ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.27
Committed: Thu Nov 18 07:51:21 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.26: +2 -3 lines
Log Message:
overflow-conscious code saves a test in doRegister

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_PARTIES = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final int UNARRIVED_MASK = 0xffff;
248 private static final int PARTIES_MASK = 0xffff0000;
249 private static final long LPARTIES_MASK = 0xffff0000L; // long version
250 private static final long ONE_ARRIVAL = 1L;
251 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
252 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
253
254 // The following unpacking methods are usually manually inlined
255
256 private static int unarrivedOf(long s) {
257 return (int)s & UNARRIVED_MASK;
258 }
259
260 private static int partiesOf(long s) {
261 return (int)s >>> PARTIES_SHIFT;
262 }
263
264 private static int phaseOf(long s) {
265 return (int) (s >>> PHASE_SHIFT);
266 }
267
268 private static int arrivedOf(long s) {
269 return partiesOf(s) - unarrivedOf(s);
270 }
271
272 /**
273 * The parent of this phaser, or null if none
274 */
275 private final Phaser parent;
276
277 /**
278 * The root of phaser tree. Equals this if not in a tree. Used to
279 * support faster state push-down.
280 */
281 private final Phaser root;
282
283 /**
284 * Heads of Treiber stacks for waiting threads. To eliminate
285 * contention when releasing some threads while adding others, we
286 * use two of them, alternating across even and odd phases.
287 * Subphasers share queues with root to speed up releases.
288 */
289 private final AtomicReference<QNode> evenQ;
290 private final AtomicReference<QNode> oddQ;
291
292 private AtomicReference<QNode> queueFor(int phase) {
293 return ((phase & 1) == 0) ? evenQ : oddQ;
294 }
295
296 /**
297 * Main implementation for methods arrive and arriveAndDeregister.
298 * Manually tuned to speed up and minimize race windows for the
299 * common case of just decrementing unarrived field.
300 *
301 * @param adj - adjustment to apply to state -- either
302 * ONE_ARRIVAL (for arrive) or
303 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304 */
305 private int doArrive(long adj) {
306 for (;;) {
307 long s;
308 int phase, unarrived;
309 if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
310 return phase;
311 else if ((unarrived = (int)s & UNARRIVED_MASK) == 0)
312 checkBadArrive(s);
313 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 if (unarrived == 1) {
315 Phaser par;
316 long p = s & LPARTIES_MASK; // unshifted parties field
317 long lu = p >>> PARTIES_SHIFT;
318 int u = (int)lu;
319 int nextPhase = (phase + 1) & MAX_PHASE;
320 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321 if ((par = parent) == null) {
322 if (onAdvance(phase, u))
323 next |= TERMINATION_PHASE; // obliterate phase
324 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 releaseWaiters(phase);
326 }
327 else {
328 par.doArrive(u == 0?
329 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 !UNSAFE.compareAndSwapLong(this, stateOffset,
333 s, next)))
334 reconcileState();
335 }
336 }
337 return phase;
338 }
339 }
340 }
341
342 /**
343 * Rechecks state and throws bounds exceptions on arrival -- called
344 * only if unarrived is apparently zero.
345 */
346 private void checkBadArrive(long s) {
347 if (reconcileState() == s)
348 throw new IllegalStateException
349 ("Attempted arrival of unregistered party for " +
350 stateToString(s));
351 }
352
353 /**
354 * Implementation of register, bulkRegister
355 *
356 * @param registrations number to add to both parties and unarrived fields
357 */
358 private int doRegister(int registrations) {
359 // assert registrations > 0;
360 // adjustment to state
361 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 final Phaser parent = this.parent;
363 for (;;) {
364 long s = (parent == null) ? state : reconcileState();
365 int phase = (int)(s >>> PHASE_SHIFT);
366 if (phase < 0)
367 return phase;
368 int parties = (int)s >>> PARTIES_SHIFT;
369 if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 internalAwaitAdvance(phase, null); // wait for onAdvance
371 else if (registrations > MAX_PARTIES - parties)
372 throw new IllegalStateException(badRegister(s));
373 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 return phase;
375 }
376 }
377
378 /**
379 * Returns message string for out of bounds exceptions on registration.
