ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.23
Committed: Sun Nov 14 23:45:16 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.22: +17 -11 lines
Log Message:
improve forceTermination

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_COUNT = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final long UNARRIVED_MASK = 0xffffL;
248 private static final long PARTIES_MASK = 0xffff0000L;
249 private static final long ONE_ARRIVAL = 1L;
250 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252
253 // The following unpacking methods are usually manually inlined
254
255 private static int unarrivedOf(long s) {
256 return (int) (s & UNARRIVED_MASK);
257 }
258
259 private static int partiesOf(long s) {
260 return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261 }
262
263 private static int phaseOf(long s) {
264 return (int) (s >>> PHASE_SHIFT);
265 }
266
267 private static int arrivedOf(long s) {
268 return partiesOf(s) - unarrivedOf(s);
269 }
270
271 /**
272 * The parent of this phaser, or null if none
273 */
274 private final Phaser parent;
275
276 /**
277 * The root of phaser tree. Equals this if not in a tree. Used to
278 * support faster state push-down.
279 */
280 private final Phaser root;
281
282 /**
283 * Heads of Treiber stacks for waiting threads. To eliminate
284 * contention when releasing some threads while adding others, we
285 * use two of them, alternating across even and odd phases.
286 * Subphasers share queues with root to speed up releases.
287 */
288 private final AtomicReference<QNode> evenQ;
289 private final AtomicReference<QNode> oddQ;
290
291 private AtomicReference<QNode> queueFor(int phase) {
292 return ((phase & 1) == 0) ? evenQ : oddQ;
293 }
294
295 /**
296 * Main implementation for methods arrive and arriveAndDeregister.
297 * Manually tuned to speed up and minimize race windows for the
298 * common case of just decrementing unarrived field.
299 *
300 * @param adj - adjustment to apply to state -- either
301 * ONE_ARRIVAL (for arrive) or
302 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 */
304 private int doArrive(long adj) {
305 for (;;) {
306 long s;
307 int phase, unarrived;
308 if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
309 return phase;
310 else if ((unarrived = (int)(s & UNARRIVED_MASK)) == 0)
311 checkBadArrive(s);
312 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)){
313 if (unarrived == 1) {
314 Phaser par;
315 long p = s & PARTIES_MASK; // unshifted parties field
316 long lu = p >>> PARTIES_SHIFT;
317 int u = (int)lu;
318 int nextPhase = (phase + 1) & MAX_PHASE;
319 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 if ((par = parent) == null) {
321 UNSAFE.compareAndSwapLong
322 (this, stateOffset, s, onAdvance(phase, u)?
323 next | TERMINATION_PHASE : next);
324 releaseWaiters(phase);
325 }
326 else {
327 par.doArrive(u == 0?
328 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
329 if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
330 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
331 !UNSAFE.compareAndSwapLong(this, stateOffset,
332 s, next)))
333 reconcileState();
334 }
335 }
336 return phase;
337 }
338 }
339 }
340
341 /**
342 * Rechecks state and throws bounds exceptions on arrival -- called
343 * only if unarrived is apparently zero.
344 */
345 private void checkBadArrive(long s) {
346 if (reconcileState() == s)
347 throw new IllegalStateException
348 ("Attempted arrival of unregistered party for " +
349 stateToString(s));
350 }
351
352 /**
353 * Implementation of register, bulkRegister
354 *
355 * @param registrations number to add to both parties and unarrived fields
356 */
357 private int doRegister(int registrations) {
358 long adj = (long)registrations; // adjustment to state
359 adj |= adj << PARTIES_SHIFT;
360 Phaser par = parent;
361 for (;;) {
362 int phase, parties;
363 long s = par == null? state : reconcileState();
364 if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
365 return phase;
366 if ((parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT) != 0 &&
367 (s & UNARRIVED_MASK) == 0)
368 internalAwaitAdvance(phase, null); // wait for onAdvance
369 else if (parties + registrations > MAX_COUNT)
370 throw new IllegalStateException(badRegister(s));
371 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
372 return phase;
373 }
374 }
375
376 /**
377 * Returns message string for out of bounds exceptions on registration.
