ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.92
Committed: Mon Dec 19 23:52:56 2016 UTC (7 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.91: +1 -1 lines
Log Message:
Make sample code match its description.

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.60 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.87 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.concurrent.atomic.AtomicReference;
12     import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.10 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.1 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19     *
20 jsr166 1.73 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.37 * number of parties <em>registered</em> to synchronize on a phaser
22 jsr166 1.10 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26     * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29     * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32     *
33 jsr166 1.73 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 jsr166 1.10 * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.37 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 jsr166 1.10 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.37 * control of actions upon arrival at a phaser and upon awaiting
42 jsr166 1.10 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44     *
45 jsr166 1.1 * <ul>
46     *
47 jsr166 1.82 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.37 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 jsr166 1.10 *
60 jsr166 1.82 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 jsr166 1.10 * argument indicating an arrival phase number, and returns when
62 dl 1.37 * the phaser advances to (or is already at) a different phase.
63 jsr166 1.10 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65     * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67     * tasks wait interruptibly or with timeout do not change the
68 dl 1.37 * state of the phaser. If necessary, you can perform any
69 jsr166 1.10 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71 dl 1.81 * also be used by tasks executing in a {@link ForkJoinPool}.
72     * Progress is ensured if the pool's parallelismLevel can
73     * accommodate the maximum number of simultaneously blocked
74     * parties.
75 jsr166 1.1 *
76     * </ul>
77     *
78 jsr166 1.73 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
79 dl 1.50 * state, that may be checked using method {@link #isTerminated}. Upon
80     * termination, all synchronization methods immediately return without
81 jsr166 1.51 * waiting for advance, as indicated by a negative return value.
82     * Similarly, attempts to register upon termination have no effect.
83     * Termination is triggered when an invocation of {@code onAdvance}
84     * returns {@code true}. The default implementation returns {@code
85     * true} if a deregistration has caused the number of registered
86     * parties to become zero. As illustrated below, when phasers control
87     * actions with a fixed number of iterations, it is often convenient
88     * to override this method to cause termination when the current phase
89     * number reaches a threshold. Method {@link #forceTermination} is
90     * also available to abruptly release waiting threads and allow them
91     * to terminate.
92 jsr166 1.1 *
93 jsr166 1.73 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
94 dl 1.32 * constructed in tree structures) to reduce contention. Phasers with
95     * large numbers of parties that would otherwise experience heavy
96 jsr166 1.10 * synchronization contention costs may instead be set up so that
97     * groups of sub-phasers share a common parent. This may greatly
98     * increase throughput even though it incurs greater per-operation
99     * overhead.
100     *
101 jsr166 1.44 * <p>In a tree of tiered phasers, registration and deregistration of
102     * child phasers with their parent are managed automatically.
103     * Whenever the number of registered parties of a child phaser becomes
104     * non-zero (as established in the {@link #Phaser(Phaser,int)}
105 dl 1.50 * constructor, {@link #register}, or {@link #bulkRegister}), the
106 jsr166 1.44 * child phaser is registered with its parent. Whenever the number of
107     * registered parties becomes zero as the result of an invocation of
108 dl 1.50 * {@link #arriveAndDeregister}, the child phaser is deregistered
109 jsr166 1.44 * from its parent.
110     *
111 jsr166 1.10 * <p><b>Monitoring.</b> While synchronization methods may be invoked
112 dl 1.37 * only by registered parties, the current state of a phaser may be
113 jsr166 1.10 * monitored by any caller. At any given moment there are {@link
114     * #getRegisteredParties} parties in total, of which {@link
115     * #getArrivedParties} have arrived at the current phase ({@link
116     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
117     * parties arrive, the phase advances. The values returned by these
118     * methods may reflect transient states and so are not in general
119     * useful for synchronization control. Method {@link #toString}
120     * returns snapshots of these state queries in a form convenient for
121     * informal monitoring.
122 jsr166 1.1 *
123     * <p><b>Sample usages:</b>
124     *
125 jsr166 1.4 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
126 jsr166 1.12 * to control a one-shot action serving a variable number of parties.
127     * The typical idiom is for the method setting this up to first
128 jsr166 1.91 * register, then start all the actions, then deregister, as in:
129 jsr166 1.1 *
130 jsr166 1.79 * <pre> {@code
131 jsr166 1.8 * void runTasks(List<Runnable> tasks) {
132 jsr166 1.91 * Phaser startingGate = new Phaser(1); // "1" to register self
133 jsr166 1.7 * // create and start threads
134 jsr166 1.91 * for (Runnable task : tasks) {
135     * startingGate.register();
136     * new Thread(() -> {
137     * startingGate.arriveAndAwaitAdvance();
138     * task.run();
139     * }).start();
140 jsr166 1.1 * }
141     *
142 jsr166 1.91 * // deregister self to allow threads to proceed
143     * startingGate.arriveAndDeregister();
144 jsr166 1.1 * }}</pre>
145     *
146     * <p>One way to cause a set of threads to repeatedly perform actions
147     * for a given number of iterations is to override {@code onAdvance}:
148     *
149 jsr166 1.79 * <pre> {@code
150 jsr166 1.91 * void startTasks(List<Runnable> tasks, int iterations) {
151     * Phaser phaser = new Phaser() {
152 jsr166 1.10 * protected boolean onAdvance(int phase, int registeredParties) {
153 dl 1.92 * return phase >= iterations - 1 || registeredParties == 0;
154 jsr166 1.1 * }
155     * };
156     * phaser.register();
157 jsr166 1.91 * for (Runnable task : tasks) {
158 jsr166 1.1 * phaser.register();
159 jsr166 1.91 * new Thread(() -> {
160     * do {
161     * task.run();
162     * phaser.arriveAndAwaitAdvance();
163     * } while (!phaser.isTerminated());
164     * }).start();
165 jsr166 1.1 * }
166 jsr166 1.91 * // allow threads to proceed; don't wait for them
167     * phaser.arriveAndDeregister();
168 jsr166 1.1 * }}</pre>
169     *
170 jsr166 1.10 * If the main task must later await termination, it
171     * may re-register and then execute a similar loop:
172 jsr166 1.79 * <pre> {@code
173 jsr166 1.10 * // ...