380 */
381 private String badRegister(long s) {
382 return "Attempt to register more than " +
383 MAX_PARTIES + " parties for " + stateToString(s);
384 }
385
386 /**
387 * Recursively resolves lagged phase propagation from root if necessary.
388 */
389 private long reconcileState() {
390 Phaser par = parent;
391 if (par == null)
392 return state;
393 Phaser rt = root;
394 for (;;) {
395 long s, u;
396 int phase, rPhase, pPhase;
397 if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
398 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
399 return s;
400 long pState = par.parent == null? par.state : par.reconcileState();
401 if (state == s) {
402 if ((rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) &&
403 ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
404 pPhase == ((phase + 1) & MAX_PHASE)))
405 UNSAFE.compareAndSwapLong
406 (this, stateOffset, s,
407 (((long) pPhase) << PHASE_SHIFT) |
408 (u = s & LPARTIES_MASK) |
409 (u >>> PARTIES_SHIFT)); // reset unarrived to parties
410 else
411 releaseWaiters(phase); // help release others
412 }
413 }
414 }
415
416 /**
417 * Creates a new phaser without any initially registered parties,
418 * initial phase number 0, and no parent. Any thread using this
419 * phaser will need to first register for it.
420 */
421 public Phaser() {
422 this(null, 0);
423 }
424
425 /**
426 * Creates a new phaser with the given number of registered
427 * unarrived parties, initial phase number 0, and no parent.
428 *
429 * @param parties the number of parties required to trip barrier
430 * @throws IllegalArgumentException if parties less than zero
431 * or greater than the maximum number of parties supported
432 */
433 public Phaser(int parties) {
434 this(null, parties);
435 }
436
437 /**
438 * Creates a new phaser with the given parent, without any
439 * initially registered parties. If parent is non-null this phaser
440 * is registered with the parent and its initial phase number is
441 * the same as that of parent phaser.
442 *
443 * @param parent the parent phaser
444 */
445 public Phaser(Phaser parent) {
446 this(parent, 0);
447 }
448
449 /**
450 * Creates a new phaser with the given parent and number of
451 * registered unarrived parties. If parent is non-null, this phaser
452 * is registered with the parent and its initial phase number is
453 * the same as that of parent phaser.
454 *
455 * @param parent the parent phaser
456 * @param parties the number of parties required to trip barrier
457 * @throws IllegalArgumentException if parties less than zero
458 * or greater than the maximum number of parties supported
459 */
460 public Phaser(Phaser parent, int parties) {
461 if (parties >>> PARTIES_SHIFT != 0)
462 throw new IllegalArgumentException("Illegal number of parties");
463 int phase;
464 this.parent = parent;
465 if (parent != null) {
466 Phaser r = parent.root;
467 this.root = r;
468 this.evenQ = r.evenQ;
469 this.oddQ = r.oddQ;
470 phase = parent.register();
471 }
472 else {
473 this.root = this;
474 this.evenQ = new AtomicReference<QNode>();
475 this.oddQ = new AtomicReference<QNode>();
476 phase = 0;
477 }
478 long p = (long)parties;
479 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
480 }
481
482 /**
483 * Adds a new unarrived party to this phaser.
484 * If an ongoing invocation of {@link #onAdvance} is in progress,
485 * this method may wait until its completion before registering.
486 *
487 * @return the arrival phase number to which this registration applied
488 * @throws IllegalStateException if attempting to register more
489 * than the maximum supported number of parties
490 */
491 public int register() {
492 return doRegister(1);
493 }
494
495 /**
496 * Adds the given number of new unarrived parties to this phaser.
497 * If an ongoing invocation of {@link #onAdvance} is in progress,
498 * this method may wait until its completion before registering.
