ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.3
Committed: Sun Jul 26 17:48:58 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +12 -12 lines
Log Message:
sync with jsr166y package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.atomic.AtomicReference;
10 import java.util.concurrent.locks.LockSupport;
11
12 /**
13 * A reusable synchronization barrier, similar in functionality to a
14 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16 * but supporting more flexible usage.
17 *
18 * <ul>
19 *
20 * <li> The number of parties synchronizing on a phaser may vary over
21 * time. A task may register to be a party at any time, and may
22 * deregister upon arriving at the barrier. As is the case with most
23 * basic synchronization constructs, registration and deregistration
24 * affect only internal counts; they do not establish any further
25 * internal bookkeeping, so tasks cannot query whether they are
26 * registered. (However, you can introduce such bookkeeping by
27 * subclassing this class.)
28 *
29 * <li> Each generation has an associated phase value, starting at
30 * zero, and advancing when all parties reach the barrier (wrapping
31 * around to zero after reaching {@code Integer.MAX_VALUE}).
32 *
33 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
34 * Method {@code arriveAndAwaitAdvance} has effect analogous to
35 * {@code CyclicBarrier.await}. However, Phasers separate two
36 * aspects of coordination, that may also be invoked independently:
37 *
38 * <ul>
39 *
40 * <li> Arriving at a barrier. Methods {@code arrive} and
41 * {@code arriveAndDeregister} do not block, but return
42 * the phase value current upon entry to the method.
43 *
44 * <li> Awaiting others. Method {@code awaitAdvance} requires an
45 * argument indicating the entry phase, and returns when the
46 * barrier advances to a new phase.
47 * </ul>
48 *
49 *
50 * <li> Barrier actions, performed by the task triggering a phase
51 * advance while others may be waiting, are arranged by overriding
52 * method {@code onAdvance}, that also controls termination.
53 * Overriding this method may be used to similar but more flexible
54 * effect as providing a barrier action to a CyclicBarrier.
55 *
56 * <li> Phasers may enter a <em>termination</em> state in which all
57 * actions immediately return without updating phaser state or waiting
58 * for advance, and indicating (via a negative phase value) that
59 * execution is complete. Termination is triggered by executing the
60 * overridable {@code onAdvance} method that is invoked each time the
61 * barrier is about to be tripped. When a Phaser is controlling an
62 * action with a fixed number of iterations, it is often convenient to
63 * override this method to cause termination when the current phase
64 * number reaches a threshold. Method {@code forceTermination} is also
65 * available to abruptly release waiting threads and allow them to
66 * terminate.
67 *
68 * <li> Phasers may be tiered to reduce contention. Phasers with large
69 * numbers of parties that would otherwise experience heavy
70 * synchronization contention costs may instead be arranged in trees.
71 * This will typically greatly increase throughput even though it
72 * incurs somewhat greater per-operation overhead.
73 *
74 * <li> By default, {@code awaitAdvance} continues to wait even if
75 * the waiting thread is interrupted. And unlike the case in
76 * CyclicBarriers, exceptions encountered while tasks wait
77 * interruptibly or with timeout do not change the state of the
78 * barrier. If necessary, you can perform any associated recovery
79 * within handlers of those exceptions, often after invoking
80 * {@code forceTermination}.
81 *
82 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
83 *
84 * </ul>
85 *
86 * <p><b>Sample usages:</b>
87 *
88 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
89 * a one-shot action serving a variable number of parties. The typical
90 * idiom is for the method setting this up to first register, then
91 * start the actions, then deregister, as in:
92 *
93 * <pre> {@code
94 * void runTasks(List<Runnable> list) {
95 * final Phaser phaser = new Phaser(1); // "1" to register self
96 * for (Runnable r : list) {
97 * phaser.register();
98 * new Thread() {
99 * public void run() {
100 * phaser.arriveAndAwaitAdvance(); // await all creation
101 * r.run();
102 * phaser.arriveAndDeregister(); // signal completion
103 * }
104 * }.start();
105 * }
106 *
107 * doSomethingOnBehalfOfWorkers();
108 * phaser.arrive(); // allow threads to start
109 * int p = phaser.arriveAndDeregister(); // deregister self ...
