ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.15
Committed: Sat Nov 6 16:11:50 2010 UTC (13 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.14: +95 -77 lines
Log Message:
Performance (and other) improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.atomic.AtomicReference;
10 import java.util.concurrent.locks.LockSupport;
11
12 /**
13 * A reusable synchronization barrier, similar in functionality to
14 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16 * but supporting more flexible usage.
17 *
18 * <p> <b>Registration.</b> Unlike the case for other barriers, the
19 * number of parties <em>registered</em> to synchronize on a phaser
20 * may vary over time. Tasks may be registered at any time (using
21 * methods {@link #register}, {@link #bulkRegister}, or forms of
22 * constructors establishing initial numbers of parties), and
23 * optionally deregistered upon any arrival (using {@link
24 * #arriveAndDeregister}). As is the case with most basic
25 * synchronization constructs, registration and deregistration affect
26 * only internal counts; they do not establish any further internal
27 * bookkeeping, so tasks cannot query whether they are registered.
28 * (However, you can introduce such bookkeeping by subclassing this
29 * class.)
30 *
31 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32 * Phaser} may be repeatedly awaited. Method {@link
33 * #arriveAndAwaitAdvance} has effect analogous to {@link
34 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35 * generation of a {@code Phaser} has an associated phase number. The
36 * phase number starts at zero, and advances when all parties arrive
37 * at the barrier, wrapping around to zero after reaching {@code
38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
39 * control of actions upon arrival at a barrier and upon awaiting
40 * others, via two kinds of methods that may be invoked by any
41 * registered party:
42 *
43 * <ul>
44 *
45 * <li> <b>Arrival.</b> Methods {@link #arrive} and
46 * {@link #arriveAndDeregister} record arrival at a
47 * barrier. These methods do not block, but return an associated
48 * <em>arrival phase number</em>; that is, the phase number of
49 * the barrier to which the arrival applied. When the final
50 * party for a given phase arrives, an optional barrier action
51 * is performed and the phase advances. Barrier actions,
52 * performed by the party triggering a phase advance, are
53 * arranged by overriding method {@link #onAdvance(int, int)},
54 * which also controls termination. Overriding this method is
55 * similar to, but more flexible than, providing a barrier
56 * action to a {@code CyclicBarrier}.
57 *
58 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
59 * argument indicating an arrival phase number, and returns when
60 * the barrier advances to (or is already at) a different phase.
61 * Unlike similar constructions using {@code CyclicBarrier},
62 * method {@code awaitAdvance} continues to wait even if the
63 * waiting thread is interrupted. Interruptible and timeout
64 * versions are also available, but exceptions encountered while
65 * tasks wait interruptibly or with timeout do not change the
66 * state of the barrier. If necessary, you can perform any
67 * associated recovery within handlers of those exceptions,
68 * often after invoking {@code forceTermination}. Phasers may
69 * also be used by tasks executing in a {@link ForkJoinPool},
70 * which will ensure sufficient parallelism to execute tasks
71 * when others are blocked waiting for a phase to advance.
72 *
73 * </ul>
74 *
75 * <p> <b>Termination.</b> A {@code Phaser} may enter a
76 * <em>termination</em> state in which all synchronization methods
77 * immediately return without updating phaser state or waiting for
78 * advance, and indicating (via a negative phase value) that execution
79 * is complete. Termination is triggered when an invocation of {@code
80 * onAdvance} returns {@code true}. As illustrated below, when
81 * phasers control actions with a fixed number of iterations, it is
82 * often convenient to override this method to cause termination when
83 * the current phase number reaches a threshold. Method {@link
84 * #forceTermination} is also available to abruptly release waiting
85 * threads and allow them to terminate.
86 *
87 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
88 * in tree structures) to reduce contention. Phasers with large
89 * numbers of parties that would otherwise experience heavy
90 * synchronization contention costs may instead be set up so that
91 * groups of sub-phasers share a common parent. This may greatly
92 * increase throughput even though it incurs greater per-operation
93 * overhead.