499 *
500 * @param parties the number of additional parties required to trip barrier
501 * @return the arrival phase number to which this registration applied
502 * @throws IllegalStateException if attempting to register more
503 * than the maximum supported number of parties
504 * @throws IllegalArgumentException if {@code parties < 0}
505 */
506 public int bulkRegister(int parties) {
507 if (parties < 0)
508 throw new IllegalArgumentException();
509 if (parties == 0)
510 return getPhase();
511 return doRegister(parties);
512 }
513
514 /**
515 * Arrives at the barrier, but does not wait for others. (You can
516 * in turn wait for others via {@link #awaitAdvance}). It is an
517 * unenforced usage error for an unregistered party to invoke this
518 * method.
519 *
520 * @return the arrival phase number, or a negative value if terminated
521 * @throws IllegalStateException if not terminated and the number
522 * of unarrived parties would become negative
523 */
524 public int arrive() {
525 return doArrive(ONE_ARRIVAL);
526 }
527
528 /**
529 * Arrives at the barrier and deregisters from it without waiting
530 * for others. Deregistration reduces the number of parties
531 * required to trip the barrier in future phases. If this phaser
532 * has a parent, and deregistration causes this phaser to have
533 * zero parties, this phaser also arrives at and is deregistered
534 * from its parent. It is an unenforced usage error for an
535 * unregistered party to invoke this method.
536 *
537 * @return the arrival phase number, or a negative value if terminated
538 * @throws IllegalStateException if not terminated and the number
539 * of registered or unarrived parties would become negative
540 */
541 public int arriveAndDeregister() {
542 return doArrive(ONE_ARRIVAL|ONE_PARTY);
543 }
544
545 /**
546 * Arrives at the barrier and awaits others. Equivalent in effect
547 * to {@code awaitAdvance(arrive())}. If you need to await with
548 * interruption or timeout, you can arrange this with an analogous
549 * construction using one of the other forms of the {@code
550 * awaitAdvance} method. If instead you need to deregister upon
551 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
552 * usage error for an unregistered party to invoke this method.
553 *
554 * @return the arrival phase number, or a negative number if terminated
555 * @throws IllegalStateException if not terminated and the number
556 * of unarrived parties would become negative
557 */
558 public int arriveAndAwaitAdvance() {
559 return awaitAdvance(arrive());
560 }
561
562 /**
563 * Awaits the phase of the barrier to advance from the given phase
564 * value, returning immediately if the current phase of the
565 * barrier is not equal to the given phase value or this barrier
566 * is terminated.
567 *
568 * @param phase an arrival phase number, or negative value if
569 * terminated; this argument is normally the value returned by a
570 * previous call to {@code arrive} or its variants
571 * @return the next arrival phase number, or a negative value
572 * if terminated or argument is negative
573 */
574 public int awaitAdvance(int phase) {
575 int p;
576 if (phase < 0)
577 return phase;
578 else if ((p = (int)((parent == null? state : reconcileState())
579 >>> PHASE_SHIFT)) == phase)
580 return internalAwaitAdvance(phase, null);
581 else
582 return p;
583 }
584
585 /**
586 * Awaits the phase of the barrier to advance from the given phase
587 * value, throwing {@code InterruptedException} if interrupted
588 * while waiting, or returning immediately if the current phase of
589 * the barrier is not equal to the given phase value or this
590 * barrier is terminated.
591 *
592 * @param phase an arrival phase number, or negative value if
593 * terminated; this argument is normally the value returned by a
594 * previous call to {@code arrive} or its variants
595 * @return the next arrival phase number, or a negative value
596 * if terminated or argument is negative
597 * @throws InterruptedException if thread interrupted while waiting
598 */
599 public int awaitAdvanceInterruptibly(int phase)
600 throws InterruptedException {
601 int p;
602 if (phase < 0)
603 return phase;
604 if ((p = (int)((parent == null? state : reconcileState())
605 >>> PHASE_SHIFT)) == phase) {
606 QNode node = new QNode(this, phase, true, false, 0L);
607 p = internalAwaitAdvance(phase, node);
608 if (node.wasInterrupted)
609 throw new InterruptedException();
610 }
611 return p;
612 }
613
614 /**
615 * Awaits the phase of the barrier to advance from the given phase
616 * value or the given timeout to elapse, throwing {@code
617 * InterruptedException} if interrupted while waiting, or
618 * returning immediately if the current phase of the barrier is
619 * not equal to the given phase value or this barrier is
620 * terminated.
