. For example:
184     *
185 jsr166 1.79 * <pre> {@code
186 jsr166 1.10 * void awaitPhase(Phaser phaser, int phase) {
187     * int p = phaser.register(); // assumes caller not already registered
188     * while (p < phase) {
189     * if (phaser.isTerminated())
190     * // ... deal with unexpected termination
191     * else
192     * p = phaser.arriveAndAwaitAdvance();
193     * }
194     * phaser.arriveAndDeregister();
195     * }}</pre>
196     *
197 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.10 *
204 jsr166 1.79 * <pre> {@code
205 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.39 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.1 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.39 * tasks[i] = new Task(ph);
214 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.1 * }
216 dl 1.39 * }}</pre>
217 jsr166 1.1 *
218     * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.37 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
222     *
223     * <p><b>Implementation notes</b>: This implementation restricts the
224     * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
227 jsr166 1.1 * of participants.
228     *
229     * @since 1.7
230     * @author Doug Lea
231     */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235     * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237     */
238    
239     /**
240 jsr166 1.55 * Primary state representation, holding four bit-fields:
241 jsr166 1.1 *
242 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246 jsr166 1.1 *
247 dl 1.39 * Except that a phaser with no registered parties is
248 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
249 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263 dl 1.53 * ancestors until it is actually accessed -- see method
264     * reconcileState.
265 jsr166 1.1 */
266     private volatile long state;
267    
268 dl 1.33 private static final int MAX_PARTIES = 0xffff;
269 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 dl 1.33 private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274 jsr166 1.71 private static final long COUNTS_MASK = 0xffffffffL;
275 dl 1.33 private static final long TERMINATION_BIT = 1L << 63;
276 dl 1.17
277 dl 1.39 // some special values
278     private static final int ONE_ARRIVAL = 1;
279     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
280 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
281 dl 1.39 private static final int EMPTY = 1;
282    
283 dl 1.17 // The following unpacking methods are usually manually inlined
284 jsr166 1.1
285     private static int unarrivedOf(long s) {
286 dl 1.39 int counts = (int)s;
287 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288 jsr166 1.1 }
289    
290     private static int partiesOf(long s) {
291 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
292 jsr166 1.1 }
293    
294     private static int phaseOf(long s) {
295 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
296 jsr166 1.1 }
297    
298     private static int arrivedOf(long s) {
299 dl 1.39 int counts = (int)s;
300 jsr166 1.40 return (counts == EMPTY) ? 0 :
301 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302 jsr166 1.1 }
303    
304     /**
305 jsr166 1.83 * The parent of this phaser, or null if none.
306 jsr166 1.1 */
307     private final Phaser parent;
308    
309     /**
310 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
311 jsr166 1.1 */
312     private final Phaser root;
313    
314     /**
315     * Heads of Treiber stacks for waiting threads. To eliminate
316 dl 1.14 * contention when releasing some threads while adding others, we
317 jsr166 1.1 * use two of them, alternating across even and odd phases.
318 dl 1.14 * Subphasers share queues with root to speed up releases.
319 jsr166 1.1 */
320 dl 1.15 private final AtomicReference<QNode> evenQ;
321     private final AtomicReference<QNode> oddQ;
322 jsr166 1.1
323     /**
324 dl 1.33 * Returns message string for bounds exceptions on arrival.
325     */
326     private String badArrive(long s) {
327     return "Attempted arrival of unregistered party for " +
328     stateToString(s);
329     }
330    
331     /**
332     * Returns message string for bounds exceptions on registration.
333     */
334     private String badRegister(long s) {
335     return "Attempt to register more than " +
336     MAX_PARTIES + " parties for " + stateToString(s);
337     }
338    
339     /**
340 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
341     * Manually tuned to speed up and minimize race windows for the
342     * common case of just decrementing unarrived field.