174     * phaser.register();
175     * while (!phaser.isTerminated())
176     * phaser.arriveAndAwaitAdvance();}</pre>
177     *
178     * <p>Related constructions may be used to await particular phase numbers
179     * in contexts where you are sure that the phase will never wrap around
180     * {@code Integer.MAX_VALUE}. For example:
181     *
182 jsr166 1.79 * <pre> {@code
183 jsr166 1.10 * void awaitPhase(Phaser phaser, int phase) {
184     * int p = phaser.register(); // assumes caller not already registered
185     * while (p < phase) {
186     * if (phaser.isTerminated())
187     * // ... deal with unexpected termination
188     * else
189     * p = phaser.arriveAndAwaitAdvance();
190     * }
191     * phaser.arriveAndDeregister();
192     * }}</pre>
193     *
194 dl 1.39 * <p>To create a set of {@code n} tasks using a tree of phasers, you
195     * could use code of the following form, assuming a Task class with a
196     * constructor accepting a {@code Phaser} that it registers with upon
197     * construction. After invocation of {@code build(new Task[n], 0, n,
198     * new Phaser())}, these tasks could then be started, for example by
199     * submitting to a pool:
200 jsr166 1.10 *
201 jsr166 1.79 * <pre> {@code
202 dl 1.39 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
203 jsr166 1.10 * if (hi - lo > TASKS_PER_PHASER) {
204     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
205     * int j = Math.min(i + TASKS_PER_PHASER, hi);
206 dl 1.39 * build(tasks, i, j, new Phaser(ph));
207 jsr166 1.1 * }
208     * } else {
209     * for (int i = lo; i < hi; ++i)
210 dl 1.39 * tasks[i] = new Task(ph);
211 jsr166 1.10 * // assumes new Task(ph) performs ph.register()
212 jsr166 1.1 * }
213 dl 1.39 * }}</pre>
214 jsr166 1.1 *
215     * The best value of {@code TASKS_PER_PHASER} depends mainly on
216 dl 1.37 * expected synchronization rates. A value as low as four may
217     * be appropriate for extremely small per-phase task bodies (thus
218 jsr166 1.1 * high rates), or up to hundreds for extremely large ones.
219     *
220     * <p><b>Implementation notes</b>: This implementation restricts the
221     * maximum number of parties to 65535. Attempts to register additional
222 jsr166 1.8 * parties result in {@code IllegalStateException}. However, you can and
223 dl 1.37 * should create tiered phasers to accommodate arbitrarily large sets
224 jsr166 1.1 * of participants.
225     *
226     * @since 1.7
227     * @author Doug Lea
228     */
229     public class Phaser {
230     /*
231     * This class implements an extension of X10 "clocks". Thanks to
232     * Vijay Saraswat for the idea, and to Vivek Sarkar for
233     * enhancements to extend functionality.
234     */
235    
236     /**
237 jsr166 1.55 * Primary state representation, holding four bit-fields:
238 jsr166 1.1 *
239 jsr166 1.55 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
240     * parties -- the number of parties to wait (bits 16-31)
241     * phase -- the generation of the barrier (bits 32-62)
242     * terminated -- set if barrier is terminated (bit 63 / sign)
243 jsr166 1.1 *
244 dl 1.39 * Except that a phaser with no registered parties is
245 jsr166 1.55 * distinguished by the otherwise illegal state of having zero
246 dl 1.39 * parties and one unarrived parties (encoded as EMPTY below).
247     *
248     * To efficiently maintain atomicity, these values are packed into
249     * a single (atomic) long. Good performance relies on keeping
250     * state decoding and encoding simple, and keeping race windows
251     * short.
252     *
253     * All state updates are performed via CAS except initial
254     * registration of a sub-phaser (i.e., one with a non-null
255     * parent). In this (relatively rare) case, we use built-in
256     * synchronization to lock while first registering with its
257     * parent.
258     *
259     * The phase of a subphaser is allowed to lag that of its
260 dl 1.53 * ancestors until it is actually accessed -- see method
261     * reconcileState.
262 jsr166 1.1 */
263     private volatile long state;
264    
265 dl 1.33 private static final int MAX_PARTIES = 0xffff;
266 jsr166 1.56 private static final int MAX_PHASE = Integer.MAX_VALUE;
267 dl 1.33 private static final int PARTIES_SHIFT = 16;
268     private static final int PHASE_SHIFT = 32;
269     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
270     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
271 jsr166 1.71 private static final long COUNTS_MASK = 0xffffffffL;
272 dl 1.33 private static final long TERMINATION_BIT = 1L << 63;
273 dl 1.17
274 dl 1.39 // some special values
275     private static final int ONE_ARRIVAL = 1;
276     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
277 jsr166 1.66 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
278 dl 1.39 private static final int EMPTY = 1;
279    
280 dl 1.17 // The following unpacking methods are usually manually inlined
281 jsr166 1.1
282     private static int unarrivedOf(long s) {
283 dl 1.39 int counts = (int)s;
284 jsr166 1.64 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
285 jsr166 1.1 }
286    
287     private static int partiesOf(long s) {
288 jsr166 1.41 return (int)s >>> PARTIES_SHIFT;
289 jsr166 1.1 }
290    
291     private static int phaseOf(long s) {
292 jsr166 1.54 return (int)(s >>> PHASE_SHIFT);
293 jsr166 1.1 }
294    
295     private static int arrivedOf(long s) {
296 dl 1.39 int counts = (int)s;
297 jsr166 1.40 return (counts == EMPTY) ? 0 :
298 dl 1.39 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
299 jsr166 1.1 }
300    
301     /**
302 jsr166 1.83 * The parent of this phaser, or null if none.