110 * p = phaser.awaitAdvance(p); // ... and await arrival
111 * otherActions(); // do other things while tasks execute
112 * phaser.awaitAdvance(p); // await final completion
113 * }}</pre>
114 *
115 * <p>One way to cause a set of threads to repeatedly perform actions
116 * for a given number of iterations is to override {@code onAdvance}:
117 *
118 * <pre> {@code
119 * void startTasks(List<Runnable> list, final int iterations) {
120 * final Phaser phaser = new Phaser() {
121 * public boolean onAdvance(int phase, int registeredParties) {
122 * return phase >= iterations || registeredParties == 0;
123 * }
124 * };
125 * phaser.register();
126 * for (Runnable r : list) {
127 * phaser.register();
128 * new Thread() {
129 * public void run() {
130 * do {
131 * r.run();
132 * phaser.arriveAndAwaitAdvance();
133 * } while(!phaser.isTerminated();
134 * }
135 * }.start();
136 * }
137 * phaser.arriveAndDeregister(); // deregister self, don't wait
138 * }}</pre>
139 *
140 * <p> To create a set of tasks using a tree of Phasers,
141 * you could use code of the following form, assuming a
142 * Task class with a constructor accepting a Phaser that
143 * it registers for upon construction:
144 * <pre> {@code
145 * void build(Task[] actions, int lo, int hi, Phaser b) {
146 * int step = (hi - lo) / TASKS_PER_PHASER;
147 * if (step > 1) {
148 * int i = lo;
149 * while (i < hi) {
150 * int r = Math.min(i + step, hi);
151 * build(actions, i, r, new Phaser(b));
152 * i = r;
153 * }
154 * } else {
155 * for (int i = lo; i < hi; ++i)
156 * actions[i] = new Task(b);
157 * // assumes new Task(b) performs b.register()
158 * }
159 * }
160 * // .. initially called, for n tasks via
161 * build(new Task[n], 0, n, new Phaser());}</pre>
162 *
163 * The best value of {@code TASKS_PER_PHASER} depends mainly on
164 * expected barrier synchronization rates. A value as low as four may
165 * be appropriate for extremely small per-barrier task bodies (thus
166 * high rates), or up to hundreds for extremely large ones.
167 *
168 * </pre>
169 *
170 * <p><b>Implementation notes</b>: This implementation restricts the
171 * maximum number of parties to 65535. Attempts to register additional
172 * parties result in IllegalStateExceptions. However, you can and
173 * should create tiered phasers to accommodate arbitrarily large sets
174 * of participants.
175 *
176 * @since 1.7
177 * @author Doug Lea
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int) (s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int) s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int) (s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long) phase) << 32) | (((long) parties) << 16) |
228 (long) unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long) parties;
233 return (((long) phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions.
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of Phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return ((phase & 1) == 0) ? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return (parent == null) ? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new Phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * Phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new Phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 *
313 * @param parties the number of parties required to trip barrier
314 * @throws IllegalArgumentException if parties less than zero
315 * or greater than the maximum number of parties supported
316 */
317 public Phaser(int parties) {
318 this(null, parties);
319 }
320
321 /**
322 * Creates a new Phaser with the given parent, without any
323 * initially registered parties. If parent is non-null this phaser
324 * is registered with the parent and its initial phase number is
325 * the same as that of parent phaser.
326 *
327 * @param parent the parent phaser
328 */
329 public Phaser(Phaser parent) {
330 int phase = 0;
331 this.parent = parent;
332 if (parent != null) {
333 this.root = parent.root;
334 phase = parent.register();
335 }
336 else
337 this.root = this;
338 this.state = trippedStateFor(phase, 0);
339 }
340
341 /**
342 * Creates a new Phaser with the given parent and numbers of
343 * registered unarrived parties. If parent is non-null, this phaser
344 * is registered with the parent and its initial phase number is
345 * the same as that of parent phaser.