343     *
344 jsr166 1.66 * @param adjust value to subtract from state;
345     * ONE_ARRIVAL for arrive,
346     * ONE_DEREGISTER for arriveAndDeregister
347 dl 1.17 */
348 jsr166 1.66 private int doArrive(int adjust) {
349 dl 1.50 final Phaser root = this.root;
350     for (;;) {
351     long s = (root == this) ? state : reconcileState();
352     int phase = (int)(s >>> PHASE_SHIFT);
353     if (phase < 0)
354     return phase;
355 jsr166 1.64 int counts = (int)s;
356     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
357     if (unarrived <= 0)
358     throw new IllegalStateException(badArrive(s));
359 dl 1.87 if (STATE.compareAndSet(this, s, s-=adjust)) {
360 jsr166 1.64 if (unarrived == 1) {
361 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
362     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
363 dl 1.63 if (root == this) {
364     if (onAdvance(phase, nextUnarrived))
365     n |= TERMINATION_BIT;
366     else if (nextUnarrived == 0)
367     n |= EMPTY;
368     else
369     n |= nextUnarrived;
370 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
371     n |= (long)nextPhase << PHASE_SHIFT;
372 dl 1.87 STATE.compareAndSet(this, s, n);
373 jsr166 1.68 releaseWaiters(phase);
374 dl 1.63 }
375     else if (nextUnarrived == 0) { // propagate deregistration
376 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
377 dl 1.87 STATE.compareAndSet(this, s, s | EMPTY);
378 dl 1.63 }
379 dl 1.50 else
380 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
381 dl 1.17 }
382 dl 1.50 return phase;
383 dl 1.17 }
384     }
385     }
386    
387     /**
388 jsr166 1.83 * Implementation of register, bulkRegister.
389 dl 1.17 *
390 dl 1.32 * @param registrations number to add to both parties and
391     * unarrived fields. Must be greater than zero.
392 jsr166 1.1 */
393 dl 1.17 private int doRegister(int registrations) {
394 jsr166 1.26 // adjustment to state
395 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
396 jsr166 1.57 final Phaser parent = this.parent;
397 dl 1.39 int phase;
398 dl 1.21 for (;;) {
399 dl 1.63 long s = (parent == null) ? state : reconcileState();
400 dl 1.39 int counts = (int)s;
401     int parties = counts >>> PARTIES_SHIFT;
402     int unarrived = counts & UNARRIVED_MASK;
403     if (registrations > MAX_PARTIES - parties)
404 dl 1.21 throw new IllegalStateException(badRegister(s));
405 jsr166 1.69 phase = (int)(s >>> PHASE_SHIFT);
406     if (phase < 0)
407 dl 1.39 break;
408 jsr166 1.69 if (counts != EMPTY) { // not 1st registration
409 jsr166 1.57 if (parent == null || reconcileState() == s) {
410 dl 1.39 if (unarrived == 0) // wait out advance
411     root.internalAwaitAdvance(phase, null);
412 dl 1.87 else if (STATE.compareAndSet(this, s, s + adjust))
413 dl 1.39 break;
414     }
415     }
416 jsr166 1.57 else if (parent == null) { // 1st root registration
417 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
418 dl 1.87 if (STATE.compareAndSet(this, s, next))
419 dl 1.39 break;
420     }
421     else {
422 jsr166 1.40 synchronized (this) { // 1st sub registration
423 dl 1.39 if (state == s) { // recheck under lock
424 jsr166 1.70 phase = parent.doRegister(1);
425     if (phase < 0)
426     break;
427     // finish registration whenever parent registration
428     // succeeded, even when racing with termination,
429     // since these are part of the same "transaction".
430 dl 1.88 while (!STATE.weakCompareAndSetVolatile
431 dl 1.87 (this, s,
432 jsr166 1.70 ((long)phase << PHASE_SHIFT) | adjust)) {
433     s = state;
434 dl 1.39 phase = (int)(root.state >>> PHASE_SHIFT);
435 jsr166 1.70 // assert (int)s == EMPTY;
436     }
437 dl 1.39 break;
438 dl 1.33 }
439     }
440     }
441 dl 1.17 }
442 dl 1.39 return phase;
443 dl 1.17 }
444    
445     /**
446 dl 1.39 * Resolves lagged phase propagation from root if necessary.
447 dl 1.53 * Reconciliation normally occurs when root has advanced but
448     * subphasers have not yet done so, in which case they must finish
449     * their own advance by setting unarrived to parties (or if
450     * parties is zero, resetting to unregistered EMPTY state).