303 jsr166 1.1 */
304     private final Phaser parent;
305    
306     /**
307 dl 1.39 * The root of phaser tree. Equals this if not in a tree.
308 jsr166 1.1 */
309     private final Phaser root;
310    
311     /**
312     * Heads of Treiber stacks for waiting threads. To eliminate
313 dl 1.14 * contention when releasing some threads while adding others, we
314 jsr166 1.1 * use two of them, alternating across even and odd phases.
315 dl 1.14 * Subphasers share queues with root to speed up releases.
316 jsr166 1.1 */
317 dl 1.15 private final AtomicReference<QNode> evenQ;
318     private final AtomicReference<QNode> oddQ;
319 jsr166 1.1
320     /**
321 dl 1.33 * Returns message string for bounds exceptions on arrival.
322     */
323     private String badArrive(long s) {
324     return "Attempted arrival of unregistered party for " +
325     stateToString(s);
326     }
327    
328     /**
329     * Returns message string for bounds exceptions on registration.
330     */
331     private String badRegister(long s) {
332     return "Attempt to register more than " +
333     MAX_PARTIES + " parties for " + stateToString(s);
334     }
335    
336     /**
337 dl 1.17 * Main implementation for methods arrive and arriveAndDeregister.
338     * Manually tuned to speed up and minimize race windows for the
339     * common case of just decrementing unarrived field.
340     *
341 jsr166 1.66 * @param adjust value to subtract from state;
342     * ONE_ARRIVAL for arrive,
343     * ONE_DEREGISTER for arriveAndDeregister
344 dl 1.17 */
345 jsr166 1.66 private int doArrive(int adjust) {
346 dl 1.50 final Phaser root = this.root;
347     for (;;) {
348     long s = (root == this) ? state : reconcileState();
349     int phase = (int)(s >>> PHASE_SHIFT);
350     if (phase < 0)
351     return phase;
352 jsr166 1.64 int counts = (int)s;
353     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
354     if (unarrived <= 0)
355     throw new IllegalStateException(badArrive(s));
356 dl 1.87 if (STATE.compareAndSet(this, s, s-=adjust)) {
357 jsr166 1.64 if (unarrived == 1) {
358 jsr166 1.65 long n = s & PARTIES_MASK; // base of next state
359     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
360 dl 1.63 if (root == this) {
361     if (onAdvance(phase, nextUnarrived))
362     n |= TERMINATION_BIT;
363     else if (nextUnarrived == 0)
364     n |= EMPTY;
365     else
366     n |= nextUnarrived;
367 jsr166 1.64 int nextPhase = (phase + 1) & MAX_PHASE;
368     n |= (long)nextPhase << PHASE_SHIFT;
369 dl 1.87 STATE.compareAndSet(this, s, n);
370 jsr166 1.68 releaseWaiters(phase);
371 dl 1.63 }
372     else if (nextUnarrived == 0) { // propagate deregistration
373 jsr166 1.66 phase = parent.doArrive(ONE_DEREGISTER);
374 dl 1.87 STATE.compareAndSet(this, s, s | EMPTY);
375 dl 1.63 }
376 dl 1.50 else
377 jsr166 1.66 phase = parent.doArrive(ONE_ARRIVAL);
378 dl 1.17 }
379 dl 1.50 return phase;
380 dl 1.17 }
381     }
382     }
383    
384     /**
385 jsr166 1.83 * Implementation of register, bulkRegister.
386 dl 1.17 *
387 dl 1.32 * @param registrations number to add to both parties and
388     * unarrived fields. Must be greater than zero.
389 jsr166 1.1 */
390 dl 1.17 private int doRegister(int registrations) {
391 jsr166 1.26 // adjustment to state
392 jsr166 1.66 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
393 jsr166 1.57 final Phaser parent = this.parent;
394 dl 1.39 int phase;
395 dl 1.21 for (;;) {
396 dl 1.63 long s = (parent == null) ? state : reconcileState();
397 dl 1.39 int counts = (int)s;
398     int parties = counts >>> PARTIES_SHIFT;
399     int unarrived = counts & UNARRIVED_MASK;
400     if (registrations > MAX_PARTIES - parties)
401 dl 1.21 throw new IllegalStateException(badRegister(s));
402 jsr166 1.69 phase = (int)(s >>> PHASE_SHIFT);
403     if (phase < 0)
404 dl 1.39 break;
405 jsr166 1.69 if (counts != EMPTY) { // not 1st registration
406 jsr166 1.57 if (parent == null || reconcileState() == s) {
407 dl 1.39 if (unarrived == 0) // wait out advance
408     root.internalAwaitAdvance(phase, null);
409 dl 1.87 else if (STATE.compareAndSet(this, s, s + adjust))
410 dl 1.39 break;
411     }
412     }
413 jsr166 1.57 else if (parent == null) { // 1st root registration
414 jsr166 1.66 long next = ((long)phase << PHASE_SHIFT) | adjust;
415 dl 1.87 if (STATE.compareAndSet(this, s, next))
416 dl 1.39 break;
417     }
418     else {
419 jsr166 1.40 synchronized (this) { // 1st sub registration
420 dl 1.39 if (state == s) { // recheck under lock
421 jsr166 1.70 phase = parent.doRegister(1);
422     if (phase < 0)
423     break;
424     // finish registration whenever parent registration
425     // succeeded, even when racing with termination,
426     // since these are part of the same "transaction".
