ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.29
Committed: Fri Nov 19 07:41:22 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.28: +10 -13 lines
Log Message:
simplify awaitAdvance methods

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_PARTIES = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final int UNARRIVED_MASK = 0xffff;
248 private static final int PARTIES_MASK = 0xffff0000;
249 private static final long LPARTIES_MASK = 0xffff0000L; // long version
250 private static final long ONE_ARRIVAL = 1L;
251 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
252 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
253
254 // The following unpacking methods are usually manually inlined
255
256 private static int unarrivedOf(long s) {
257 return (int)s & UNARRIVED_MASK;
258 }
259
260 private static int partiesOf(long s) {
261 return (int)s >>> PARTIES_SHIFT;
262 }
263
264 private static int phaseOf(long s) {
265 return (int) (s >>> PHASE_SHIFT);
266 }
267
268 private static int arrivedOf(long s) {
269 return partiesOf(s) - unarrivedOf(s);
270 }
271
272 /**
273 * The parent of this phaser, or null if none
274 */
275 private final Phaser parent;
276
277 /**
278 * The root of phaser tree. Equals this if not in a tree. Used to
279 * support faster state push-down.
280 */
281 private final Phaser root;
282
283 /**
284 * Heads of Treiber stacks for waiting threads. To eliminate
285 * contention when releasing some threads while adding others, we
286 * use two of them, alternating across even and odd phases.
287 * Subphasers share queues with root to speed up releases.
288 */
289 private final AtomicReference<QNode> evenQ;
290 private final AtomicReference<QNode> oddQ;
291
292 private AtomicReference<QNode> queueFor(int phase) {
293 return ((phase & 1) == 0) ? evenQ : oddQ;
294 }
295
296 /**
297 * Main implementation for methods arrive and arriveAndDeregister.
298 * Manually tuned to speed up and minimize race windows for the
299 * common case of just decrementing unarrived field.
300 *
301 * @param adj - adjustment to apply to state -- either
302 * ONE_ARRIVAL (for arrive) or
303 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304 */
305 private int doArrive(long adj) {
306 for (;;) {
307 long s = state;
308 int phase = (int)(s >>> PHASE_SHIFT);
309 if (phase < 0)
310 return phase;
311 int unarrived = (int)s & UNARRIVED_MASK;
312 if (unarrived == 0)
313 checkBadArrive(s);
314 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
315 if (unarrived == 1) {
316 long p = s & LPARTIES_MASK; // unshifted parties field
317 long lu = p >>> PARTIES_SHIFT;
318 int u = (int)lu;
319 int nextPhase = (phase + 1) & MAX_PHASE;
320 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321 final Phaser parent = this.parent;
322 if (parent == null) {
323 if (onAdvance(phase, u))
324 next |= TERMINATION_PHASE; // obliterate phase
325 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
326 releaseWaiters(phase);
327 }
328 else {
329 parent.doArrive((u == 0) ?
330 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
331 if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
332 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
333 !UNSAFE.compareAndSwapLong(this, stateOffset,
334 s, next)))
335 reconcileState();
336 }
337 }
338 return phase;
339 }
340 }
341 }
342
343 /**
344 * Rechecks state and throws bounds exceptions on arrival -- called
345 * only if unarrived is apparently zero.
346 */
347 private void checkBadArrive(long s) {
348 if (reconcileState() == s)
349 throw new IllegalStateException
350 ("Attempted arrival of unregistered party for " +
351 stateToString(s));
352 }
353
354 /**
355 * Implementation of register, bulkRegister
356 *
357 * @param registrations number to add to both parties and unarrived fields
358 */
359 private int doRegister(int registrations) {
360 // assert registrations > 0;
361 // adjustment to state
362 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
363 final Phaser parent = this.parent;
364 for (;;) {
365 long s = (parent == null) ? state : reconcileState();
366 int phase = (int)(s >>> PHASE_SHIFT);
367 if (phase < 0)
368 return phase;
369 int parties = (int)s >>> PARTIES_SHIFT;
370 if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
371 internalAwaitAdvance(phase, null); // wait for onAdvance
372 else if (registrations > MAX_PARTIES - parties)
373 throw new IllegalStateException(badRegister(s));
374 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
375 return phase;
376 }
377 }
378
379 /**
380 * Returns message string for out of bounds exceptions on registration.