451     *
452     * @return reconciled state
453 jsr166 1.1 */
454     private long reconcileState() {
455 jsr166 1.52 final Phaser root = this.root;
456 dl 1.31 long s = state;
457 jsr166 1.52 if (root != this) {
458 jsr166 1.71 int phase, p;
459     // CAS to root phase with current parties, tripping unarrived
460 dl 1.53 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
461     (int)(s >>> PHASE_SHIFT) &&
462 dl 1.88 !STATE.weakCompareAndSetVolatile
463 dl 1.87 (this, s,
464 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
465 jsr166 1.71 ((phase < 0) ? (s & COUNTS_MASK) :
466     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
467     ((s & PARTIES_MASK) | p))))))
468 dl 1.53 s = state;
469 jsr166 1.1 }
470 dl 1.31 return s;
471 jsr166 1.1 }
472    
473     /**
474 dl 1.37 * Creates a new phaser with no initially registered parties, no
475     * parent, and initial phase number 0. Any thread using this
476     * phaser will need to first register for it.
477 jsr166 1.1 */
478     public Phaser() {
479 dl 1.15 this(null, 0);
480 jsr166 1.1 }
481    
482     /**
483 dl 1.37 * Creates a new phaser with the given number of registered
484     * unarrived parties, no parent, and initial phase number 0.
485 jsr166 1.1 *
486 dl 1.37 * @param parties the number of parties required to advance to the
487     * next phase
488 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
489     * or greater than the maximum number of parties supported
490     */
491     public Phaser(int parties) {
492     this(null, parties);
493     }
494    
495     /**
496 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
497 jsr166 1.1 *
498 dl 1.37 * @param parent the parent phaser
499 jsr166 1.1 */
500     public Phaser(Phaser parent) {
501 dl 1.15 this(parent, 0);
502 jsr166 1.1 }
503    
504     /**
505 dl 1.37 * Creates a new phaser with the given parent and number of
506 dl 1.50 * registered unarrived parties. When the given parent is non-null
507 jsr166 1.44 * and the given number of parties is greater than zero, this
508     * child phaser is registered with its parent.
509 jsr166 1.1 *
510 dl 1.37 * @param parent the parent phaser
511     * @param parties the number of parties required to advance to the
512     * next phase
513 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
514     * or greater than the maximum number of parties supported
515     */
516     public Phaser(Phaser parent, int parties) {
517 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
518 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
519 dl 1.39 int phase = 0;
520 jsr166 1.1 this.parent = parent;
521     if (parent != null) {
522 jsr166 1.42 final Phaser root = parent.root;
523     this.root = root;
524     this.evenQ = root.evenQ;
525     this.oddQ = root.oddQ;
526 dl 1.34 if (parties != 0)
527 dl 1.39 phase = parent.doRegister(1);
528 jsr166 1.1 }
529 dl 1.15 else {
530 jsr166 1.1 this.root = this;
531 dl 1.15 this.evenQ = new AtomicReference<QNode>();
532     this.oddQ = new AtomicReference<QNode>();
533     }
534 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
535     ((long)phase << PHASE_SHIFT) |
536     ((long)parties << PARTIES_SHIFT) |
537     ((long)parties);
538 jsr166 1.1 }
539    
540     /**
541 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
542 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
543 dl 1.37 * may await its completion before returning. If this phaser has
544     * a parent, and this phaser previously had no registered parties,
545 dl 1.50 * this child phaser is also registered with its parent. If
546     * this phaser is terminated, the attempt to register has
547     * no effect, and a negative value is returned.
548     *
549     * @return the arrival phase number to which this registration
550     * applied. If this value is negative, then this phaser has
551 jsr166 1.51 * terminated, in which case registration has no effect.
552 jsr166 1.1 * @throws IllegalStateException if attempting to register more
553     * than the maximum supported number of parties
554     */
555     public int register() {
556     return doRegister(1);
557     }
558    
559     /**
560 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
561 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
562 dl 1.34 * this method may await its completion before returning. If this
563 dl 1.50 * phaser has a parent, and the given number of parties is greater
564     * than zero, and this phaser previously had no registered
565 jsr166 1.44 * parties, this child phaser is also registered with its parent.