621 *
622 * @param phase an arrival phase number, or negative value if
623 * terminated; this argument is normally the value returned by a
624 * previous call to {@code arrive} or its variants
625 * @param timeout how long to wait before giving up, in units of
626 * {@code unit}
627 * @param unit a {@code TimeUnit} determining how to interpret the
628 * {@code timeout} parameter
629 * @return the next arrival phase number, or a negative value
630 * if terminated or argument is negative
631 * @throws InterruptedException if thread interrupted while waiting
632 * @throws TimeoutException if timed out while waiting
633 */
634 public int awaitAdvanceInterruptibly(int phase,
635 long timeout, TimeUnit unit)
636 throws InterruptedException, TimeoutException {
637 long nanos = unit.toNanos(timeout);
638 int p;
639 if (phase < 0)
640 return phase;
641 if ((p = (int)((parent == null? state : reconcileState())
642 >>> PHASE_SHIFT)) == phase) {
643 QNode node = new QNode(this, phase, true, true, nanos);
644 p = internalAwaitAdvance(phase, node);
645 if (node.wasInterrupted)
646 throw new InterruptedException();
647 else if (p == phase)
648 throw new TimeoutException();
649 }
650 return p;
651 }
652
653 /**
654 * Forces this barrier to enter termination state. Counts of
655 * arrived and registered parties are unaffected. If this phaser
656 * is a member of a tiered set of phasers, then all of the phasers
657 * in the set are terminated. If this phaser is already
658 * terminated, this method has no effect. This method may be
659 * useful for coordinating recovery after one or more tasks
660 * encounter unexpected exceptions.
661 */
662 public void forceTermination() {
663 // Only need to change root state
664 final Phaser root = this.root;
665 long s;
666 while ((s = root.state) >= 0) {
667 if (UNSAFE.compareAndSwapLong(root, stateOffset,
668 s, s | TERMINATION_PHASE)) {
669 releaseWaiters(0); // signal all threads
670 releaseWaiters(1);
671 return;
672 }
673 }
674 }
675
676 /**
677 * Returns the current phase number. The maximum phase number is
678 * {@code Integer.MAX_VALUE}, after which it restarts at
679 * zero. Upon termination, the phase number is negative.
680 *
681 * @return the phase number, or a negative value if terminated
682 */
683 public final int getPhase() {
684 return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
685 }
686
687 /**
688 * Returns the number of parties registered at this barrier.
689 *
690 * @return the number of parties
691 */
692 public int getRegisteredParties() {
693 return partiesOf(parent==null? state : reconcileState());
694 }
695
696 /**
697 * Returns the number of registered parties that have arrived at
698 * the current phase of this barrier.
699 *
700 * @return the number of arrived parties
701 */
702 public int getArrivedParties() {
703 return arrivedOf(parent==null? state : reconcileState());
704 }
705
706 /**
707 * Returns the number of registered parties that have not yet
708 * arrived at the current phase of this barrier.
709 *
710 * @return the number of unarrived parties
711 */
712 public int getUnarrivedParties() {
713 return unarrivedOf(parent==null? state : reconcileState());
714 }
715
716 /**
717 * Returns the parent of this phaser, or {@code null} if none.
718 *
719 * @return the parent of this phaser, or {@code null} if none
720 */
721 public Phaser getParent() {
722 return parent;
723 }
724
725 /**
726 * Returns the root ancestor of this phaser, which is the same as
727 * this phaser if it has no parent.
728 *
729 * @return the root ancestor of this phaser
730 */
731 public Phaser getRoot() {
732 return root;
733 }
734
735 /**
736 * Returns {@code true} if this barrier has been terminated.