94 *
95 * <p><b>Monitoring.</b> While synchronization methods may be invoked
96 * only by registered parties, the current state of a phaser may be
97 * monitored by any caller. At any given moment there are {@link
98 * #getRegisteredParties} parties in total, of which {@link
99 * #getArrivedParties} have arrived at the current phase ({@link
100 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
101 * parties arrive, the phase advances. The values returned by these
102 * methods may reflect transient states and so are not in general
103 * useful for synchronization control. Method {@link #toString}
104 * returns snapshots of these state queries in a form convenient for
105 * informal monitoring.
106 *
107 * <p><b>Sample usages:</b>
108 *
109 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
110 * to control a one-shot action serving a variable number of parties.
111 * The typical idiom is for the method setting this up to first
112 * register, then start the actions, then deregister, as in:
113 *
114 * <pre> {@code
115 * void runTasks(List<Runnable> tasks) {
116 * final Phaser phaser = new Phaser(1); // "1" to register self
117 * // create and start threads
118 * for (Runnable task : tasks) {
119 * phaser.register();
120 * new Thread() {
121 * public void run() {
122 * phaser.arriveAndAwaitAdvance(); // await all creation
123 * task.run();
124 * }
125 * }.start();
126 * }
127 *
128 * // allow threads to start and deregister self
129 * phaser.arriveAndDeregister();
130 * }}</pre>
131 *
132 * <p>One way to cause a set of threads to repeatedly perform actions
133 * for a given number of iterations is to override {@code onAdvance}:
134 *
135 * <pre> {@code
136 * void startTasks(List<Runnable> tasks, final int iterations) {
137 * final Phaser phaser = new Phaser() {
138 * protected boolean onAdvance(int phase, int registeredParties) {
139 * return phase >= iterations || registeredParties == 0;
140 * }
141 * };
142 * phaser.register();
143 * for (final Runnable task : tasks) {
144 * phaser.register();
145 * new Thread() {
146 * public void run() {
147 * do {
148 * task.run();
149 * phaser.arriveAndAwaitAdvance();
150 * } while (!phaser.isTerminated());
151 * }
152 * }.start();
153 * }
154 * phaser.arriveAndDeregister(); // deregister self, don't wait
155 * }}</pre>
156 *
157 * If the main task must later await termination, it
158 * may re-register and then execute a similar loop:
159 * <pre> {@code
160 * // ...
161 * phaser.register();
162 * while (!phaser.isTerminated())
163 * phaser.arriveAndAwaitAdvance();}</pre>
164 *
165 * <p>Related constructions may be used to await particular phase numbers
166 * in contexts where you are sure that the phase will never wrap around
167 * {@code Integer.MAX_VALUE}. For example:
168 *
169 * <pre> {@code
170 * void awaitPhase(Phaser phaser, int phase) {
171 * int p = phaser.register(); // assumes caller not already registered
172 * while (p < phase) {
173 * if (phaser.isTerminated())
174 * // ... deal with unexpected termination
175 * else
176 * p = phaser.arriveAndAwaitAdvance();
177 * }
178 * phaser.arriveAndDeregister();
179 * }}</pre>
180 *
181 *
182 * <p>To create a set of tasks using a tree of phasers,
183 * you could use code of the following form, assuming a
184 * Task class with a constructor accepting a phaser that
185 * it registers with upon construction:
186 *
187 * <pre> {@code
188 * void build(Task[] actions, int lo, int hi, Phaser ph) {
189 * if (hi - lo > TASKS_PER_PHASER) {
190 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
191 * int j = Math.min(i + TASKS_PER_PHASER, hi);
192 * build(actions, i, j, new Phaser(ph));
193 * }
194 * } else {
195 * for (int i = lo; i < hi; ++i)
196 * actions[i] = new Task(ph);
197 * // assumes new Task(ph) performs ph.register()
198 * }
199 * }
200 * // .. initially called, for n tasks via
201 * build(new Task[n], 0, n, new Phaser());}</pre>
202 *
203 * The best value of {@code TASKS_PER_PHASER} depends mainly on
204 * expected barrier synchronization rates. A value as low as four may
205 * be appropriate for extremely small per-barrier task bodies (thus
206 * high rates), or up to hundreds for extremely large ones.