346 *
347 * @param parent the parent phaser
348 * @param parties the number of parties required to trip barrier
349 * @throws IllegalArgumentException if parties less than zero
350 * or greater than the maximum number of parties supported
351 */
352 public Phaser(Phaser parent, int parties) {
353 if (parties < 0 || parties > ushortMask)
354 throw new IllegalArgumentException("Illegal number of parties");
355 int phase = 0;
356 this.parent = parent;
357 if (parent != null) {
358 this.root = parent.root;
359 phase = parent.register();
360 }
361 else
362 this.root = this;
363 this.state = trippedStateFor(phase, parties);
364 }
365
366 /**
367 * Adds a new unarrived party to this phaser.
368 *
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 *
380 * @param parties the number of parties required to trip barrier
381 * @return the current barrier phase number upon registration
382 * @throws IllegalStateException if attempting to register more
383 * than the maximum supported number of parties
384 */
385 public int bulkRegister(int parties) {
386 if (parties < 0)
387 throw new IllegalArgumentException();
388 if (parties == 0)
389 return getPhase();
390 return doRegister(parties);
391 }
392
393 /**
394 * Shared code for register, bulkRegister
395 */
396 private int doRegister(int registrations) {
397 int phase;
398 for (;;) {
399 long s = getReconciledState();
400 phase = phaseOf(s);
401 int unarrived = unarrivedOf(s) + registrations;
402 int parties = partiesOf(s) + registrations;
403 if (phase < 0)
404 break;
405 if (parties > ushortMask || unarrived > ushortMask)
406 throw new IllegalStateException(badBounds(parties, unarrived));
407 if (phase == phaseOf(root.state) &&
408 casState(s, stateFor(phase, parties, unarrived)))
409 break;
410 }
411 return phase;
412 }
413
414 /**
415 * Arrives at the barrier, but does not wait for others. (You can
416 * in turn wait for others via {@link #awaitAdvance}).
417 *
418 * @return the barrier phase number upon entry to this method, or a
419 * negative value if terminated
420 * @throws IllegalStateException if not terminated and the number
421 * of unarrived parties would become negative
422 */
423 public int arrive() {
424 int phase;
425 for (;;) {
426 long s = state;
427 phase = phaseOf(s);
428 if (phase < 0)
429 break;
430 int parties = partiesOf(s);
431 int unarrived = unarrivedOf(s) - 1;
432 if (unarrived > 0) { // Not the last arrival
433 if (casState(s, s - 1)) // s-1 adds one arrival
434 break;
435 }
436 else if (unarrived == 0) { // the last arrival
437 Phaser par = parent;
438 if (par == null) { // directly trip
439 if (casState
440 (s,
441 trippedStateFor(onAdvance(phase, parties) ? -1 :
442 ((phase + 1) & phaseMask), parties))) {
443 releaseWaiters(phase);
444 break;
445 }
446 }
447 else { // cascade to parent
448 if (casState(s, s - 1)) { // zeroes unarrived
449 par.arrive();
450 reconcileState();
451 break;
452 }
453 }
454 }
455 else if (phase != phaseOf(root.state)) // or if unreconciled
456 reconcileState();
457 else
458 throw new IllegalStateException(badBounds(parties, unarrived));
459 }
460 return phase;
461 }
462
463 /**
464 * Arrives at the barrier, and deregisters from it, without
465 * waiting for others. Deregistration reduces number of parties
466 * required to trip the barrier in future phases. If this phaser
467 * has a parent, and deregistration causes this phaser to have
468 * zero parties, this phaser is also deregistered from its parent.