381 */
382 private String badRegister(long s) {
383 return "Attempt to register more than " +
384 MAX_PARTIES + " parties for " + stateToString(s);
385 }
386
387 /**
388 * Recursively resolves lagged phase propagation from root if necessary.
389 */
390 private long reconcileState() {
391 Phaser par = parent;
392 if (par == null)
393 return state;
394 Phaser rt = root;
395 for (;;) {
396 long s, u;
397 int phase, rPhase, pPhase;
398 if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
399 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
400 return s;
401 long pState = par.parent == null? par.state : par.reconcileState();
402 if (state == s) {
403 if ((rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) &&
404 ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
405 pPhase == ((phase + 1) & MAX_PHASE)))
406 UNSAFE.compareAndSwapLong
407 (this, stateOffset, s,
408 (((long) pPhase) << PHASE_SHIFT) |
409 (u = s & LPARTIES_MASK) |
410 (u >>> PARTIES_SHIFT)); // reset unarrived to parties
411 else
412 releaseWaiters(phase); // help release others
413 }
414 }
415 }
416
417 /**
418 * Creates a new phaser without any initially registered parties,
419 * initial phase number 0, and no parent. Any thread using this
420 * phaser will need to first register for it.
421 */
422 public Phaser() {
423 this(null, 0);
424 }
425
426 /**
427 * Creates a new phaser with the given number of registered
428 * unarrived parties, initial phase number 0, and no parent.
429 *
430 * @param parties the number of parties required to trip barrier
431 * @throws IllegalArgumentException if parties less than zero
432 * or greater than the maximum number of parties supported
433 */
434 public Phaser(int parties) {
435 this(null, parties);
436 }
437
438 /**
439 * Creates a new phaser with the given parent, without any
440 * initially registered parties. If parent is non-null this phaser
441 * is registered with the parent and its initial phase number is
442 * the same as that of parent phaser.
443 *
444 * @param parent the parent phaser
445 */
446 public Phaser(Phaser parent) {
447 this(parent, 0);
448 }
449
450 /**
451 * Creates a new phaser with the given parent and number of
452 * registered unarrived parties. If parent is non-null, this phaser
453 * is registered with the parent and its initial phase number is
454 * the same as that of parent phaser.
455 *
456 * @param parent the parent phaser
457 * @param parties the number of parties required to trip barrier
458 * @throws IllegalArgumentException if parties less than zero
459 * or greater than the maximum number of parties supported
460 */
461 public Phaser(Phaser parent, int parties) {
462 if (parties >>> PARTIES_SHIFT != 0)
463 throw new IllegalArgumentException("Illegal number of parties");
464 int phase;
465 this.parent = parent;
466 if (parent != null) {
467 Phaser r = parent.root;
468 this.root = r;
469 this.evenQ = r.evenQ;
470 this.oddQ = r.oddQ;
471 phase = parent.register();
472 }
473 else {
474 this.root = this;
475 this.evenQ = new AtomicReference<QNode>();
476 this.oddQ = new AtomicReference<QNode>();
477 phase = 0;
478 }
479 long p = (long)parties;
480 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
481 }
482
483 /**
484 * Adds a new unarrived party to this phaser.
485 * If an ongoing invocation of {@link #onAdvance} is in progress,
486 * this method may wait until its completion before registering.
487 *
488 * @return the arrival phase number to which this registration applied
489 * @throws IllegalStateException if attempting to register more
490 * than the maximum supported number of parties
491 */
492 public int register() {
493 return doRegister(1);
494 }
495
496 /**
497 * Adds the given number of new unarrived parties to this phaser.
498 * If an ongoing invocation of {@link #onAdvance} is in progress,
499 * this method may wait until its completion before registering.