566 dl 1.50 * If this phaser is terminated, the attempt to register has no
567     * effect, and a negative value is returned.
568 jsr166 1.1 *
569 dl 1.37 * @param parties the number of additional parties required to
570     * advance to the next phase
571 dl 1.50 * @return the arrival phase number to which this registration
572     * applied. If this value is negative, then this phaser has
573 jsr166 1.51 * terminated, in which case registration has no effect.
574 jsr166 1.1 * @throws IllegalStateException if attempting to register more
575     * than the maximum supported number of parties
576 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
577 jsr166 1.1 */
578     public int bulkRegister(int parties) {
579     if (parties < 0)
580     throw new IllegalArgumentException();
581 dl 1.34 if (parties == 0)
582 jsr166 1.1 return getPhase();
583     return doRegister(parties);
584     }
585    
586     /**
587 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
588 dl 1.34 *
589     * <p>It is a usage error for an unregistered party to invoke this
590     * method. However, this error may result in an {@code
591     * IllegalStateException} only upon some subsequent operation on
592 dl 1.37 * this phaser, if ever.
593 jsr166 1.1 *
594 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
595 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
596     * of unarrived parties would become negative
597     */
598     public int arrive() {
599 jsr166 1.66 return doArrive(ONE_ARRIVAL);
600 jsr166 1.1 }
601    
602     /**
603 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
604 dl 1.34 * for others to arrive. Deregistration reduces the number of
605 dl 1.37 * parties required to advance in future phases. If this phaser
606     * has a parent, and deregistration causes this phaser to have
607     * zero parties, this phaser is also deregistered from its parent.
608 dl 1.34 *
609     * <p>It is a usage error for an unregistered party to invoke this
610     * method. However, this error may result in an {@code
611     * IllegalStateException} only upon some subsequent operation on
612 dl 1.37 * this phaser, if ever.
613 jsr166 1.1 *
614 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
615 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
616     * of registered or unarrived parties would become negative
617     */
618     public int arriveAndDeregister() {
619 jsr166 1.66 return doArrive(ONE_DEREGISTER);
620 jsr166 1.1 }
621    
622     /**
623 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
624 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
625     * interruption or timeout, you can arrange this with an analogous
626 jsr166 1.12 * construction using one of the other forms of the {@code
627     * awaitAdvance} method. If instead you need to deregister upon
628 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
629     *
630     * <p>It is a usage error for an unregistered party to invoke this
631     * method. However, this error may result in an {@code
632     * IllegalStateException} only upon some subsequent operation on
633 dl 1.37 * this phaser, if ever.
634 jsr166 1.1 *
635 jsr166 1.49 * @return the arrival phase number, or the (negative)
636     * {@linkplain #getPhase() current phase} if terminated
637 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
638     * of unarrived parties would become negative
639     */
640     public int arriveAndAwaitAdvance() {
641 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
642     final Phaser root = this.root;
643     for (;;) {
644     long s = (root == this) ? state : reconcileState();
645     int phase = (int)(s >>> PHASE_SHIFT);
646     if (phase < 0)
647     return phase;
648 jsr166 1.64 int counts = (int)s;
649     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
650     if (unarrived <= 0)
651     throw new IllegalStateException(badArrive(s));
652 dl 1.87 if (STATE.compareAndSet(this, s, s -= ONE_ARRIVAL)) {
653 jsr166 1.64 if (unarrived > 1)
654 dl 1.50 return root.internalAwaitAdvance(phase, null);
655     if (root != this)
656     return parent.arriveAndAwaitAdvance();
657     long n = s & PARTIES_MASK; // base of next state
658 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
659 dl 1.50 if (onAdvance(phase, nextUnarrived))
660     n |= TERMINATION_BIT;
661     else if (nextUnarrived == 0)
662     n |= EMPTY;
663     else
664     n |= nextUnarrived;
665     int nextPhase = (phase + 1) & MAX_PHASE;
666     n |= (long)nextPhase << PHASE_SHIFT;
667 dl 1.87 if (!STATE.compareAndSet(this, s, n))
668 dl 1.50 return (int)(state >>> PHASE_SHIFT); // terminated
669     releaseWaiters(phase);
670     return nextPhase;
671     }
672     }
673 jsr166 1.1 }
674    
675     /**
676 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
677     * value, returning immediately if the current phase is not equal
678     * to the given phase value or this phaser is terminated.