469 *
470 * @return the current barrier phase number upon entry to
471 * this method, or a negative value if terminated
472 * @throws IllegalStateException if not terminated and the number
473 * of registered or unarrived parties would become negative
474 */
475 public int arriveAndDeregister() {
476 // similar code to arrive, but too different to merge
477 Phaser par = parent;
478 int phase;
479 for (;;) {
480 long s = state;
481 phase = phaseOf(s);
482 if (phase < 0)
483 break;
484 int parties = partiesOf(s) - 1;
485 int unarrived = unarrivedOf(s) - 1;
486 if (parties >= 0) {
487 if (unarrived > 0 || (unarrived == 0 && par != null)) {
488 if (casState
489 (s,
490 stateFor(phase, parties, unarrived))) {
491 if (unarrived == 0) {
492 par.arriveAndDeregister();
493 reconcileState();
494 }
495 break;
496 }
497 continue;
498 }
499 if (unarrived == 0) {
500 if (casState
501 (s,
502 trippedStateFor(onAdvance(phase, parties) ? -1 :
503 ((phase + 1) & phaseMask), parties))) {
504 releaseWaiters(phase);
505 break;
506 }
507 continue;
508 }
509 if (par != null && phase != phaseOf(root.state)) {
510 reconcileState();
511 continue;
512 }
513 }
514 throw new IllegalStateException(badBounds(parties, unarrived));
515 }
516 return phase;
517 }
518
519 /**
520 * Arrives at the barrier and awaits others. Equivalent in effect
521 * to {@code awaitAdvance(arrive())}. If you instead need to
522 * await with interruption of timeout, and/or deregister upon
523 * arrival, you can arrange them using analogous constructions.
524 *
525 * @return the phase on entry to this method
526 * @throws IllegalStateException if not terminated and the number
527 * of unarrived parties would become negative
528 */
529 public int arriveAndAwaitAdvance() {
530 return awaitAdvance(arrive());
531 }
532
533 /**
534 * Awaits the phase of the barrier to advance from the given
535 * value, or returns immediately if argument is negative or this
536 * barrier is terminated.
537 *
538 * @param phase the phase on entry to this method
539 * @return the phase on exit from this method
540 */
541 public int awaitAdvance(int phase) {
542 if (phase < 0)
543 return phase;
544 long s = getReconciledState();
545 int p = phaseOf(s);
546 if (p != phase)
547 return p;
548 if (unarrivedOf(s) == 0 && parent != null)
549 parent.awaitAdvance(phase);
550 // Fall here even if parent waited, to reconcile and help release
551 return untimedWait(phase);
552 }
553
554 /**
555 * Awaits the phase of the barrier to advance from the given
556 * value, or returns immediately if argument is negative or this
557 * barrier is terminated, or throws InterruptedException if
558 * interrupted while waiting.
559 *
560 * @param phase the phase on entry to this method
561 * @return the phase on exit from this method
562 * @throws InterruptedException if thread interrupted while waiting
563 */
564 public int awaitAdvanceInterruptibly(int phase)
565 throws InterruptedException {
566 if (phase < 0)
567 return phase;
568 long s = getReconciledState();
569 int p = phaseOf(s);
570 if (p != phase)
571 return p;
572 if (unarrivedOf(s) == 0 && parent != null)
573 parent.awaitAdvanceInterruptibly(phase);
574 return interruptibleWait(phase);
575 }
576
577 /**
578 * Awaits the phase of the barrier to advance from the given value
579 * or the given timeout elapses, or returns immediately if
580 * argument is negative or this barrier is terminated.