427 jsr166 1.90 while (!STATE.weakCompareAndSet
428 dl 1.87 (this, s,
429 jsr166 1.70 ((long)phase << PHASE_SHIFT) | adjust)) {
430     s = state;
431 dl 1.39 phase = (int)(root.state >>> PHASE_SHIFT);
432 jsr166 1.70 // assert (int)s == EMPTY;
433     }
434 dl 1.39 break;
435 dl 1.33 }
436     }
437     }
438 dl 1.17 }
439 dl 1.39 return phase;
440 dl 1.17 }
441    
442     /**
443 dl 1.39 * Resolves lagged phase propagation from root if necessary.
444 dl 1.53 * Reconciliation normally occurs when root has advanced but
445     * subphasers have not yet done so, in which case they must finish
446     * their own advance by setting unarrived to parties (or if
447     * parties is zero, resetting to unregistered EMPTY state).
448     *
449     * @return reconciled state
450 jsr166 1.1 */
451     private long reconcileState() {
452 jsr166 1.52 final Phaser root = this.root;
453 dl 1.31 long s = state;
454 jsr166 1.52 if (root != this) {
455 jsr166 1.71 int phase, p;
456     // CAS to root phase with current parties, tripping unarrived
457 dl 1.53 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
458     (int)(s >>> PHASE_SHIFT) &&
459 jsr166 1.90 !STATE.weakCompareAndSet
460 dl 1.87 (this, s,
461 jsr166 1.54 s = (((long)phase << PHASE_SHIFT) |
462 jsr166 1.71 ((phase < 0) ? (s & COUNTS_MASK) :
463     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
464     ((s & PARTIES_MASK) | p))))))
465 dl 1.53 s = state;
466 jsr166 1.1 }
467 dl 1.31 return s;
468 jsr166 1.1 }
469    
470     /**
471 dl 1.37 * Creates a new phaser with no initially registered parties, no
472     * parent, and initial phase number 0. Any thread using this
473     * phaser will need to first register for it.
474 jsr166 1.1 */
475     public Phaser() {
476 dl 1.15 this(null, 0);
477 jsr166 1.1 }
478    
479     /**
480 dl 1.37 * Creates a new phaser with the given number of registered
481     * unarrived parties, no parent, and initial phase number 0.
482 jsr166 1.1 *
483 dl 1.37 * @param parties the number of parties required to advance to the
484     * next phase
485 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
486     * or greater than the maximum number of parties supported
487     */
488     public Phaser(int parties) {
489     this(null, parties);
490     }
491    
492     /**
493 dl 1.32 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
494 jsr166 1.1 *
495 dl 1.37 * @param parent the parent phaser
496 jsr166 1.1 */
497     public Phaser(Phaser parent) {
498 dl 1.15 this(parent, 0);
499 jsr166 1.1 }
500    
501     /**
502 dl 1.37 * Creates a new phaser with the given parent and number of
503 dl 1.50 * registered unarrived parties. When the given parent is non-null
504 jsr166 1.44 * and the given number of parties is greater than zero, this
505     * child phaser is registered with its parent.
506 jsr166 1.1 *
507 dl 1.37 * @param parent the parent phaser
508     * @param parties the number of parties required to advance to the
509     * next phase
510 jsr166 1.1 * @throws IllegalArgumentException if parties less than zero
511     * or greater than the maximum number of parties supported
512     */
513     public Phaser(Phaser parent, int parties) {
514 dl 1.24 if (parties >>> PARTIES_SHIFT != 0)
515 jsr166 1.1 throw new IllegalArgumentException("Illegal number of parties");
516 dl 1.39 int phase = 0;
517 jsr166 1.1 this.parent = parent;
518     if (parent != null) {
519 jsr166 1.42 final Phaser root = parent.root;
520     this.root = root;
521     this.evenQ = root.evenQ;
522     this.oddQ = root.oddQ;
523 dl 1.34 if (parties != 0)
524 dl 1.39 phase = parent.doRegister(1);
525 jsr166 1.1 }
526 dl 1.15 else {
527 jsr166 1.1 this.root = this;
528 dl 1.15 this.evenQ = new AtomicReference<QNode>();
529     this.oddQ = new AtomicReference<QNode>();
530     }
531 jsr166 1.54 this.state = (parties == 0) ? (long)EMPTY :
532     ((long)phase << PHASE_SHIFT) |
533     ((long)parties << PARTIES_SHIFT) |
534     ((long)parties);
535 jsr166 1.1 }
536    
537     /**
538 dl 1.37 * Adds a new unarrived party to this phaser. If an ongoing
539 dl 1.33 * invocation of {@link #onAdvance} is in progress, this method
540 dl 1.37 * may await its completion before returning. If this phaser has
541     * a parent, and this phaser previously had no registered parties,
542 dl 1.50 * this child phaser is also registered with its parent. If
543     * this phaser is terminated, the attempt to register has
544     * no effect, and a negative value is returned.
545     *
546     * @return the arrival phase number to which this registration
547     * applied. If this value is negative, then this phaser has
548 jsr166 1.51 * terminated, in which case registration has no effect.
549 jsr166 1.1 * @throws IllegalStateException if attempting to register more
550     * than the maximum supported number of parties
551     */
552     public int register() {
553     return doRegister(1);
554     }
555    
556     /**
557 dl 1.37 * Adds the given number of new unarrived parties to this phaser.
558 dl 1.14 * If an ongoing invocation of {@link #onAdvance} is in progress,
559 dl 1.34 * this method may await its completion before returning. If this
560 dl 1.50 * phaser has a parent, and the given number of parties is greater
561     * than zero, and this phaser previously had no registered
562 jsr166 1.44 * parties, this child phaser is also registered with its parent.
563 dl 1.50 * If this phaser is terminated, the attempt to register has no
564     * effect, and a negative value is returned.