679 jsr166 1.1 *
680 jsr166 1.10 * @param phase an arrival phase number, or negative value if
681     * terminated; this argument is normally the value returned by a
682 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
683 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
684     * negative, or the (negative) {@linkplain #getPhase() current phase}
685     * if terminated
686 jsr166 1.1 */
687     public int awaitAdvance(int phase) {
688 dl 1.50 final Phaser root = this.root;
689 jsr166 1.51 long s = (root == this) ? state : reconcileState();
690     int p = (int)(s >>> PHASE_SHIFT);
691 jsr166 1.1 if (phase < 0)
692     return phase;
693 dl 1.50 if (p == phase)
694     return root.internalAwaitAdvance(phase, null);
695 dl 1.34 return p;
696 jsr166 1.1 }
697    
698     /**
699 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
700 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
701 dl 1.37 * while waiting, or returning immediately if the current phase is
702     * not equal to the given phase value or this phaser is
703     * terminated.
704 jsr166 1.10 *
705     * @param phase an arrival phase number, or negative value if
706     * terminated; this argument is normally the value returned by a
707 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
708 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
709     * negative, or the (negative) {@linkplain #getPhase() current phase}
710     * if terminated
711 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
712     */
713     public int awaitAdvanceInterruptibly(int phase)
714     throws InterruptedException {
715 dl 1.50 final Phaser root = this.root;
716 jsr166 1.51 long s = (root == this) ? state : reconcileState();
717     int p = (int)(s >>> PHASE_SHIFT);
718 jsr166 1.1 if (phase < 0)
719     return phase;
720 dl 1.39 if (p == phase) {
721 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
722     p = root.internalAwaitAdvance(phase, node);
723     if (node.wasInterrupted)
724     throw new InterruptedException();
725 dl 1.24 }
726     return p;
727 jsr166 1.1 }
728    
729     /**
730 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
731 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
732     * InterruptedException} if interrupted while waiting, or
733 dl 1.37 * returning immediately if the current phase is not equal to the
734     * given phase value or this phaser is terminated.
735 jsr166 1.10 *
736     * @param phase an arrival phase number, or negative value if
737     * terminated; this argument is normally the value returned by a
738 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
739 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
740     * {@code unit}
741     * @param unit a {@code TimeUnit} determining how to interpret the
742     * {@code timeout} parameter
743 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
744     * negative, or the (negative) {@linkplain #getPhase() current phase}
745     * if terminated
746 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
747     * @throws TimeoutException if timed out while waiting
748     */
749     public int awaitAdvanceInterruptibly(int phase,
750     long timeout, TimeUnit unit)
751     throws InterruptedException, TimeoutException {
752 dl 1.50 long nanos = unit.toNanos(timeout);
753     final Phaser root = this.root;
754 jsr166 1.51 long s = (root == this) ? state : reconcileState();
755     int p = (int)(s >>> PHASE_SHIFT);
756 jsr166 1.47 if (phase < 0)
757     return phase;
758 dl 1.39 if (p == phase) {
759 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
760     p = root.internalAwaitAdvance(phase, node);
761     if (node.wasInterrupted)
762     throw new InterruptedException();
763     else if (p == phase)
764     throw new TimeoutException();
765 dl 1.24 }
766     return p;
767 jsr166 1.1 }
768    
769     /**
770 dl 1.37 * Forces this phaser to enter termination state. Counts of
771 dl 1.39 * registered parties are unaffected. If this phaser is a member
772     * of a tiered set of phasers, then all of the phasers in the set
773     * are terminated. If this phaser is already terminated, this
774     * method has no effect. This method may be useful for
775     * coordinating recovery after one or more tasks encounter
776     * unexpected exceptions.