500 *
501 * @param parties the number of additional parties required to trip barrier
502 * @return the arrival phase number to which this registration applied
503 * @throws IllegalStateException if attempting to register more
504 * than the maximum supported number of parties
505 * @throws IllegalArgumentException if {@code parties < 0}
506 */
507 public int bulkRegister(int parties) {
508 if (parties < 0)
509 throw new IllegalArgumentException();
510 if (parties == 0)
511 return getPhase();
512 return doRegister(parties);
513 }
514
515 /**
516 * Arrives at the barrier, but does not wait for others. (You can
517 * in turn wait for others via {@link #awaitAdvance}). It is an
518 * unenforced usage error for an unregistered party to invoke this
519 * method.
520 *
521 * @return the arrival phase number, or a negative value if terminated
522 * @throws IllegalStateException if not terminated and the number
523 * of unarrived parties would become negative
524 */
525 public int arrive() {
526 return doArrive(ONE_ARRIVAL);
527 }
528
529 /**
530 * Arrives at the barrier and deregisters from it without waiting
531 * for others. Deregistration reduces the number of parties
532 * required to trip the barrier in future phases. If this phaser
533 * has a parent, and deregistration causes this phaser to have
534 * zero parties, this phaser also arrives at and is deregistered
535 * from its parent. It is an unenforced usage error for an
536 * unregistered party to invoke this method.
537 *
538 * @return the arrival phase number, or a negative value if terminated
539 * @throws IllegalStateException if not terminated and the number
540 * of registered or unarrived parties would become negative
541 */
542 public int arriveAndDeregister() {
543 return doArrive(ONE_ARRIVAL|ONE_PARTY);
544 }
545
546 /**
547 * Arrives at the barrier and awaits others. Equivalent in effect
548 * to {@code awaitAdvance(arrive())}. If you need to await with
549 * interruption or timeout, you can arrange this with an analogous
550 * construction using one of the other forms of the {@code
551 * awaitAdvance} method. If instead you need to deregister upon
552 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 * usage error for an unregistered party to invoke this method.
554 *
555 * @return the arrival phase number, or a negative number if terminated
556 * @throws IllegalStateException if not terminated and the number
557 * of unarrived parties would become negative
558 */
559 public int arriveAndAwaitAdvance() {
560 return awaitAdvance(arrive());
561 }
562
563 /**
564 * Awaits the phase of the barrier to advance from the given phase
565 * value, returning immediately if the current phase of the
566 * barrier is not equal to the given phase value or this barrier
567 * is terminated.
568 *
569 * @param phase an arrival phase number, or negative value if
570 * terminated; this argument is normally the value returned by a
571 * previous call to {@code arrive} or its variants
572 * @return the next arrival phase number, or a negative value
573 * if terminated or argument is negative
574 */
575 public int awaitAdvance(int phase) {
576 if (phase < 0)
577 return phase;
578 long s = (parent == null) ? state : reconcileState();
579 int p = (int)(s >>> PHASE_SHIFT);
580 return (p != phase) ? p : internalAwaitAdvance(phase, null);
581 }
582
583 /**
584 * Awaits the phase of the barrier to advance from the given phase
585 * value, throwing {@code InterruptedException} if interrupted
586 * while waiting, or returning immediately if the current phase of
587 * the barrier is not equal to the given phase value or this
588 * barrier is terminated.
589 *
590 * @param phase an arrival phase number, or negative value if
591 * terminated; this argument is normally the value returned by a
592 * previous call to {@code arrive} or its variants
593 * @return the next arrival phase number, or a negative value
594 * if terminated or argument is negative
595 * @throws InterruptedException if thread interrupted while waiting
596 */
597 public int awaitAdvanceInterruptibly(int phase)
598 throws InterruptedException {
599 if (phase < 0)
600 return phase;
601 long s = (parent == null) ? state : reconcileState();
602 int p = (int)(s >>> PHASE_SHIFT);
603 if (p == phase) {
604 QNode node = new QNode(this, phase, true, false, 0L);
605 p = internalAwaitAdvance(phase, node);
606 if (node.wasInterrupted)
607 throw new InterruptedException();
608 }
609 return p;
610 }
611
612 /**
613 * Awaits the phase of the barrier to advance from the given phase
614 * value or the given timeout to elapse, throwing {@code
615 * InterruptedException} if interrupted while waiting, or
616 * returning immediately if the current phase of the barrier is
617 * not equal to the given phase value or this barrier is
618 * terminated.