207 *
208 * <p><b>Implementation notes</b>: This implementation restricts the
209 * maximum number of parties to 65535. Attempts to register additional
210 * parties result in {@code IllegalStateException}. However, you can and
211 * should create tiered phasers to accommodate arbitrarily large sets
212 * of participants.
213 *
214 * @since 1.7
215 * @author Doug Lea
216 */
217 public class Phaser {
218 /*
219 * This class implements an extension of X10 "clocks". Thanks to
220 * Vijay Saraswat for the idea, and to Vivek Sarkar for
221 * enhancements to extend functionality.
222 */
223
224 /**
225 * Barrier state representation. Conceptually, a barrier contains
226 * four values:
227 *
228 * * parties -- the number of parties to wait (16 bits)
229 * * unarrived -- the number of parties yet to hit barrier (16 bits)
230 * * phase -- the generation of the barrier (31 bits)
231 * * terminated -- set if barrier is terminated (1 bit)
232 *
233 * However, to efficiently maintain atomicity, these values are
234 * packed into a single (atomic) long. Termination uses the sign
235 * bit of 32 bit representation of phase, so phase is set to -1 on
236 * termination. Good performance relies on keeping state decoding
237 * and encoding simple, and keeping race windows short.
238 *
239 * Note: there are some cheats in arrive() that rely on unarrived
240 * count being lowest 16 bits.
241 */
242 private volatile long state;
243
244 private static final int ushortMask = 0xffff;
245 private static final int phaseMask = 0x7fffffff;
246
247 private static int unarrivedOf(long s) {
248 return (int) (s & ushortMask);
249 }
250
251 private static int partiesOf(long s) {
252 return ((int) s) >>> 16;
253 }
254
255 private static int phaseOf(long s) {
256 return (int) (s >>> 32);
257 }
258
259 private static int arrivedOf(long s) {
260 return partiesOf(s) - unarrivedOf(s);
261 }
262
263 private static long stateFor(int phase, int parties, int unarrived) {
264 return ((((long) phase) << 32) | (((long) parties) << 16) |
265 (long) unarrived);
266 }
267
268 private static long trippedStateFor(int phase, int parties) {
269 long lp = (long) parties;
270 return (((long) phase) << 32) | (lp << 16) | lp;
271 }
272
273 /**
274 * Returns message string for bad bounds exceptions.
275 */
276 private static String badBounds(int parties, int unarrived) {
277 return ("Attempt to set " + unarrived +
278 " unarrived of " + parties + " parties");
279 }
280
281 /**
282 * The parent of this phaser, or null if none
283 */
284 private final Phaser parent;
285
286 /**
287 * The root of phaser tree. Equals this if not in a tree. Used to
288 * support faster state push-down.
289 */
290 private final Phaser root;
291
292 // Wait queues
293
294 /**
295 * Heads of Treiber stacks for waiting threads. To eliminate
296 * contention when releasing some threads while adding others, we
297 * use two of them, alternating across even and odd phases.
298 * Subphasers share queues with root to speed up releases.
299 */
300 private final AtomicReference<QNode> evenQ;
301 private final AtomicReference<QNode> oddQ;
302
303 private AtomicReference<QNode> queueFor(int phase) {
304 return ((phase & 1) == 0) ? evenQ : oddQ;
305 }
306
307 /**
308 * Returns current state, first resolving lagged propagation from
309 * root if necessary.
310 */
311 private long getReconciledState() {
312 return (parent == null) ? state : reconcileState();
313 }
314
315 /**
316 * Recursively resolves state.
317 */
318 private long reconcileState() {
319 Phaser par = parent;
320 long s = state;
321 if (par != null) {
322 int phase, rootPhase;
323 while ((phase = phaseOf(s)) >= 0 &&
324 (rootPhase = phaseOf(root.state)) != phase &&
325 (rootPhase < 0 || unarrivedOf(s) == 0)) {
326 int parentPhase = phaseOf(par.getReconciledState());
327 if (parentPhase != phase) {
328 long next = trippedStateFor(parentPhase, partiesOf(s));
329 if (state == s)
330 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
331 }
332 s = state;
333 }
334 }
335 return s;
336 }
337
338 /**
339 * Creates a new phaser without any initially registered parties,
340 * initial phase number 0, and no parent. Any thread using this
341 * phaser will need to first register for it.