777 jsr166 1.1 */
778     public void forceTermination() {
779 jsr166 1.23 // Only need to change root state
780     final Phaser root = this.root;
781 dl 1.14 long s;
782 jsr166 1.23 while ((s = root.state) >= 0) {
783 dl 1.87 if (STATE.compareAndSet(root, s, s | TERMINATION_BIT)) {
784 jsr166 1.45 // signal all threads
785 jsr166 1.67 releaseWaiters(0); // Waiters on evenQ
786     releaseWaiters(1); // Waiters on oddQ
787 jsr166 1.23 return;
788     }
789     }
790 jsr166 1.1 }
791    
792     /**
793     * Returns the current phase number. The maximum phase number is
794     * {@code Integer.MAX_VALUE}, after which it restarts at
795 dl 1.37 * zero. Upon termination, the phase number is negative,
796     * in which case the prevailing phase prior to termination
797     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
798 jsr166 1.1 *
799     * @return the phase number, or a negative value if terminated
800     */
801     public final int getPhase() {
802 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
803 jsr166 1.1 }
804    
805     /**
806 dl 1.37 * Returns the number of parties registered at this phaser.
807 jsr166 1.1 *
808     * @return the number of parties
809     */
810     public int getRegisteredParties() {
811 dl 1.31 return partiesOf(state);
812 jsr166 1.1 }
813    
814     /**
815 jsr166 1.10 * Returns the number of registered parties that have arrived at
816 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
817     * the returned value is meaningless and arbitrary.
818 jsr166 1.1 *
819     * @return the number of arrived parties
820     */
821     public int getArrivedParties() {
822 dl 1.39 return arrivedOf(reconcileState());
823 jsr166 1.1 }
824    
825     /**
826     * Returns the number of registered parties that have not yet
827 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
828     * terminated, the returned value is meaningless and arbitrary.
829 jsr166 1.1 *
830     * @return the number of unarrived parties
831     */
832     public int getUnarrivedParties() {
833 dl 1.39 return unarrivedOf(reconcileState());
834 jsr166 1.1 }
835    
836     /**
837 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
838 jsr166 1.1 *
839 dl 1.37 * @return the parent of this phaser, or {@code null} if none
840 jsr166 1.1 */
841     public Phaser getParent() {
842     return parent;
843     }
844    
845     /**
846 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
847     * this phaser if it has no parent.
848 jsr166 1.1 *
849 dl 1.37 * @return the root ancestor of this phaser
850 jsr166 1.1 */
851     public Phaser getRoot() {
852     return root;
853     }
854    
855     /**
856 dl 1.37 * Returns {@code true} if this phaser has been terminated.
857 jsr166 1.1 *
858 dl 1.37 * @return {@code true} if this phaser has been terminated
859 jsr166 1.1 */
860     public boolean isTerminated() {
861 dl 1.31 return root.state < 0L;
862 jsr166 1.1 }
863    
864     /**
865 jsr166 1.10 * Overridable method to perform an action upon impending phase
866     * advance, and to control termination. This method is invoked
867 dl 1.37 * upon arrival of the party advancing this phaser (when all other
868 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
869 dl 1.39 * true}, this phaser will be set to a final termination state
870     * upon advance, and subsequent calls to {@link #isTerminated}
871     * will return true. Any (unchecked) Exception or Error thrown by
872     * an invocation of this method is propagated to the party
873     * attempting to advance this phaser, in which case no advance
874     * occurs.
875 jsr166 1.10 *
876 dl 1.37 * <p>The arguments to this method provide the state of the phaser
877 dl 1.17 * prevailing for the current transition. The effects of invoking
878 dl 1.37 * arrival, registration, and waiting methods on this phaser from
879 dl 1.15 * within {@code onAdvance} are unspecified and should not be
880 dl 1.17 * relied on.
881     *
882 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
883     * {@code onAdvance} is invoked only for its root phaser on each
884 dl 1.17 * advance.