619 *
620 * @param phase an arrival phase number, or negative value if
621 * terminated; this argument is normally the value returned by a
622 * previous call to {@code arrive} or its variants
623 * @param timeout how long to wait before giving up, in units of
624 * {@code unit}
625 * @param unit a {@code TimeUnit} determining how to interpret the
626 * {@code timeout} parameter
627 * @return the next arrival phase number, or a negative value
628 * if terminated or argument is negative
629 * @throws InterruptedException if thread interrupted while waiting
630 * @throws TimeoutException if timed out while waiting
631 */
632 public int awaitAdvanceInterruptibly(int phase,
633 long timeout, TimeUnit unit)
634 throws InterruptedException, TimeoutException {
635 if (phase < 0)
636 return phase;
637 long s = (parent == null) ? state : reconcileState();
638 int p = (int)(s >>> PHASE_SHIFT);
639 if (p == phase) {
640 long nanos = unit.toNanos(timeout);
641 QNode node = new QNode(this, phase, true, true, nanos);
642 p = internalAwaitAdvance(phase, node);
643 if (node.wasInterrupted)
644 throw new InterruptedException();
645 else if (p == phase)
646 throw new TimeoutException();
647 }
648 return p;
649 }
650
651 /**
652 * Forces this barrier to enter termination state. Counts of
653 * arrived and registered parties are unaffected. If this phaser
654 * is a member of a tiered set of phasers, then all of the phasers
655 * in the set are terminated. If this phaser is already
656 * terminated, this method has no effect. This method may be
657 * useful for coordinating recovery after one or more tasks
658 * encounter unexpected exceptions.
659 */
660 public void forceTermination() {
661 // Only need to change root state
662 final Phaser root = this.root;
663 long s;
664 while ((s = root.state) >= 0) {
665 if (UNSAFE.compareAndSwapLong(root, stateOffset,
666 s, s | TERMINATION_PHASE)) {
667 releaseWaiters(0); // signal all threads
668 releaseWaiters(1);
669 return;
670 }
671 }
672 }
673
674 /**
675 * Returns the current phase number. The maximum phase number is
676 * {@code Integer.MAX_VALUE}, after which it restarts at
677 * zero. Upon termination, the phase number is negative.
678 *
679 * @return the phase number, or a negative value if terminated
680 */
681 public final int getPhase() {
682 return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
683 }
684
685 /**
686 * Returns the number of parties registered at this barrier.
687 *
688 * @return the number of parties
689 */
690 public int getRegisteredParties() {
691 return partiesOf(parent==null? state : reconcileState());
692 }
693
694 /**
695 * Returns the number of registered parties that have arrived at
696 * the current phase of this barrier.
697 *
698 * @return the number of arrived parties
699 */
700 public int getArrivedParties() {
701 return arrivedOf(parent==null? state : reconcileState());
702 }
703
704 /**
705 * Returns the number of registered parties that have not yet
706 * arrived at the current phase of this barrier.
707 *
708 * @return the number of unarrived parties
709 */
710 public int getUnarrivedParties() {
711 return unarrivedOf(parent==null? state : reconcileState());
712 }
713
714 /**
715 * Returns the parent of this phaser, or {@code null} if none.
716 *
717 * @return the parent of this phaser, or {@code null} if none
718 */
719 public Phaser getParent() {
720 return parent;
721 }
722
723 /**
724 * Returns the root ancestor of this phaser, which is the same as
725 * this phaser if it has no parent.
726 *
727 * @return the root ancestor of this phaser
728 */
729 public Phaser getRoot() {
730 return root;
731 }
732
733 /**
734 * Returns {@code true} if this barrier has been terminated.