342 */
343 public Phaser() {
344 this(null, 0);
345 }
346
347 /**
348 * Creates a new phaser with the given number of registered
349 * unarrived parties, initial phase number 0, and no parent.
350 *
351 * @param parties the number of parties required to trip barrier
352 * @throws IllegalArgumentException if parties less than zero
353 * or greater than the maximum number of parties supported
354 */
355 public Phaser(int parties) {
356 this(null, parties);
357 }
358
359 /**
360 * Creates a new phaser with the given parent, without any
361 * initially registered parties. If parent is non-null this phaser
362 * is registered with the parent and its initial phase number is
363 * the same as that of parent phaser.
364 *
365 * @param parent the parent phaser
366 */
367 public Phaser(Phaser parent) {
368 this(parent, 0);
369 }
370
371 /**
372 * Creates a new phaser with the given parent and number of
373 * registered unarrived parties. If parent is non-null, this phaser
374 * is registered with the parent and its initial phase number is
375 * the same as that of parent phaser.
376 *
377 * @param parent the parent phaser
378 * @param parties the number of parties required to trip barrier
379 * @throws IllegalArgumentException if parties less than zero
380 * or greater than the maximum number of parties supported
381 */
382 public Phaser(Phaser parent, int parties) {
383 if (parties < 0 || parties > ushortMask)
384 throw new IllegalArgumentException("Illegal number of parties");
385 int phase;
386 this.parent = parent;
387 if (parent != null) {
388 Phaser r = parent.root;
389 this.root = r;
390 this.evenQ = r.evenQ;
391 this.oddQ = r.oddQ;
392 phase = parent.register();
393 }
394 else {
395 this.root = this;
396 this.evenQ = new AtomicReference<QNode>();
397 this.oddQ = new AtomicReference<QNode>();
398 phase = 0;
399 }
400 this.state = trippedStateFor(phase, parties);
401 }
402
403 /**
404 * Adds a new unarrived party to this phaser.
405 * If an ongoing invocation of {@link #onAdvance} is in progress,
406 * this method may wait until its completion before registering.
407 *
408 * @return the arrival phase number to which this registration applied
409 * @throws IllegalStateException if attempting to register more
410 * than the maximum supported number of parties
411 */
412 public int register() {
413 return doRegister(1);
414 }
415
416 /**
417 * Adds the given number of new unarrived parties to this phaser.
418 * If an ongoing invocation of {@link #onAdvance} is in progress,
419 * this method may wait until its completion before registering.
420 *
421 * @param parties the number of additional parties required to trip barrier
422 * @return the arrival phase number to which this registration applied
423 * @throws IllegalStateException if attempting to register more
424 * than the maximum supported number of parties
425 * @throws IllegalArgumentException if {@code parties < 0}
426 */
427 public int bulkRegister(int parties) {
428 if (parties < 0)
429 throw new IllegalArgumentException();
430 if (parties == 0)
431 return getPhase();
432 return doRegister(parties);
433 }
434
435 /**
436 * Shared code for register, bulkRegister
437 */
438 private int doRegister(int registrations) {
439 Phaser par = parent;
440 long s;
441 int phase;
442 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
443 int p = partiesOf(s);
444 int u = unarrivedOf(s);
445 int unarrived = u + registrations;
446 int parties = p + registrations;
447 if (u == 0 && p != 0) // if tripped, wait for advance
448 untimedWait(phase);
449 else if (parties > ushortMask)
450 throw new IllegalStateException(badBounds(parties, unarrived));
451 else if (par == null || phaseOf(root.state) == phase) {
452 long next = stateFor(phase, parties, unarrived);
453 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
454 break;
455 }
456 }
457 return phase;
458 }
459
460 /**
461 * Arrives at the barrier, but does not wait for others. (You can
462 * in turn wait for others via {@link #awaitAdvance}). It is an
463 * unenforced usage error for an unregistered party to invoke this
464 * method.