378 */
379 private String badRegister(long s) {
380 return "Attempt to register more than " +
381 MAX_COUNT + " parties for " + stateToString(s);
382 }
383
384 /**
385 * Recursively resolves lagged phase propagation from root if necessary.
386 */
387 private long reconcileState() {
388 Phaser par = parent;
389 if (par == null)
390 return state;
391 Phaser rt = root;
392 for (;;) {
393 long s, u;
394 int phase, rPhase, pPhase;
395 if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
396 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
397 return s;
398 long pState = par.parent == null? par.state : par.reconcileState();
399 if (state == s) {
400 if ((rPhase < 0 || (s & UNARRIVED_MASK) == 0) &&
401 ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
402 pPhase == ((phase + 1) & MAX_PHASE)))
403 UNSAFE.compareAndSwapLong
404 (this, stateOffset, s,
405 (((long) pPhase) << PHASE_SHIFT) |
406 (u = s & PARTIES_MASK) |
407 (u >>> PARTIES_SHIFT)); // reset unarrived to parties
408 else
409 releaseWaiters(phase); // help release others
410 }
411 }
412 }
413
414 /**
415 * Creates a new phaser without any initially registered parties,
416 * initial phase number 0, and no parent. Any thread using this
417 * phaser will need to first register for it.
418 */
419 public Phaser() {
420 this(null, 0);
421 }
422
423 /**
424 * Creates a new phaser with the given number of registered
425 * unarrived parties, initial phase number 0, and no parent.
426 *
427 * @param parties the number of parties required to trip barrier
428 * @throws IllegalArgumentException if parties less than zero
429 * or greater than the maximum number of parties supported
430 */
431 public Phaser(int parties) {
432 this(null, parties);
433 }
434
435 /**
436 * Creates a new phaser with the given parent, without any
437 * initially registered parties. If parent is non-null this phaser
438 * is registered with the parent and its initial phase number is
439 * the same as that of parent phaser.
440 *
441 * @param parent the parent phaser
442 */
443 public Phaser(Phaser parent) {
444 this(parent, 0);
445 }
446
447 /**
448 * Creates a new phaser with the given parent and number of
449 * registered unarrived parties. If parent is non-null, this phaser
450 * is registered with the parent and its initial phase number is
451 * the same as that of parent phaser.
452 *
453 * @param parent the parent phaser
454 * @param parties the number of parties required to trip barrier
455 * @throws IllegalArgumentException if parties less than zero
456 * or greater than the maximum number of parties supported
457 */
458 public Phaser(Phaser parent, int parties) {
459 if (parties < 0 || parties > MAX_COUNT)
460 throw new IllegalArgumentException("Illegal number of parties");
461 int phase;
462 this.parent = parent;
463 if (parent != null) {
464 Phaser r = parent.root;
465 this.root = r;
466 this.evenQ = r.evenQ;
467 this.oddQ = r.oddQ;
468 phase = parent.register();
469 }
470 else {
471 this.root = this;
472 this.evenQ = new AtomicReference<QNode>();
473 this.oddQ = new AtomicReference<QNode>();
474 phase = 0;
475 }
476 long p = (long)parties;
477 this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478 }
479
480 /**
481 * Adds a new unarrived party to this phaser.
482 * If an ongoing invocation of {@link #onAdvance} is in progress,
483 * this method may wait until its completion before registering.
484 *
485 * @return the arrival phase number to which this registration applied
486 * @throws IllegalStateException if attempting to register more
487 * than the maximum supported number of parties
488 */
489 public int register() {
490 return doRegister(1);
491 }
492
493 /**
494 * Adds the given number of new unarrived parties to this phaser.
495 * If an ongoing invocation of {@link #onAdvance} is in progress,
496 * this method may wait until its completion before registering.