885 jsr166 1.1 *
886 dl 1.33 * <p>To support the most common use cases, the default
887     * implementation of this method returns {@code true} when the
888     * number of registered parties has become zero as the result of a
889     * party invoking {@code arriveAndDeregister}. You can disable
890     * this behavior, thus enabling continuation upon future
891     * registrations, by overriding this method to always return
892     * {@code false}:
893     *
894     * <pre> {@code
895     * Phaser phaser = new Phaser() {
896     * protected boolean onAdvance(int phase, int parties) { return false; }
897     * }}</pre>
898 jsr166 1.1 *
899 dl 1.37 * @param phase the current phase number on entry to this method,
900     * before this phaser is advanced
901 jsr166 1.1 * @param registeredParties the current number of registered parties
902 dl 1.37 * @return {@code true} if this phaser should terminate
903 jsr166 1.1 */
904     protected boolean onAdvance(int phase, int registeredParties) {
905 dl 1.36 return registeredParties == 0;
906 jsr166 1.1 }
907    
908     /**
909 dl 1.37 * Returns a string identifying this phaser, as well as its
910 dl 1.21 * state. The state, in brackets, includes the String {@code
911     * "phase = "} followed by the phase number, {@code "parties = "}
912     * followed by the number of registered parties, and {@code
913     * "arrived = "} followed by the number of arrived parties.
914 jsr166 1.1 *
915 dl 1.37 * @return a string identifying this phaser, as well as its state
916 jsr166 1.1 */
917     public String toString() {
918 dl 1.21 return stateToString(reconcileState());
919     }
920    
921     /**
922 jsr166 1.83 * Implementation of toString and string-based error messages.
923 dl 1.21 */
924     private String stateToString(long s) {
925 jsr166 1.1 return super.toString() +
926     "[phase = " + phaseOf(s) +
927     " parties = " + partiesOf(s) +
928     " arrived = " + arrivedOf(s) + "]";
929     }
930    
931 dl 1.21 // Waiting mechanics
932    
933 jsr166 1.1 /**
934 jsr166 1.30 * Removes and signals threads from queue for phase.
935 jsr166 1.1 */
936     private void releaseWaiters(int phase) {
937 dl 1.37 QNode q; // first element of queue
938     Thread t; // its thread
939 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
940 dl 1.17 while ((q = head.get()) != null &&
941 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
942 dl 1.37 if (head.compareAndSet(q, q.next) &&
943     (t = q.thread) != null) {
944     q.thread = null;
945     LockSupport.unpark(t);
946     }
947 jsr166 1.1 }
948     }
949    
950 dl 1.50 /**
951     * Variant of releaseWaiters that additionally tries to remove any
952     * nodes no longer waiting for advance due to timeout or
953     * interrupt. Currently, nodes are removed only if they are at
954     * head of queue, which suffices to reduce memory footprint in
955     * most usages.
956     *
957     * @return current phase on exit
958     */
959     private int abortWait(int phase) {
960     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
961     for (;;) {
962     Thread t;
963     QNode q = head.get();
964     int p = (int)(root.state >>> PHASE_SHIFT);
965     if (q == null || ((t = q.thread) != null && q.phase == p))
966     return p;
967     if (head.compareAndSet(q, q.next) && t != null) {
968     q.thread = null;
969     LockSupport.unpark(t);
970     }
971     }
972     }
973    
974 dl 1.17 /** The number of CPUs, for spin control */
975     private static final int NCPU = Runtime.getRuntime().availableProcessors();
976    
977 jsr166 1.1 /**
978 dl 1.17 * The number of times to spin before blocking while waiting for
979     * advance, per arrival while waiting. On multiprocessors, fully
980     * blocking and waking up a large number of threads all at once is
981     * usually a very slow process, so we use rechargeable spins to
982     * avoid it when threads regularly arrive: When a thread in
983     * internalAwaitAdvance notices another arrival before blocking,
984     * and there appear to be enough CPUs available, it spins
985 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
986     * off good-citizenship vs big unnecessary slowdowns.
987 dl 1.15 */
988 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
989 dl 1.15
990     /**
991 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
992 jsr166 1.64 * Call only on root phaser.