465 *
466 * @return the arrival phase number, or a negative value if terminated
467 * @throws IllegalStateException if not terminated and the number
468 * of unarrived parties would become negative
469 */
470 public int arrive() {
471 Phaser par = parent;
472 long s;
473 int phase;
474 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
475 int parties = partiesOf(s);
476 int unarrived = unarrivedOf(s) - 1;
477 if (unarrived > 0) { // Not the last arrival
478 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1))
479 break; // s-1 adds one arrival
480 }
481 else if (unarrived < 0)
482 throw new IllegalStateException(badBounds(parties, unarrived));
483 else if (par == null) { // directly trip
484 long next = trippedStateFor(onAdvance(phase, parties) ? -1 :
485 ((phase + 1) & phaseMask),
486 parties);
487 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
488 releaseWaiters(phase);
489 break;
490 }
491 }
492 else if (phaseOf(root.state) == phase &&
493 UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1)) {
494 par.arrive(); // cascade to parent
495 reconcileState();
496 break;
497 }
498 }
499 return phase;
500 }
501
502 /**
503 * Arrives at the barrier and deregisters from it without waiting
504 * for others. Deregistration reduces the number of parties
505 * required to trip the barrier in future phases. If this phaser
506 * has a parent, and deregistration causes this phaser to have
507 * zero parties, this phaser also arrives at and is deregistered
508 * from its parent. It is an unenforced usage error for an
509 * unregistered party to invoke this method.
510 *
511 * @return the arrival phase number, or a negative value if terminated
512 * @throws IllegalStateException if not terminated and the number
513 * of registered or unarrived parties would become negative
514 */
515 public int arriveAndDeregister() {
516 // similar to arrive, but too different to merge
517 Phaser par = parent;
518 long s;
519 int phase;
520 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
521 int parties = partiesOf(s) - 1;
522 int unarrived = unarrivedOf(s) - 1;
523 if (unarrived > 0) {
524 long next = stateFor(phase, parties, unarrived);
525 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
526 break;
527 }
528 else if (unarrived < 0)
529 throw new IllegalStateException(badBounds(parties, unarrived));
530 else if (par == null) {
531 long next = trippedStateFor(onAdvance(phase, parties)? -1:
532 (phase + 1) & phaseMask,
533 parties);
534 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
535 releaseWaiters(phase);
536 break;
537 }
538 }
539 else if (phaseOf(root.state) == phase) {
540 long next = stateFor(phase, parties, 0);
541 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
542 if (parties == 0)
543 par.arriveAndDeregister();
544 else
545 par.arrive();
546 reconcileState();
547 break;
548 }
549 }
550 }
551 return phase;
552 }
553
554 /**
555 * Arrives at the barrier and awaits others. Equivalent in effect
556 * to {@code awaitAdvance(arrive())}. If you need to await with
557 * interruption or timeout, you can arrange this with an analogous
558 * construction using one of the other forms of the {@code
559 * awaitAdvance} method. If instead you need to deregister upon
560 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
561 * usage error for an unregistered party to invoke this method.
562 *
563 * @return the arrival phase number, or a negative number if terminated
564 * @throws IllegalStateException if not terminated and the number
565 * of unarrived parties would become negative
566 */
567 public int arriveAndAwaitAdvance() {
568 return awaitAdvance(arrive());
569 }
570
571 /**
572 * Awaits the phase of the barrier to advance from the given phase
573 * value, returning immediately if the current phase of the
574 * barrier is not equal to the given phase value or this barrier
575 * is terminated.
576 *
577 * @param phase an arrival phase number, or negative value if
578 * terminated; this argument is normally the value returned by a
579 * previous call to {@code arrive} or its variants
580 * @return the next arrival phase number, or a negative value
581 * if terminated or argument is negative
582 */
583 public int awaitAdvance(int phase) {
584 if (phase < 0)
585 return phase;
586 int p = getPhase();
587 if (p != phase)
588 return p;
589 return untimedWait(phase);
590 }
591
592 /**
593 * Awaits the phase of the barrier to advance from the given phase
594 * value, throwing {@code InterruptedException} if interrupted
595 * while waiting, or returning immediately if the current phase of
596 * the barrier is not equal to the given phase value or this
597 * barrier is terminated.