497 *
498 * @param parties the number of additional parties required to trip barrier
499 * @return the arrival phase number to which this registration applied
500 * @throws IllegalStateException if attempting to register more
501 * than the maximum supported number of parties
502 * @throws IllegalArgumentException if {@code parties < 0}
503 */
504 public int bulkRegister(int parties) {
505 if (parties < 0)
506 throw new IllegalArgumentException();
507 if (parties > MAX_COUNT)
508 throw new IllegalStateException(badRegister(state));
509 if (parties == 0)
510 return getPhase();
511 return doRegister(parties);
512 }
513
514 /**
515 * Arrives at the barrier, but does not wait for others. (You can
516 * in turn wait for others via {@link #awaitAdvance}). It is an
517 * unenforced usage error for an unregistered party to invoke this
518 * method.
519 *
520 * @return the arrival phase number, or a negative value if terminated
521 * @throws IllegalStateException if not terminated and the number
522 * of unarrived parties would become negative
523 */
524 public int arrive() {
525 return doArrive(ONE_ARRIVAL);
526 }
527
528 /**
529 * Arrives at the barrier and deregisters from it without waiting
530 * for others. Deregistration reduces the number of parties
531 * required to trip the barrier in future phases. If this phaser
532 * has a parent, and deregistration causes this phaser to have
533 * zero parties, this phaser also arrives at and is deregistered
534 * from its parent. It is an unenforced usage error for an
535 * unregistered party to invoke this method.
536 *
537 * @return the arrival phase number, or a negative value if terminated
538 * @throws IllegalStateException if not terminated and the number
539 * of registered or unarrived parties would become negative
540 */
541 public int arriveAndDeregister() {
542 return doArrive(ONE_ARRIVAL|ONE_PARTY);
543 }
544
545 /**
546 * Arrives at the barrier and awaits others. Equivalent in effect
547 * to {@code awaitAdvance(arrive())}. If you need to await with
548 * interruption or timeout, you can arrange this with an analogous
549 * construction using one of the other forms of the {@code
550 * awaitAdvance} method. If instead you need to deregister upon
551 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
552 * usage error for an unregistered party to invoke this method.
553 *
554 * @return the arrival phase number, or a negative number if terminated
555 * @throws IllegalStateException if not terminated and the number
556 * of unarrived parties would become negative
557 */
558 public int arriveAndAwaitAdvance() {
559 return awaitAdvance(arrive());
560 }
561
562 /**
563 * Awaits the phase of the barrier to advance from the given phase
564 * value, returning immediately if the current phase of the
565 * barrier is not equal to the given phase value or this barrier
566 * is terminated.
567 *
568 * @param phase an arrival phase number, or negative value if
569 * terminated; this argument is normally the value returned by a
570 * previous call to {@code arrive} or its variants
571 * @return the next arrival phase number, or a negative value
572 * if terminated or argument is negative
573 */
574 public int awaitAdvance(int phase) {
575 if (phase < 0)
576 return phase;
577 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
578 if (p != phase)
579 return p;
580 return internalAwaitAdvance(phase, null);
581 }
582
583 /**
584 * Awaits the phase of the barrier to advance from the given phase
585 * value, throwing {@code InterruptedException} if interrupted
586 * while waiting, or returning immediately if the current phase of
587 * the barrier is not equal to the given phase value or this
588 * barrier is terminated.
589 *
590 * @param phase an arrival phase number, or negative value if
591 * terminated; this argument is normally the value returned by a
592 * previous call to {@code arrive} or its variants
593 * @return the next arrival phase number, or a negative value
594 * if terminated or argument is negative
595 * @throws InterruptedException if thread interrupted while waiting
596 */
597 public int awaitAdvanceInterruptibly(int phase)
598 throws InterruptedException {
599 if (phase < 0)
600 return phase;
601 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
602 if (p != phase)
603 return p;
604 QNode node = new QNode(this, phase, true, false, 0L);
605 p = internalAwaitAdvance(phase, node);
606 if (node.wasInterrupted)
607 throw new InterruptedException();
608 else
609 return p;
610 }
611
612 /**
613 * Awaits the phase of the barrier to advance from the given phase
614 * value or the given timeout to elapse, throwing {@code
615 * InterruptedException} if interrupted while waiting, or
616 * returning immediately if the current phase of the barrier is
617 * not equal to the given phase value or this barrier is
618 * terminated.