737 *
738 * @return {@code true} if this barrier has been terminated
739 */
740 public boolean isTerminated() {
741 return (parent == null? state : reconcileState()) < 0;
742 }
743
744 /**
745 * Overridable method to perform an action upon impending phase
746 * advance, and to control termination. This method is invoked
747 * upon arrival of the party tripping the barrier (when all other
748 * waiting parties are dormant). If this method returns {@code
749 * true}, then, rather than advance the phase number, this barrier
750 * will be set to a final termination state, and subsequent calls
751 * to {@link #isTerminated} will return true. Any (unchecked)
752 * Exception or Error thrown by an invocation of this method is
753 * propagated to the party attempting to trip the barrier, in
754 * which case no advance occurs.
755 *
756 * <p>The arguments to this method provide the state of the phaser
757 * prevailing for the current transition. The effects of invoking
758 * arrival, registration, and waiting methods on this Phaser from
759 * within {@code onAdvance} are unspecified and should not be
760 * relied on.
761 *
762 * <p>If this Phaser is a member of a tiered set of Phasers, then
763 * {@code onAdvance} is invoked only for its root Phaser on each
764 * advance.
765 *
766 * <p>The default version returns {@code true} when the number of
767 * registered parties is zero. Normally, overrides that arrange
768 * termination for other reasons should also preserve this
769 * property.
770 *
771 * @param phase the phase number on entering the barrier
772 * @param registeredParties the current number of registered parties
773 * @return {@code true} if this barrier should terminate
774 */
775 protected boolean onAdvance(int phase, int registeredParties) {
776 return registeredParties <= 0;
777 }
778
779 /**
780 * Returns a string identifying this phaser, as well as its
781 * state. The state, in brackets, includes the String {@code
782 * "phase = "} followed by the phase number, {@code "parties = "}
783 * followed by the number of registered parties, and {@code
784 * "arrived = "} followed by the number of arrived parties.
785 *
786 * @return a string identifying this barrier, as well as its state
787 */
788 public String toString() {
789 return stateToString(reconcileState());
790 }
791
792 /**
793 * Implementation of toString and string-based error messages
794 */
795 private String stateToString(long s) {
796 return super.toString() +
797 "[phase = " + phaseOf(s) +
798 " parties = " + partiesOf(s) +
799 " arrived = " + arrivedOf(s) + "]";
800 }
801
802 // Waiting mechanics
803
804 /**
805 * Removes and signals threads from queue for phase
806 */
807 private void releaseWaiters(int phase) {
808 AtomicReference<QNode> head = queueFor(phase);
809 QNode q;
810 int p;
811 while ((q = head.get()) != null &&
812 ((p = q.phase) == phase ||
813 (int)(root.state >>> PHASE_SHIFT) != p)) {
814 if (head.compareAndSet(q, q.next))
815 q.signal();
816 }
817 }
818
819 /**
820 * Tries to enqueue given node in the appropriate wait queue.
821 *
822 * @return true if successful
823 */
824 private boolean tryEnqueue(int phase, QNode node) {
825 releaseWaiters(phase-1); // ensure old queue clean
826 AtomicReference<QNode> head = queueFor(phase);
827 QNode q = head.get();
828 return ((q == null || q.phase == phase) &&
829 (int)(root.state >>> PHASE_SHIFT) == phase &&
830 head.compareAndSet(node.next = q, node));
831 }
832
833 /** The number of CPUs, for spin control */
834 private static final int NCPU = Runtime.getRuntime().availableProcessors();
835
836 /**
837 * The number of times to spin before blocking while waiting for
838 * advance, per arrival while waiting. On multiprocessors, fully
839 * blocking and waking up a large number of threads all at once is
840 * usually a very slow process, so we use rechargeable spins to
841 * avoid it when threads regularly arrive: When a thread in
842 * internalAwaitAdvance notices another arrival before blocking,
843 * and there appear to be enough CPUs available, it spins
844 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
845 * uniprocessors, there is at least one intervening Thread.yield
846 * before blocking. The value trades off good-citizenship vs big
847 * unnecessary slowdowns.
848 */
849 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
850
851 /**
852 * Possibly blocks and waits for phase to advance unless aborted.