565 jsr166 1.1 *
566 dl 1.37 * @param parties the number of additional parties required to
567     * advance to the next phase
568 dl 1.50 * @return the arrival phase number to which this registration
569     * applied. If this value is negative, then this phaser has
570 jsr166 1.51 * terminated, in which case registration has no effect.
571 jsr166 1.1 * @throws IllegalStateException if attempting to register more
572     * than the maximum supported number of parties
573 dl 1.13 * @throws IllegalArgumentException if {@code parties < 0}
574 jsr166 1.1 */
575     public int bulkRegister(int parties) {
576     if (parties < 0)
577     throw new IllegalArgumentException();
578 dl 1.34 if (parties == 0)
579 jsr166 1.1 return getPhase();
580     return doRegister(parties);
581     }
582    
583     /**
584 dl 1.37 * Arrives at this phaser, without waiting for others to arrive.
585 dl 1.34 *
586     * <p>It is a usage error for an unregistered party to invoke this
587     * method. However, this error may result in an {@code
588     * IllegalStateException} only upon some subsequent operation on
589 dl 1.37 * this phaser, if ever.
590 jsr166 1.1 *
591 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
592 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
593     * of unarrived parties would become negative
594     */
595     public int arrive() {
596 jsr166 1.66 return doArrive(ONE_ARRIVAL);
597 jsr166 1.1 }
598    
599     /**
600 dl 1.37 * Arrives at this phaser and deregisters from it without waiting
601 dl 1.34 * for others to arrive. Deregistration reduces the number of
602 dl 1.37 * parties required to advance in future phases. If this phaser
603     * has a parent, and deregistration causes this phaser to have
604     * zero parties, this phaser is also deregistered from its parent.
605 dl 1.34 *
606     * <p>It is a usage error for an unregistered party to invoke this
607     * method. However, this error may result in an {@code
608     * IllegalStateException} only upon some subsequent operation on
609 dl 1.37 * this phaser, if ever.
610 jsr166 1.1 *
611 jsr166 1.10 * @return the arrival phase number, or a negative value if terminated
612 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
613     * of registered or unarrived parties would become negative
614     */
615     public int arriveAndDeregister() {
616 jsr166 1.66 return doArrive(ONE_DEREGISTER);
617 jsr166 1.1 }
618    
619     /**
620 dl 1.37 * Arrives at this phaser and awaits others. Equivalent in effect
621 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you need to await with
622     * interruption or timeout, you can arrange this with an analogous
623 jsr166 1.12 * construction using one of the other forms of the {@code
624     * awaitAdvance} method. If instead you need to deregister upon
625 dl 1.34 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
626     *
627     * <p>It is a usage error for an unregistered party to invoke this
628     * method. However, this error may result in an {@code
629     * IllegalStateException} only upon some subsequent operation on
630 dl 1.37 * this phaser, if ever.
631 jsr166 1.1 *
632 jsr166 1.49 * @return the arrival phase number, or the (negative)
633     * {@linkplain #getPhase() current phase} if terminated
634 jsr166 1.1 * @throws IllegalStateException if not terminated and the number
635     * of unarrived parties would become negative
636     */
637     public int arriveAndAwaitAdvance() {
638 dl 1.50 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
639     final Phaser root = this.root;
640     for (;;) {
641     long s = (root == this) ? state : reconcileState();
642     int phase = (int)(s >>> PHASE_SHIFT);
643     if (phase < 0)
644     return phase;
645 jsr166 1.64 int counts = (int)s;
646     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
647     if (unarrived <= 0)
648     throw new IllegalStateException(badArrive(s));
649 dl 1.87 if (STATE.compareAndSet(this, s, s -= ONE_ARRIVAL)) {
650 jsr166 1.64 if (unarrived > 1)
651 dl 1.50 return root.internalAwaitAdvance(phase, null);
652     if (root != this)
653     return parent.arriveAndAwaitAdvance();
654     long n = s & PARTIES_MASK; // base of next state
655 jsr166 1.54 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
656 dl 1.50 if (onAdvance(phase, nextUnarrived))
657     n |= TERMINATION_BIT;
658     else if (nextUnarrived == 0)
659     n |= EMPTY;
660     else
661     n |= nextUnarrived;
662     int nextPhase = (phase + 1) & MAX_PHASE;
663     n |= (long)nextPhase << PHASE_SHIFT;
664 dl 1.87 if (!STATE.compareAndSet(this, s, n))
665 dl 1.50 return (int)(state >>> PHASE_SHIFT); // terminated
666     releaseWaiters(phase);
667     return nextPhase;
668     }
669     }
670 jsr166 1.1 }
671    
672     /**
673 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
674     * value, returning immediately if the current phase is not equal
675     * to the given phase value or this phaser is terminated.
676 jsr166 1.1 *
677 jsr166 1.10 * @param phase an arrival phase number, or negative value if
678     * terminated; this argument is normally the value returned by a
679 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
681     * negative, or the (negative) {@linkplain #getPhase() current phase}
682     * if terminated
683 jsr166 1.1 */
684     public int awaitAdvance(int phase) {
685 dl 1.50 final Phaser root = this.root;
686 jsr166 1.51 long s = (root == this) ? state : reconcileState();
687     int p = (int)(s >>> PHASE_SHIFT);
688 jsr166 1.1 if (phase < 0)
689     return phase;
690 dl 1.50 if (p == phase)
691     return root.internalAwaitAdvance(phase, null);
692 dl 1.34 return p;
693 jsr166 1.1 }
694    
695     /**
696 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
697 jsr166 1.10 * value, throwing {@code InterruptedException} if interrupted
698 dl 1.37 * while waiting, or returning immediately if the current phase is
699     * not equal to the given phase value or this phaser is
700     * terminated.