619 *
620 * @param phase an arrival phase number, or negative value if
621 * terminated; this argument is normally the value returned by a
622 * previous call to {@code arrive} or its variants
623 * @param timeout how long to wait before giving up, in units of
624 * {@code unit}
625 * @param unit a {@code TimeUnit} determining how to interpret the
626 * {@code timeout} parameter
627 * @return the next arrival phase number, or a negative value
628 * if terminated or argument is negative
629 * @throws InterruptedException if thread interrupted while waiting
630 * @throws TimeoutException if timed out while waiting
631 */
632 public int awaitAdvanceInterruptibly(int phase,
633 long timeout, TimeUnit unit)
634 throws InterruptedException, TimeoutException {
635 long nanos = unit.toNanos(timeout);
636 if (phase < 0)
637 return phase;
638 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
639 if (p != phase)
640 return p;
641 QNode node = new QNode(this, phase, true, true, nanos);
642 p = internalAwaitAdvance(phase, node);
643 if (node.wasInterrupted)
644 throw new InterruptedException();
645 else if (p == phase)
646 throw new TimeoutException();
647 else
648 return p;
649 }
650
651 /**
652 * Forces this barrier to enter termination state. Counts of
653 * arrived and registered parties are unaffected. If this phaser
654 * is a member of a tiered set of phasers, then all of the phasers
655 * in the set are terminated. If this phaser is already
656 * terminated, this method has no effect. This method may be
657 * useful for coordinating recovery after one or more tasks
658 * encounter unexpected exceptions.
659 */
660 public void forceTermination() {
661 // Only need to change root state
662 final Phaser root = this.root;
663 long s;
664 while ((s = root.state) >= 0) {
665 if (UNSAFE.compareAndSwapLong(root, stateOffset,
666 s, s | TERMINATION_PHASE)) {
667 releaseWaiters(0); // signal all threads
668 releaseWaiters(1);
669 return;
670 }
671 }
672 }
673
674 /**
675 * Returns the current phase number. The maximum phase number is
676 * {@code Integer.MAX_VALUE}, after which it restarts at
677 * zero. Upon termination, the phase number is negative.
678 *
679 * @return the phase number, or a negative value if terminated
680 */
681 public final int getPhase() {
682 return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
683 }
684
685 /**
686 * Returns the number of parties registered at this barrier.
687 *
688 * @return the number of parties
689 */
690 public int getRegisteredParties() {
691 return partiesOf(parent==null? state : reconcileState());
692 }
693
694 /**
695 * Returns the number of registered parties that have arrived at
696 * the current phase of this barrier.
697 *
698 * @return the number of arrived parties
699 */
700 public int getArrivedParties() {
701 return arrivedOf(parent==null? state : reconcileState());
702 }
703
704 /**
705 * Returns the number of registered parties that have not yet
706 * arrived at the current phase of this barrier.
707 *
708 * @return the number of unarrived parties
709 */
710 public int getUnarrivedParties() {
711 return unarrivedOf(parent==null? state : reconcileState());
712 }
713
714 /**
715 * Returns the parent of this phaser, or {@code null} if none.
716 *
717 * @return the parent of this phaser, or {@code null} if none
718 */
719 public Phaser getParent() {
720 return parent;
721 }
722
723 /**
724 * Returns the root ancestor of this phaser, which is the same as
725 * this phaser if it has no parent.
726 *
727 * @return the root ancestor of this phaser
728 */
729 public Phaser getRoot() {
730 return root;
731 }
732
733 /**
734 * Returns {@code true} if this barrier has been terminated.