598 *
599 * @param phase an arrival phase number, or negative value if
600 * terminated; this argument is normally the value returned by a
601 * previous call to {@code arrive} or its variants
602 * @return the next arrival phase number, or a negative value
603 * if terminated or argument is negative
604 * @throws InterruptedException if thread interrupted while waiting
605 */
606 public int awaitAdvanceInterruptibly(int phase)
607 throws InterruptedException {
608 if (phase < 0)
609 return phase;
610 int p = getPhase();
611 if (p != phase)
612 return p;
613 return interruptibleWait(phase);
614 }
615
616 /**
617 * Awaits the phase of the barrier to advance from the given phase
618 * value or the given timeout to elapse, throwing {@code
619 * InterruptedException} if interrupted while waiting, or
620 * returning immediately if the current phase of the barrier is
621 * not equal to the given phase value or this barrier is
622 * terminated.
623 *
624 * @param phase an arrival phase number, or negative value if
625 * terminated; this argument is normally the value returned by a
626 * previous call to {@code arrive} or its variants
627 * @param timeout how long to wait before giving up, in units of
628 * {@code unit}
629 * @param unit a {@code TimeUnit} determining how to interpret the
630 * {@code timeout} parameter
631 * @return the next arrival phase number, or a negative value
632 * if terminated or argument is negative
633 * @throws InterruptedException if thread interrupted while waiting
634 * @throws TimeoutException if timed out while waiting
635 */
636 public int awaitAdvanceInterruptibly(int phase,
637 long timeout, TimeUnit unit)
638 throws InterruptedException, TimeoutException {
639 long nanos = unit.toNanos(timeout);
640 if (phase < 0)
641 return phase;
642 int p = getPhase();
643 if (p != phase)
644 return p;
645 return timedWait(phase, nanos);
646 }
647
648 /**
649 * Forces this barrier to enter termination state. Counts of
650 * arrived and registered parties are unaffected. If this phaser
651 * has a parent, it too is terminated. This method may be useful
652 * for coordinating recovery after one or more tasks encounter
653 * unexpected exceptions.
654 */
655 public void forceTermination() {
656 Phaser r = root; // force at root then reconcile
657 long s;
658 while (phaseOf(s = r.state) >= 0)
659 UNSAFE.compareAndSwapLong(r, stateOffset, s,
660 stateFor(-1, partiesOf(s),
661 unarrivedOf(s)));
662 reconcileState();
663 releaseWaiters(0); // ensure wakeups on both queues
664 releaseWaiters(1);
665 }
666
667 /**
668 * Returns the current phase number. The maximum phase number is
669 * {@code Integer.MAX_VALUE}, after which it restarts at
670 * zero. Upon termination, the phase number is negative.
671 *
672 * @return the phase number, or a negative value if terminated
673 */
674 public final int getPhase() {
675 return phaseOf(getReconciledState());
676 }
677
678 /**
679 * Returns the number of parties registered at this barrier.
680 *
681 * @return the number of parties
682 */
683 public int getRegisteredParties() {
684 return partiesOf(getReconciledState());
685 }
686
687 /**
688 * Returns the number of registered parties that have arrived at
689 * the current phase of this barrier.
690 *
691 * @return the number of arrived parties
692 */
693 public int getArrivedParties() {
694 return arrivedOf(getReconciledState());
695 }
696
697 /**
698 * Returns the number of registered parties that have not yet
699 * arrived at the current phase of this barrier.
700 *
701 * @return the number of unarrived parties
702 */
703 public int getUnarrivedParties() {
704 return unarrivedOf(getReconciledState());
705 }
706
707 /**
708 * Returns the parent of this phaser, or {@code null} if none.
709 *
710 * @return the parent of this phaser, or {@code null} if none
711 */
712 public Phaser getParent() {
713 return parent;
714 }
715
716 /**
717 * Returns the root ancestor of this phaser, which is the same as
718 * this phaser if it has no parent.
719 *
720 * @return the root ancestor of this phaser
721 */
722 public Phaser getRoot() {
723 return root;
724 }
725
726 /**
727 * Returns {@code true} if this barrier has been terminated.