701 jsr166 1.10 *
702     * @param phase an arrival phase number, or negative value if
703     * terminated; this argument is normally the value returned by a
704 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
706     * negative, or the (negative) {@linkplain #getPhase() current phase}
707     * if terminated
708 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
709     */
710     public int awaitAdvanceInterruptibly(int phase)
711     throws InterruptedException {
712 dl 1.50 final Phaser root = this.root;
713 jsr166 1.51 long s = (root == this) ? state : reconcileState();
714     int p = (int)(s >>> PHASE_SHIFT);
715 jsr166 1.1 if (phase < 0)
716     return phase;
717 dl 1.39 if (p == phase) {
718 dl 1.50 QNode node = new QNode(this, phase, true, false, 0L);
719     p = root.internalAwaitAdvance(phase, node);
720     if (node.wasInterrupted)
721     throw new InterruptedException();
722 dl 1.24 }
723     return p;
724 jsr166 1.1 }
725    
726     /**
727 dl 1.37 * Awaits the phase of this phaser to advance from the given phase
728 jsr166 1.10 * value or the given timeout to elapse, throwing {@code
729     * InterruptedException} if interrupted while waiting, or
730 dl 1.37 * returning immediately if the current phase is not equal to the
731     * given phase value or this phaser is terminated.
732 jsr166 1.10 *
733     * @param phase an arrival phase number, or negative value if
734     * terminated; this argument is normally the value returned by a
735 dl 1.37 * previous call to {@code arrive} or {@code arriveAndDeregister}.
736 jsr166 1.8 * @param timeout how long to wait before giving up, in units of
737     * {@code unit}
738     * @param unit a {@code TimeUnit} determining how to interpret the
739     * {@code timeout} parameter
740 jsr166 1.48 * @return the next arrival phase number, or the argument if it is
741     * negative, or the (negative) {@linkplain #getPhase() current phase}
742     * if terminated
743 jsr166 1.1 * @throws InterruptedException if thread interrupted while waiting
744     * @throws TimeoutException if timed out while waiting
745     */
746     public int awaitAdvanceInterruptibly(int phase,
747     long timeout, TimeUnit unit)
748     throws InterruptedException, TimeoutException {
749 dl 1.50 long nanos = unit.toNanos(timeout);
750     final Phaser root = this.root;
751 jsr166 1.51 long s = (root == this) ? state : reconcileState();
752     int p = (int)(s >>> PHASE_SHIFT);
753 jsr166 1.47 if (phase < 0)
754     return phase;
755 dl 1.39 if (p == phase) {
756 dl 1.50 QNode node = new QNode(this, phase, true, true, nanos);
757     p = root.internalAwaitAdvance(phase, node);
758     if (node.wasInterrupted)
759     throw new InterruptedException();
760     else if (p == phase)
761     throw new TimeoutException();
762 dl 1.24 }
763     return p;
764 jsr166 1.1 }
765    
766     /**
767 dl 1.37 * Forces this phaser to enter termination state. Counts of
768 dl 1.39 * registered parties are unaffected. If this phaser is a member
769     * of a tiered set of phasers, then all of the phasers in the set
770     * are terminated. If this phaser is already terminated, this
771     * method has no effect. This method may be useful for
772     * coordinating recovery after one or more tasks encounter
773     * unexpected exceptions.
774 jsr166 1.1 */
775     public void forceTermination() {
776 jsr166 1.23 // Only need to change root state
777     final Phaser root = this.root;
778 dl 1.14 long s;
779 jsr166 1.23 while ((s = root.state) >= 0) {
780 dl 1.87 if (STATE.compareAndSet(root, s, s | TERMINATION_BIT)) {
781 jsr166 1.45 // signal all threads
782 jsr166 1.67 releaseWaiters(0); // Waiters on evenQ
783     releaseWaiters(1); // Waiters on oddQ
784 jsr166 1.23 return;
785     }
786     }
787 jsr166 1.1 }
788    
789     /**
790     * Returns the current phase number. The maximum phase number is
791     * {@code Integer.MAX_VALUE}, after which it restarts at
792 dl 1.37 * zero. Upon termination, the phase number is negative,
793     * in which case the prevailing phase prior to termination
794     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
795 jsr166 1.1 *
796     * @return the phase number, or a negative value if terminated
797     */
798     public final int getPhase() {
799 dl 1.31 return (int)(root.state >>> PHASE_SHIFT);
800 jsr166 1.1 }
801    
802     /**
803 dl 1.37 * Returns the number of parties registered at this phaser.
804 jsr166 1.1 *
805     * @return the number of parties
806     */
807     public int getRegisteredParties() {
808 dl 1.31 return partiesOf(state);
809 jsr166 1.1 }
810    
811     /**
812 jsr166 1.10 * Returns the number of registered parties that have arrived at
813 dl 1.53 * the current phase of this phaser. If this phaser has terminated,
814     * the returned value is meaningless and arbitrary.
815 jsr166 1.1 *
816     * @return the number of arrived parties
817     */
818     public int getArrivedParties() {
819 dl 1.39 return arrivedOf(reconcileState());
820 jsr166 1.1 }
821    
822     /**
823     * Returns the number of registered parties that have not yet
824 dl 1.53 * arrived at the current phase of this phaser. If this phaser has
825     * terminated, the returned value is meaningless and arbitrary.
826 jsr166 1.1 *
827     * @return the number of unarrived parties
828     */
829     public int getUnarrivedParties() {
830 dl 1.39 return unarrivedOf(reconcileState());
831 jsr166 1.1 }
832    
833     /**
834 dl 1.37 * Returns the parent of this phaser, or {@code null} if none.