735 *
736 * @return {@code true} if this barrier has been terminated
737 */
738 public boolean isTerminated() {
739 return (parent == null? state : reconcileState()) < 0;
740 }
741
742 /**
743 * Overridable method to perform an action upon impending phase
744 * advance, and to control termination. This method is invoked
745 * upon arrival of the party tripping the barrier (when all other
746 * waiting parties are dormant). If this method returns {@code
747 * true}, then, rather than advance the phase number, this barrier
748 * will be set to a final termination state, and subsequent calls
749 * to {@link #isTerminated} will return true. Any (unchecked)
750 * Exception or Error thrown by an invocation of this method is
751 * propagated to the party attempting to trip the barrier, in
752 * which case no advance occurs.
753 *
754 * <p>The arguments to this method provide the state of the phaser
755 * prevailing for the current transition. The effects of invoking
756 * arrival, registration, and waiting methods on this Phaser from
757 * within {@code onAdvance} are unspecified and should not be
758 * relied on.
759 *
760 * <p>If this Phaser is a member of a tiered set of Phasers, then
761 * {@code onAdvance} is invoked only for its root Phaser on each
762 * advance.
763 *
764 * <p>The default version returns {@code true} when the number of
765 * registered parties is zero. Normally, overrides that arrange
766 * termination for other reasons should also preserve this
767 * property.
768 *
769 * @param phase the phase number on entering the barrier
770 * @param registeredParties the current number of registered parties
771 * @return {@code true} if this barrier should terminate
772 */
773 protected boolean onAdvance(int phase, int registeredParties) {
774 return registeredParties <= 0;
775 }
776
777 /**
778 * Returns a string identifying this phaser, as well as its
779 * state. The state, in brackets, includes the String {@code
780 * "phase = "} followed by the phase number, {@code "parties = "}
781 * followed by the number of registered parties, and {@code
782 * "arrived = "} followed by the number of arrived parties.
783 *
784 * @return a string identifying this barrier, as well as its state
785 */
786 public String toString() {
787 return stateToString(reconcileState());
788 }
789
790 /**
791 * Implementation of toString and string-based error messages
792 */
793 private String stateToString(long s) {
794 return super.toString() +
795 "[phase = " + phaseOf(s) +
796 " parties = " + partiesOf(s) +
797 " arrived = " + arrivedOf(s) + "]";
798 }
799
800 // Waiting mechanics
801
802 /**
803 * Removes and signals threads from queue for phase
804 */
805 private void releaseWaiters(int phase) {
806 AtomicReference<QNode> head = queueFor(phase);
807 QNode q;
808 int p;
809 while ((q = head.get()) != null &&
810 ((p = q.phase) == phase ||
811 (int)(root.state >>> PHASE_SHIFT) != p)) {
812 if (head.compareAndSet(q, q.next))
813 q.signal();
814 }
815 }
816
817 /**
818 * Tries to enqueue given node in the appropriate wait queue.
819 *
820 * @return true if successful
821 */
822 private boolean tryEnqueue(int phase, QNode node) {
823 releaseWaiters(phase-1); // ensure old queue clean
824 AtomicReference<QNode> head = queueFor(phase);
825 QNode q = head.get();
826 return ((q == null || q.phase == phase) &&
827 (int)(root.state >>> PHASE_SHIFT) == phase &&
828 head.compareAndSet(node.next = q, node));
829 }
830
831 /** The number of CPUs, for spin control */
832 private static final int NCPU = Runtime.getRuntime().availableProcessors();
833
834 /**
835 * The number of times to spin before blocking while waiting for
836 * advance, per arrival while waiting. On multiprocessors, fully
837 * blocking and waking up a large number of threads all at once is
838 * usually a very slow process, so we use rechargeable spins to
839 * avoid it when threads regularly arrive: When a thread in
840 * internalAwaitAdvance notices another arrival before blocking,
841 * and there appear to be enough CPUs available, it spins
842 * SPINS_PER_ARRIVAL more times before continuing to try to
843 * block. The value trades off good-citizenship vs big unnecessary
844 * slowdowns.
845 */
846 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
847
848 /**
849 * Possibly blocks and waits for phase to advance unless aborted.