728 *
729 * @return {@code true} if this barrier has been terminated
730 */
731 public boolean isTerminated() {
732 return getPhase() < 0;
733 }
734
735 /**
736 * Overridable method to perform an action upon impending phase
737 * advance, and to control termination. This method is invoked
738 * upon arrival of the party tripping the barrier (when all other
739 * waiting parties are dormant). If this method returns {@code
740 * true}, then, rather than advance the phase number, this barrier
741 * will be set to a final termination state, and subsequent calls
742 * to {@link #isTerminated} will return true. Any (unchecked)
743 * Exception or Error thrown by an invocation of this method is
744 * propagated to the party attempting to trip the barrier, in
745 * which case no advance occurs.
746 *
747 * <p>The arguments to this method provide the state of the phaser
748 * prevailing for the current transition. The results and effects
749 * of invoking phase-related methods (including {@code getPhase}
750 * as well as arrival, registration, and waiting methods) from
751 * within {@code onAdvance} are unspecified and should not be
752 * relied on. Similarly, while it is possible to override this
753 * method to produce side-effects visible to participating tasks,
754 * it is in general safe to do so only in designs in which all
755 * parties register before any arrive, and all {@link
756 * #awaitAdvance} at each phase.
757 *
758 * <p>The default version returns {@code true} when the number of
759 * registered parties is zero. Normally, overrides that arrange
760 * termination for other reasons should also preserve this
761 * property.
762 *
763 * @param phase the phase number on entering the barrier
764 * @param registeredParties the current number of registered parties
765 * @return {@code true} if this barrier should terminate
766 */
767 protected boolean onAdvance(int phase, int registeredParties) {
768 return registeredParties <= 0;
769 }
770
771 /**
772 * Returns a string identifying this phaser, as well as its
773 * state. The state, in brackets, includes the String {@code
774 * "phase = "} followed by the phase number, {@code "parties = "}
775 * followed by the number of registered parties, and {@code
776 * "arrived = "} followed by the number of arrived parties.
777 *
778 * @return a string identifying this barrier, as well as its state
779 */
780 public String toString() {
781 long s = getReconciledState();
782 return super.toString() +
783 "[phase = " + phaseOf(s) +
784 " parties = " + partiesOf(s) +
785 " arrived = " + arrivedOf(s) + "]";
786 }
787
788 // methods for waiting
789
790 /**
791 * Wait nodes for Treiber stack representing wait queue
792 */
793 static final class QNode implements ForkJoinPool.ManagedBlocker {
794 final Phaser phaser;
795 final int phase;
796 final long startTime;
797 final long nanos;
798 final boolean timed;
799 final boolean interruptible;
800 volatile boolean wasInterrupted = false;
801 volatile Thread thread; // nulled to cancel wait
802 QNode next;
803
804 QNode(Phaser phaser, int phase, boolean interruptible,
805 boolean timed, long startTime, long nanos) {
806 this.phaser = phaser;
807 this.phase = phase;
808 this.timed = timed;
809 this.interruptible = interruptible;
810 this.startTime = startTime;
811 this.nanos = nanos;
812 thread = Thread.currentThread();
813 }
814
815 public boolean isReleasable() {
816 return (thread == null ||
817 phaser.getPhase() != phase ||
818 (interruptible && wasInterrupted) ||
819 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
820 }
821
822 public boolean block() {
823 if (Thread.interrupted()) {
824 wasInterrupted = true;
825 if (interruptible)
826 return true;
827 }
828 if (!timed)
829 LockSupport.park(this);
830 else {
831 long waitTime = nanos - (System.nanoTime() - startTime);
832 if (waitTime <= 0)
833 return true;
834 LockSupport.parkNanos(this, waitTime);
835 }
836 return isReleasable();
837 }
838
839 void signal() {
840 Thread t = thread;
841 if (t != null) {
842 thread = null;
843 LockSupport.unpark(t);
844 }
845 }
846
847 boolean doWait() {
848 if (thread != null) {
849 try {
850 ForkJoinPool.managedBlock(this);
851 } catch (InterruptedException ie) {
852 wasInterrupted = true; // can't currently happen
853 }
854 }
855 return wasInterrupted;
856 }
857 }
858
859 /**
860 * Removes and signals waiting threads from wait queue.