835 jsr166 1.1 *
836 dl 1.37 * @return the parent of this phaser, or {@code null} if none
837 jsr166 1.1 */
838     public Phaser getParent() {
839     return parent;
840     }
841    
842     /**
843 dl 1.37 * Returns the root ancestor of this phaser, which is the same as
844     * this phaser if it has no parent.
845 jsr166 1.1 *
846 dl 1.37 * @return the root ancestor of this phaser
847 jsr166 1.1 */
848     public Phaser getRoot() {
849     return root;
850     }
851    
852     /**
853 dl 1.37 * Returns {@code true} if this phaser has been terminated.
854 jsr166 1.1 *
855 dl 1.37 * @return {@code true} if this phaser has been terminated
856 jsr166 1.1 */
857     public boolean isTerminated() {
858 dl 1.31 return root.state < 0L;
859 jsr166 1.1 }
860    
861     /**
862 jsr166 1.10 * Overridable method to perform an action upon impending phase
863     * advance, and to control termination. This method is invoked
864 dl 1.37 * upon arrival of the party advancing this phaser (when all other
865 jsr166 1.10 * waiting parties are dormant). If this method returns {@code
866 dl 1.39 * true}, this phaser will be set to a final termination state
867     * upon advance, and subsequent calls to {@link #isTerminated}
868     * will return true. Any (unchecked) Exception or Error thrown by
869     * an invocation of this method is propagated to the party
870     * attempting to advance this phaser, in which case no advance
871     * occurs.
872 jsr166 1.10 *
873 dl 1.37 * <p>The arguments to this method provide the state of the phaser
874 dl 1.17 * prevailing for the current transition. The effects of invoking
875 dl 1.37 * arrival, registration, and waiting methods on this phaser from
876 dl 1.15 * within {@code onAdvance} are unspecified and should not be
877 dl 1.17 * relied on.
878     *
879 dl 1.37 * <p>If this phaser is a member of a tiered set of phasers, then
880     * {@code onAdvance} is invoked only for its root phaser on each
881 dl 1.17 * advance.
882 jsr166 1.1 *
883 dl 1.33 * <p>To support the most common use cases, the default
884     * implementation of this method returns {@code true} when the
885     * number of registered parties has become zero as the result of a
886     * party invoking {@code arriveAndDeregister}. You can disable
887     * this behavior, thus enabling continuation upon future
888     * registrations, by overriding this method to always return
889     * {@code false}:
890     *
891     * <pre> {@code
892     * Phaser phaser = new Phaser() {
893     * protected boolean onAdvance(int phase, int parties) { return false; }
894     * }}</pre>
895 jsr166 1.1 *
896 dl 1.37 * @param phase the current phase number on entry to this method,
897     * before this phaser is advanced
898 jsr166 1.1 * @param registeredParties the current number of registered parties
899 dl 1.37 * @return {@code true} if this phaser should terminate
900 jsr166 1.1 */
901     protected boolean onAdvance(int phase, int registeredParties) {
902 dl 1.36 return registeredParties == 0;
903 jsr166 1.1 }
904    
905     /**
906 dl 1.37 * Returns a string identifying this phaser, as well as its
907 dl 1.21 * state. The state, in brackets, includes the String {@code
908     * "phase = "} followed by the phase number, {@code "parties = "}
909     * followed by the number of registered parties, and {@code
910     * "arrived = "} followed by the number of arrived parties.
911 jsr166 1.1 *
912 dl 1.37 * @return a string identifying this phaser, as well as its state
913 jsr166 1.1 */
914     public String toString() {
915 dl 1.21 return stateToString(reconcileState());
916     }
917    
918     /**
919 jsr166 1.83 * Implementation of toString and string-based error messages.
920 dl 1.21 */
921     private String stateToString(long s) {
922 jsr166 1.1 return super.toString() +
923     "[phase = " + phaseOf(s) +
924     " parties = " + partiesOf(s) +
925     " arrived = " + arrivedOf(s) + "]";
926     }
927    
928 dl 1.21 // Waiting mechanics
929    
930 jsr166 1.1 /**
931 jsr166 1.30 * Removes and signals threads from queue for phase.
932 jsr166 1.1 */
933     private void releaseWaiters(int phase) {
934 dl 1.37 QNode q; // first element of queue
935     Thread t; // its thread
936 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
937 dl 1.17 while ((q = head.get()) != null &&
938 dl 1.39 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
939 dl 1.37 if (head.compareAndSet(q, q.next) &&
940     (t = q.thread) != null) {
941     q.thread = null;
942     LockSupport.unpark(t);
943     }
944 jsr166 1.1 }
945     }
946    
947 dl 1.50 /**
948     * Variant of releaseWaiters that additionally tries to remove any
949     * nodes no longer waiting for advance due to timeout or
950     * interrupt. Currently, nodes are removed only if they are at
951     * head of queue, which suffices to reduce memory footprint in
952     * most usages.
953     *
954     * @return current phase on exit
955     */
956     private int abortWait(int phase) {
957     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
958     for (;;) {
959     Thread t;
960     QNode q = head.get();
961     int p = (int)(root.state >>> PHASE_SHIFT);
962     if (q == null || ((t = q.thread) != null && q.phase == p))
963     return p;
964     if (head.compareAndSet(q, q.next) && t != null) {
965     q.thread = null;
966     LockSupport.unpark(t);
967     }
968     }
969     }
970    
971 dl 1.17 /** The number of CPUs, for spin control */
972     private static final int NCPU = Runtime.getRuntime().availableProcessors();
973    
974 jsr166 1.1 /**
975 dl 1.17 * The number of times to spin before blocking while waiting for
976     * advance, per arrival while waiting. On multiprocessors, fully
977     * blocking and waking up a large number of threads all at once is
978     * usually a very slow process, so we use rechargeable spins to
979     * avoid it when threads regularly arrive: When a thread in
980     * internalAwaitAdvance notices another arrival before blocking,
981     * and there appear to be enough CPUs available, it spins
982 dl 1.36 * SPINS_PER_ARRIVAL more times before blocking. The value trades
983     * off good-citizenship vs big unnecessary slowdowns.