850 *
851 * @param phase current phase
852 * @param node if non-null, the wait node to track interrupt and timeout;
853 * if null, denotes noninterruptible wait
854 * @return current phase
855 */
856 private int internalAwaitAdvance(int phase, QNode node) {
857 Phaser current = this; // to eventually wait at root if tiered
858 boolean queued = false; // true when node is enqueued
859 int lastUnarrived = -1; // to increase spins upon change
860 int spins = SPINS_PER_ARRIVAL;
861 for (;;) {
862 int p, unarrived;
863 Phaser par;
864 long s = current.state;
865 if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
866 if (node != null)
867 node.onRelease();
868 releaseWaiters(phase);
869 return p;
870 }
871 else if ((unarrived = (int)(s & UNARRIVED_MASK)) != lastUnarrived) {
872 if ((lastUnarrived = unarrived) < NCPU)
873 spins += SPINS_PER_ARRIVAL;
874 }
875 else if (unarrived == 0 && (par = current.parent) != null) {
876 current = par; // if all arrived, use parent
877 par = par.parent;
878 lastUnarrived = -1;
879 }
880 else if (spins > 0)
881 --spins;
882 else if (node == null) // must be noninterruptible
883 node = new QNode(this, phase, false, false, 0L);
884 else if (node.isReleasable()) {
885 if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
886 return phase; // aborted
887 }
888 else if (!queued)
889 queued = tryEnqueue(phase, node);
890 else {
891 try {
892 ForkJoinPool.managedBlock(node);
893 } catch (InterruptedException ie) {
894 node.wasInterrupted = true;
895 }
896 }
897 }
898 }
899
900 /**
901 * Wait nodes for Treiber stack representing wait queue
902 */
903 static final class QNode implements ForkJoinPool.ManagedBlocker {
904 final Phaser phaser;
905 final int phase;
906 final boolean interruptible;
907 final boolean timed;
908 boolean wasInterrupted;
909 long nanos;
910 long lastTime;
911 volatile Thread thread; // nulled to cancel wait
912 QNode next;
913
914 QNode(Phaser phaser, int phase, boolean interruptible,
915 boolean timed, long nanos) {
916 this.phaser = phaser;
917 this.phase = phase;
918 this.interruptible = interruptible;
919 this.nanos = nanos;
920 this.timed = timed;
921 this.lastTime = timed? System.nanoTime() : 0L;
922 thread = Thread.currentThread();
923 }
924
925 public boolean isReleasable() {
926 Thread t = thread;
927 if (t != null) {
928 if (phaser.getPhase() != phase)
929 t = null;
930 else {
931 if (Thread.interrupted())
932 wasInterrupted = true;
933 if (interruptible && wasInterrupted)
934 t = null;
935 else if (timed) {
936 if (nanos > 0) {
937 long now = System.nanoTime();
938 nanos -= now - lastTime;
939 lastTime = now;
940 }
941 if (nanos <= 0)
942 t = null;
943 }
944 }
945 if (t != null)
946 return false;
947 thread = null;
948 }
949 return true;
950 }
951
952 public boolean block() {
953 if (isReleasable())
954 return true;
955 else if (!timed)
956 LockSupport.park(this);
957 else if (nanos > 0)
958 LockSupport.parkNanos(this, nanos);
959 return isReleasable();
960 }
961
962 void signal() {
963 Thread t = thread;
964 if (t != null) {
965 thread = null;
966 LockSupport.unpark(t);
967 }
968 }
969
970 void onRelease() { // actions upon return from internalAwaitAdvance
971 if (!interruptible && wasInterrupted)
972 Thread.currentThread().interrupt();
973 if (thread != null)
974 thread = null;
975 }
976
977 }
978
979 // Unsafe mechanics
980
981 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
982 private static final long stateOffset =
983 objectFieldOffset("state", Phaser.class);
984
985 private static long objectFieldOffset(String field, Class<?> klazz) {
986 try {
987 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
988 } catch (NoSuchFieldException e) {
989 // Convert Exception to corresponding Error
990 NoSuchFieldError error = new NoSuchFieldError(field);
991 error.initCause(e);
992 throw error;
993 }
994 }
995 }