735 *
736 * @return {@code true} if this barrier has been terminated
737 */
738 public boolean isTerminated() {
739 return (parent == null? state : reconcileState()) < 0;
740 }
741
742 /**
743 * Overridable method to perform an action upon impending phase
744 * advance, and to control termination. This method is invoked
745 * upon arrival of the party tripping the barrier (when all other
746 * waiting parties are dormant). If this method returns {@code
747 * true}, then, rather than advance the phase number, this barrier
748 * will be set to a final termination state, and subsequent calls
749 * to {@link #isTerminated} will return true. Any (unchecked)
750 * Exception or Error thrown by an invocation of this method is
751 * propagated to the party attempting to trip the barrier, in
752 * which case no advance occurs.
753 *
754 * <p>The arguments to this method provide the state of the phaser
755 * prevailing for the current transition. The effects of invoking
756 * arrival, registration, and waiting methods on this Phaser from
757 * within {@code onAdvance} are unspecified and should not be
758 * relied on.
759 *
760 * <p>If this Phaser is a member of a tiered set of Phasers, then
761 * {@code onAdvance} is invoked only for its root Phaser on each
762 * advance.
763 *
764 * <p>The default version returns {@code true} when the number of
765 * registered parties is zero. Normally, overrides that arrange
766 * termination for other reasons should also preserve this
767 * property.
768 *
769 * @param phase the phase number on entering the barrier
770 * @param registeredParties the current number of registered parties
771 * @return {@code true} if this barrier should terminate
772 */
773 protected boolean onAdvance(int phase, int registeredParties) {
774 return registeredParties <= 0;
775 }
776
777 /**
778 * Returns a string identifying this phaser, as well as its
779 * state. The state, in brackets, includes the String {@code
780 * "phase = "} followed by the phase number, {@code "parties = "}
781 * followed by the number of registered parties, and {@code
782 * "arrived = "} followed by the number of arrived parties.
783 *
784 * @return a string identifying this barrier, as well as its state
785 */
786 public String toString() {
787 return stateToString(reconcileState());
788 }
789
790 /**
791 * Implementation of toString and string-based error messages
792 */
793 private String stateToString(long s) {
794 return super.toString() +
795 "[phase = " + phaseOf(s) +
796 " parties = " + partiesOf(s) +
797 " arrived = " + arrivedOf(s) + "]";
798 }
799
800 // Waiting mechanics
801
802 /**
803 * Removes and signals threads from queue for phase
804 */
805 private void releaseWaiters(int phase) {
806 AtomicReference<QNode> head = queueFor(phase);
807 QNode q;
808 int p;
809 while ((q = head.get()) != null &&
810 ((p = q.phase) == phase ||
811 (int)(root.state >>> PHASE_SHIFT) != p)) {
812 if (head.compareAndSet(q, q.next))
813 q.signal();
814 }
815 }
816
817 /**
818 * Tries to enqueue given node in the appropriate wait queue.
819 *
820 * @return true if successful
821 */
822 private boolean tryEnqueue(int phase, QNode node) {
823 releaseWaiters(phase-1); // ensure old queue clean
824 AtomicReference<QNode> head = queueFor(phase);
825 QNode q = head.get();
826 return ((q == null || q.phase == phase) &&
827 (int)(root.state >>> PHASE_SHIFT) == phase &&
828 head.compareAndSet(node.next = q, node));
829 }
830
831 /** The number of CPUs, for spin control */
832 private static final int NCPU = Runtime.getRuntime().availableProcessors();
833
834 /**
835 * The number of times to spin before blocking while waiting for
836 * advance, per arrival while waiting. On multiprocessors, fully
837 * blocking and waking up a large number of threads all at once is
838 * usually a very slow process, so we use rechargeable spins to
839 * avoid it when threads regularly arrive: When a thread in
840 * internalAwaitAdvance notices another arrival before blocking,
841 * and there appear to be enough CPUs available, it spins
842 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
843 * uniprocessors, there is at least one intervening Thread.yield
844 * before blocking. The value trades off good-citizenship vs big
845 * unnecessary slowdowns.
846 */
847 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
848
849 /**
850 * Possibly blocks and waits for phase to advance unless aborted.