853 *
854 * @param phase current phase
855 * @param node if non-null, the wait node to track interrupt and timeout;
856 * if null, denotes noninterruptible wait
857 * @return current phase
858 */
859 private int internalAwaitAdvance(int phase, QNode node) {
860 Phaser current = this; // to eventually wait at root if tiered
861 boolean queued = false; // true when node is enqueued
862 int lastUnarrived = -1; // to increase spins upon change
863 int spins = SPINS_PER_ARRIVAL;
864 for (;;) {
865 int p, unarrived;
866 Phaser par;
867 long s = current.state;
868 if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
869 if (node != null)
870 node.onRelease();
871 releaseWaiters(phase);
872 return p;
873 }
874 else if ((unarrived = (int)s & UNARRIVED_MASK) == 0 &&
875 (par = current.parent) != null) {
876 current = par; // if all arrived, use parent
877 par = par.parent;
878 lastUnarrived = -1;
879 }
880 else if (unarrived != lastUnarrived) {
881 if ((lastUnarrived = unarrived) < NCPU)
882 spins += SPINS_PER_ARRIVAL;
883 }
884 else if (spins > 0) {
885 if (--spins == (SPINS_PER_ARRIVAL >>> 1))
886 Thread.yield(); // yield midway through spin
887 }
888 else if (node == null) // must be noninterruptible
889 node = new QNode(this, phase, false, false, 0L);
890 else if (node.isReleasable()) {
891 if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
892 return phase; // aborted
893 }
894 else if (!queued)
895 queued = tryEnqueue(phase, node);
896 else {
897 try {
898 ForkJoinPool.managedBlock(node);
899 } catch (InterruptedException ie) {
900 node.wasInterrupted = true;
901 }
902 }
903 }
904 }
905
906 /**
907 * Wait nodes for Treiber stack representing wait queue
908 */
909 static final class QNode implements ForkJoinPool.ManagedBlocker {
910 final Phaser phaser;
911 final int phase;
912 final boolean interruptible;
913 final boolean timed;
914 boolean wasInterrupted;
915 long nanos;
916 long lastTime;
917 volatile Thread thread; // nulled to cancel wait
918 QNode next;
919
920 QNode(Phaser phaser, int phase, boolean interruptible,
921 boolean timed, long nanos) {
922 this.phaser = phaser;
923 this.phase = phase;
924 this.interruptible = interruptible;
925 this.nanos = nanos;
926 this.timed = timed;
927 this.lastTime = timed? System.nanoTime() : 0L;
928 thread = Thread.currentThread();
929 }
930
931 public boolean isReleasable() {
932 Thread t = thread;
933 if (t != null) {
934 if (phaser.getPhase() != phase)
935 t = null;
936 else {
937 if (Thread.interrupted())
938 wasInterrupted = true;
939 if (interruptible && wasInterrupted)
940 t = null;
941 else if (timed) {
942 if (nanos > 0) {
943 long now = System.nanoTime();
944 nanos -= now - lastTime;
945 lastTime = now;
946 }
947 if (nanos <= 0)
948 t = null;
949 }
950 }
951 if (t != null)
952 return false;
953 thread = null;
954 }
955 return true;
956 }
957
958 public boolean block() {
959 if (isReleasable())
960 return true;
961 else if (!timed)
962 LockSupport.park(this);
963 else if (nanos > 0)
964 LockSupport.parkNanos(this, nanos);
965 return isReleasable();
966 }
967
968 void signal() {
969 Thread t = thread;
970 if (t != null) {
971 thread = null;
972 LockSupport.unpark(t);
973 }
974 }
975
976 void onRelease() { // actions upon return from internalAwaitAdvance
977 if (!interruptible && wasInterrupted)
978 Thread.currentThread().interrupt();
979 if (thread != null)
980 thread = null;
981 }
982
983 }
984
985 // Unsafe mechanics
986
987 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
988 private static final long stateOffset =
989 objectFieldOffset("state", Phaser.class);
990
991 private static long objectFieldOffset(String field, Class<?> klazz) {
992 try {
993 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
994 } catch (NoSuchFieldException e) {
995 // Convert Exception to corresponding Error
996 NoSuchFieldError error = new NoSuchFieldError(field);
997 error.initCause(e);
998 throw error;
999 }
1000 }
1001 }