984 dl 1.15 */
985 jsr166 1.22 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
986 dl 1.15
987     /**
988 dl 1.17 * Possibly blocks and waits for phase to advance unless aborted.
989 jsr166 1.64 * Call only on root phaser.
990 jsr166 1.1 *
991 dl 1.17 * @param phase current phase
992 jsr166 1.22 * @param node if non-null, the wait node to track interrupt and timeout;
993 dl 1.17 * if null, denotes noninterruptible wait
994 jsr166 1.1 * @return current phase
995     */
996 dl 1.17 private int internalAwaitAdvance(int phase, QNode node) {
997 jsr166 1.64 // assert root == this;
998 dl 1.37 releaseWaiters(phase-1); // ensure old queue clean
999     boolean queued = false; // true when node is enqueued
1000     int lastUnarrived = 0; // to increase spins upon change
1001 dl 1.17 int spins = SPINS_PER_ARRIVAL;
1002 dl 1.31 long s;
1003     int p;
1004 dl 1.34 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1005 dl 1.37 if (node == null) { // spinning in noninterruptible mode
1006     int unarrived = (int)s & UNARRIVED_MASK;
1007     if (unarrived != lastUnarrived &&
1008     (lastUnarrived = unarrived) < NCPU)
1009 dl 1.31 spins += SPINS_PER_ARRIVAL;
1010 dl 1.37 boolean interrupted = Thread.interrupted();
1011     if (interrupted || --spins < 0) { // need node to record intr
1012     node = new QNode(this, phase, false, false, 0L);
1013     node.wasInterrupted = interrupted;
1014     }
1015 dl 1.87 else
1016     Thread.onSpinWait();
1017 dl 1.21 }
1018 dl 1.37 else if (node.isReleasable()) // done or aborted
1019     break;
1020     else if (!queued) { // push onto queue
1021 dl 1.36 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1022 dl 1.37 QNode q = node.next = head.get();
1023     if ((q == null || q.phase == phase) &&
1024     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1025 dl 1.36 queued = head.compareAndSet(q, node);
1026 dl 1.31 }
1027 dl 1.17 else {
1028     try {
1029     ForkJoinPool.managedBlock(node);
1030 jsr166 1.74 } catch (InterruptedException cantHappen) {
1031 dl 1.17 node.wasInterrupted = true;
1032     }
1033     }
1034     }
1035 dl 1.34
1036     if (node != null) {
1037     if (node.thread != null)
1038 dl 1.37 node.thread = null; // avoid need for unpark()
1039 dl 1.36 if (node.wasInterrupted && !node.interruptible)
1040 dl 1.34 Thread.currentThread().interrupt();
1041 dl 1.39 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1042 dl 1.50 return abortWait(phase); // possibly clean up on abort
1043 dl 1.34 }
1044 dl 1.37 releaseWaiters(phase);
1045 dl 1.31 return p;
1046 jsr166 1.1 }
1047    
1048     /**
1049 jsr166 1.83 * Wait nodes for Treiber stack representing wait queue.
1050 jsr166 1.1 */
1051 dl 1.17 static final class QNode implements ForkJoinPool.ManagedBlocker {
1052     final Phaser phaser;
1053     final int phase;
1054     final boolean interruptible;
1055     final boolean timed;
1056     boolean wasInterrupted;
1057     long nanos;
1058 jsr166 1.72 final long deadline;
1059 dl 1.17 volatile Thread thread; // nulled to cancel wait
1060     QNode next;
1061    
1062     QNode(Phaser phaser, int phase, boolean interruptible,
1063     boolean timed, long nanos) {
1064     this.phaser = phaser;
1065     this.phase = phase;
1066     this.interruptible = interruptible;
1067     this.nanos = nanos;
1068     this.timed = timed;
1069 jsr166 1.72 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1070 dl 1.17 thread = Thread.currentThread();
1071     }
1072    
1073     public boolean isReleasable() {
1074 dl 1.37 if (thread == null)
1075     return true;
1076     if (phaser.getPhase() != phase) {
1077     thread = null;
1078     return true;
1079     }
1080     if (Thread.interrupted())
1081     wasInterrupted = true;
1082     if (wasInterrupted && interruptible) {
1083     thread = null;
1084     return true;
1085     }
1086 jsr166 1.84 if (timed &&
1087     (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1088     thread = null;
1089     return true;
1090 dl 1.15 }
1091 dl 1.37 return false;
1092 dl 1.17 }
1093    
1094     public boolean block() {
1095 jsr166 1.74 while (!isReleasable()) {
1096 jsr166 1.75 if (timed)
1097     LockSupport.parkNanos(this, nanos);
1098     else
1099 jsr166 1.74 LockSupport.park(this);
1100     }
1101     return true;
1102 dl 1.17 }
1103 jsr166 1.1 }
1104    
1105 dl 1.87 // VarHandle mechanics
1106     private static final VarHandle STATE;
1107 dl 1.59 static {
1108 jsr166 1.3 try {
1109 dl 1.87 MethodHandles.Lookup l = MethodHandles.lookup();
1110     STATE = l.findVarHandle(Phaser.class, "state", long.class);
1111 jsr166 1.77 } catch (ReflectiveOperationException e) {
1112 dl 1.59 throw new Error(e);
1113 jsr166 1.3 }
1114 jsr166 1.80
1115     // Reduce the risk of rare disastrous classloading in first call to
1116     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1117     Class<?> ensureLoaded = LockSupport.class;
1118 jsr166 1.3 }
1119 jsr166 1.1 }