851 *
852 * @param phase current phase
853 * @param node if non-null, the wait node to track interrupt and timeout;
854 * if null, denotes noninterruptible wait
855 * @return current phase
856 */
857 private int internalAwaitAdvance(int phase, QNode node) {
858 Phaser current = this; // to eventually wait at root if tiered
859 boolean queued = false; // true when node is enqueued
860 int lastUnarrived = -1; // to increase spins upon change
861 int spins = SPINS_PER_ARRIVAL;
862 for (;;) {
863 int p, unarrived;
864 Phaser par;
865 long s = current.state;
866 if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
867 if (node != null)
868 node.onRelease();
869 releaseWaiters(phase);
870 return p;
871 }
872 else if ((unarrived = (int)s & UNARRIVED_MASK) == 0 &&
873 (par = current.parent) != null) {
874 current = par; // if all arrived, use parent
875 par = par.parent;
876 lastUnarrived = -1;
877 }
878 else if (unarrived != lastUnarrived) {
879 if ((lastUnarrived = unarrived) < NCPU)
880 spins += SPINS_PER_ARRIVAL;
881 }
882 else if (spins > 0) {
883 if (--spins == (SPINS_PER_ARRIVAL >>> 1))
884 Thread.yield(); // yield midway through spin
885 }
886 else if (node == null) // must be noninterruptible
887 node = new QNode(this, phase, false, false, 0L);
888 else if (node.isReleasable()) {
889 if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
890 return phase; // aborted
891 }
892 else if (!queued)
893 queued = tryEnqueue(phase, node);
894 else {
895 try {
896 ForkJoinPool.managedBlock(node);
897 } catch (InterruptedException ie) {
898 node.wasInterrupted = true;
899 }
900 }
901 }
902 }
903
904 /**
905 * Wait nodes for Treiber stack representing wait queue
906 */
907 static final class QNode implements ForkJoinPool.ManagedBlocker {
908 final Phaser phaser;
909 final int phase;
910 final boolean interruptible;
911 final boolean timed;
912 boolean wasInterrupted;
913 long nanos;
914 long lastTime;
915 volatile Thread thread; // nulled to cancel wait
916 QNode next;
917
918 QNode(Phaser phaser, int phase, boolean interruptible,
919 boolean timed, long nanos) {
920 this.phaser = phaser;
921 this.phase = phase;
922 this.interruptible = interruptible;
923 this.nanos = nanos;
924 this.timed = timed;
925 this.lastTime = timed? System.nanoTime() : 0L;
926 thread = Thread.currentThread();
927 }
928
929 public boolean isReleasable() {
930 Thread t = thread;
931 if (t != null) {
932 if (phaser.getPhase() != phase)
933 t = null;
934 else {
935 if (Thread.interrupted())
936 wasInterrupted = true;
937 if (interruptible && wasInterrupted)
938 t = null;
939 else if (timed) {
940 if (nanos > 0) {
941 long now = System.nanoTime();
942 nanos -= now - lastTime;
943 lastTime = now;
944 }
945 if (nanos <= 0)
946 t = null;
947 }
948 }
949 if (t != null)
950 return false;
951 thread = null;
952 }
953 return true;
954 }
955
956 public boolean block() {
957 if (isReleasable())
958 return true;
959 else if (!timed)
960 LockSupport.park(this);
961 else if (nanos > 0)
962 LockSupport.parkNanos(this, nanos);
963 return isReleasable();
964 }
965
966 void signal() {
967 Thread t = thread;
968 if (t != null) {
969 thread = null;
970 LockSupport.unpark(t);
971 }
972 }
973
974 void onRelease() { // actions upon return from internalAwaitAdvance
975 if (!interruptible && wasInterrupted)
976 Thread.currentThread().interrupt();
977 if (thread != null)
978 thread = null;
979 }
980
981 }
982
983 // Unsafe mechanics
984
985 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
986 private static final long stateOffset =
987 objectFieldOffset("state", Phaser.class);
988
989 private static long objectFieldOffset(String field, Class<?> klazz) {
990 try {
991 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
992 } catch (NoSuchFieldException e) {
993 // Convert Exception to corresponding Error
994 NoSuchFieldError error = new NoSuchFieldError(field);
995 error.initCause(e);
996 throw error;
997 }
998 }
999 }