861 */
862 private void releaseWaiters(int phase) {
863 AtomicReference<QNode> head = queueFor(phase);
864 QNode q;
865 while ((q = head.get()) != null) {
866 if (head.compareAndSet(q, q.next))
867 q.signal();
868 }
869 }
870
871 /**
872 * Tries to enqueue given node in the appropriate wait queue.
873 *
874 * @return true if successful
875 */
876 private boolean tryEnqueue(QNode node) {
877 AtomicReference<QNode> head = queueFor(node.phase);
878 return head.compareAndSet(node.next = head.get(), node);
879 }
880
881 /**
882 * The number of times to spin before blocking waiting for advance.
883 */
884 static final int MAX_SPINS =
885 Runtime.getRuntime().availableProcessors() == 1 ? 0 : 1 << 8;
886
887 /**
888 * Enqueues node and waits unless aborted or signalled.
889 *
890 * @return current phase
891 */
892 private int untimedWait(int phase) {
893 QNode node = null;
894 boolean queued = false;
895 boolean interrupted = false;
896 int spins = MAX_SPINS;
897 int p;
898 while ((p = getPhase()) == phase) {
899 if (Thread.interrupted())
900 interrupted = true;
901 else if (spins > 0) {
902 if (--spins == 0)
903 Thread.yield();
904 }
905 else if (node == null)
906 node = new QNode(this, phase, false, false, 0, 0);
907 else if (!queued)
908 queued = tryEnqueue(node);
909 else if (node.doWait())
910 interrupted = true;
911 }
912 if (node != null)
913 node.thread = null;
914 releaseWaiters(phase);
915 if (interrupted)
916 Thread.currentThread().interrupt();
917 return p;
918 }
919
920 /**
921 * Interruptible version
922 * @return current phase
923 */
924 private int interruptibleWait(int phase) throws InterruptedException {
925 QNode node = null;
926 boolean queued = false;
927 boolean interrupted = false;
928 int spins = MAX_SPINS;
929 int p;
930 while ((p = getPhase()) == phase && !interrupted) {
931 if (Thread.interrupted())
932 interrupted = true;
933 else if (spins > 0) {
934 if (--spins == 0)
935 Thread.yield();
936 }
937 else if (node == null)
938 node = new QNode(this, phase, true, false, 0, 0);
939 else if (!queued)
940 queued = tryEnqueue(node);
941 else if (node.doWait())
942 interrupted = true;
943 }
944 if (node != null)
945 node.thread = null;
946 if (p != phase || (p = getPhase()) != phase)
947 releaseWaiters(phase);
948 if (interrupted)
949 throw new InterruptedException();
950 return p;
951 }
952
953 /**
954 * Timeout version.
955 * @return current phase
956 */
957 private int timedWait(int phase, long nanos)
958 throws InterruptedException, TimeoutException {
959 long startTime = System.nanoTime();
960 QNode node = null;
961 boolean queued = false;
962 boolean interrupted = false;
963 int spins = MAX_SPINS;
964 int p;
965 while ((p = getPhase()) == phase && !interrupted) {
966 if (Thread.interrupted())
967 interrupted = true;
968 else if (nanos - (System.nanoTime() - startTime) <= 0)
969 break;
970 else if (spins > 0) {
971 if (--spins == 0)
972 Thread.yield();
973 }
974 else if (node == null)
975 node = new QNode(this, phase, true, true, startTime, nanos);
976 else if (!queued)
977 queued = tryEnqueue(node);
978 else if (node.doWait())
979 interrupted = true;
980 }
981 if (node != null)
982 node.thread = null;
983 if (p != phase || (p = getPhase()) != phase)
984 releaseWaiters(phase);
985 if (interrupted)
986 throw new InterruptedException();
987 if (p == phase)
988 throw new TimeoutException();
989 return p;
990 }
991
992 // Unsafe mechanics
993
994 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
995 private static final long stateOffset =
996 objectFieldOffset("state", Phaser.class);
997
998 private static long objectFieldOffset(String field, Class<?> klazz) {
999 try {
1000 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1001 } catch (NoSuchFieldException e) {
1002 // Convert Exception to corresponding Error
1003 NoSuchFieldError error = new NoSuchFieldError(field);
1004 error.initCause(e);
1005 throw error;
1006 }
1007 }
1008 }