993 jsr166 1.1 *
994 dl 1.17 * @param phase current phase
995 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
996 dl 1.17 * if null, denotes noninterruptible wait
997 jsr166 1.1 * @return current phase
998     */
999 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
1000 jsr166 1.64 // assert root == this;
1001 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
1002     boolean queued = false; // true when node is enqueued
1003     int lastUnarrived = 0; // to increase spins upon change
1004 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1005 dl 1.31 long s;
1006     int p;
1007 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1008 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1009     int unarrived = (int)s & UNARRIVED_MASK;
1010     if (unarrived != lastUnarrived &&
1011     (lastUnarrived = unarrived) < NCPU)
1012 dl 1.31 spins += SPINS_PER_ARRIVAL;
1013 dl 1.37 boolean interrupted = Thread.interrupted();
1014     if (interrupted || --spins < 0) { // need node to record intr
1015     node = new QNode(this, phase, false, false, 0L);
1016     node.wasInterrupted = interrupted;
1017     }
1018 dl 1.87 else
1019     Thread.onSpinWait();
1020 dl 1.21 }
1021 dl 1.37 else if (node.isReleasable()) // done or aborted
1022     break;
1023     else if (!queued) { // push onto queue
1024 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1025 dl 1.37 QNode q = node.next = head.get();
1026     if ((q == null || q.phase == phase) &&
1027     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1028 dl 1.36 queued = head.compareAndSet(q, node);
1029 dl 1.31 }
1030 dl 1.17 else {
1031     try {
1032     ForkJoinPool.managedBlock(node);
1033 jsr166 1.74 } catch (InterruptedException cantHappen) {
1034 dl 1.17 node.wasInterrupted = true;
1035     }
1036     }
1037     }
1038 dl 1.34
1039     if (node != null) {
1040     if (node.thread != null)
1041 dl 1.37 node.thread = null; // avoid need for unpark()
1042 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1043 dl 1.34 Thread.currentThread().interrupt();
1044 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1045 dl 1.50 return abortWait(phase); // possibly clean up on abort
1046 dl 1.34 }
1047 dl 1.37 releaseWaiters(phase);
1048 dl 1.31 return p;
1049 jsr166 1.1 }
1050    
1051     /**
1052 jsr166 1.83 * Wait nodes for Treiber stack representing wait queue.
1053 jsr166 1.1 */
1054 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1055     final Phaser phaser;
1056     final int phase;
1057     final boolean interruptible;
1058     final boolean timed;
1059     boolean wasInterrupted;
1060     long nanos;
1061 jsr166 1.72 final long deadline;
1062 dl 1.17 volatile Thread thread; // nulled to cancel wait
1063     QNode next;
1064    
1065     QNode(Phaser phaser, int phase, boolean interruptible,
1066     boolean timed, long nanos) {
1067     this.phaser = phaser;
1068     this.phase = phase;
1069     this.interruptible = interruptible;
1070     this.nanos = nanos;
1071     this.timed = timed;
1072 jsr166 1.72 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1073 dl 1.17 thread = Thread.currentThread();
1074     }
1075    
1076     public boolean isReleasable() {
1077 dl 1.37 if (thread == null)
1078     return true;
1079     if (phaser.getPhase() != phase) {
1080     thread = null;
1081     return true;
1082     }
1083     if (Thread.interrupted())
1084     wasInterrupted = true;
1085     if (wasInterrupted && interruptible) {
1086     thread = null;
1087     return true;
1088     }
1089 jsr166 1.84 if (timed &&
1090     (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1091     thread = null;
1092     return true;
1093 dl 1.15 }
1094 dl 1.37 return false;
1095 dl 1.17 }
1096    
1097     public boolean block() {
1098 jsr166 1.74 while (!isReleasable()) {
1099 jsr166 1.75 if (timed)
1100     LockSupport.parkNanos(this, nanos);
1101     else
1102 jsr166 1.74 LockSupport.park(this);
1103     }
1104     return true;
1105 dl 1.17 }
1106 jsr166 1.1 }
1107    
1108 dl 1.87 // VarHandle mechanics
1109     private static final VarHandle STATE;
1110 dl 1.59 static {
1111 jsr166 1.3 try {
1112 dl 1.87 MethodHandles.Lookup l = MethodHandles.lookup();
1113     STATE = l.findVarHandle(Phaser.class, "state", long.class);
1114 jsr166 1.77 } catch (ReflectiveOperationException e) {
1115 dl 1.59 throw new Error(e);
1116 jsr166 1.3 }
1117 jsr166 1.80
1118     // Reduce the risk of rare disastrous classloading in first call to
1119     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1120     Class<?> ensureLoaded = LockSupport.class;
1121 jsr166 1.3 }
1122 jsr166 1.1 }