581 *
582 * @param phase the phase on entry to this method
583 * @return the phase on exit from this method
584 * @throws InterruptedException if thread interrupted while waiting
585 * @throws TimeoutException if timed out while waiting
586 */
587 public int awaitAdvanceInterruptibly(int phase,
588 long timeout, TimeUnit unit)
589 throws InterruptedException, TimeoutException {
590 if (phase < 0)
591 return phase;
592 long s = getReconciledState();
593 int p = phaseOf(s);
594 if (p != phase)
595 return p;
596 if (unarrivedOf(s) == 0 && parent != null)
597 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
598 return timedWait(phase, unit.toNanos(timeout));
599 }
600
601 /**
602 * Forces this barrier to enter termination state. Counts of
603 * arrived and registered parties are unaffected. If this phaser
604 * has a parent, it too is terminated. This method may be useful
605 * for coordinating recovery after one or more tasks encounter
606 * unexpected exceptions.
607 */
608 public void forceTermination() {
609 for (;;) {
610 long s = getReconciledState();
611 int phase = phaseOf(s);
612 int parties = partiesOf(s);
613 int unarrived = unarrivedOf(s);
614 if (phase < 0 ||
615 casState(s, stateFor(-1, parties, unarrived))) {
616 releaseWaiters(0);
617 releaseWaiters(1);
618 if (parent != null)
619 parent.forceTermination();
620 return;
621 }
622 }
623 }
624
625 /**
626 * Returns the current phase number. The maximum phase number is
627 * {@code Integer.MAX_VALUE}, after which it restarts at
628 * zero. Upon termination, the phase number is negative.
629 *
630 * @return the phase number, or a negative value if terminated
631 */
632 public final int getPhase() {
633 return phaseOf(getReconciledState());
634 }
635
636 /**
637 * Returns {@code true} if the current phase number equals the given phase.
638 *
639 * @param phase the phase
640 * @return {@code true} if the current phase number equals the given phase
641 */
642 public final boolean hasPhase(int phase) {
643 return phaseOf(getReconciledState()) == phase;
644 }
645
646 /**
647 * Returns the number of parties registered at this barrier.
648 *
649 * @return the number of parties
650 */
651 public int getRegisteredParties() {
652 return partiesOf(state);
653 }
654
655 /**
656 * Returns the number of parties that have arrived at the current
657 * phase of this barrier.
658 *
659 * @return the number of arrived parties
660 */
661 public int getArrivedParties() {
662 return arrivedOf(state);
663 }
664
665 /**
666 * Returns the number of registered parties that have not yet
667 * arrived at the current phase of this barrier.
668 *
669 * @return the number of unarrived parties
670 */
671 public int getUnarrivedParties() {
672 return unarrivedOf(state);
673 }
674
675 /**
676 * Returns the parent of this phaser, or null if none.
677 *
678 * @return the parent of this phaser, or null if none
679 */
680 public Phaser getParent() {
681 return parent;
682 }
683
684 /**
685 * Returns the root ancestor of this phaser, which is the same as
686 * this phaser if it has no parent.
687 *
688 * @return the root ancestor of this phaser
689 */
690 public Phaser getRoot() {
691 return root;
692 }
693
694 /**
695 * Returns {@code true} if this barrier has been terminated.
696 *
697 * @return {@code true} if this barrier has been terminated
698 */
699 public boolean isTerminated() {
700 return getPhase() < 0;
701 }
702
703 /**
704 * Overridable method to perform an action upon phase advance, and
705 * to control termination. This method is invoked whenever the
706 * barrier is tripped (and thus all other waiting parties are
707 * dormant). If it returns true, then, rather than advance the
708 * phase number, this barrier will be set to a final termination
709 * state, and subsequent calls to {@code isTerminated} will
710 * return true.
711 *
712 * <p> The default version returns true when the number of
713 * registered parties is zero. Normally, overrides that arrange
714 * termination for other reasons should also preserve this
715 * property.
716 *
717 * <p> You may override this method to perform an action with side
718 * effects visible to participating tasks, but it is in general
719 * only sensible to do so in designs where all parties register
720 * before any arrive, and all {@code awaitAdvance} at each phase.
721 * Otherwise, you cannot ensure lack of interference. In
722 * particular, this method may be invoked more than once per
723 * transition if other parties successfully register while the
724 * invocation of this method is in progress, thus postponing the
725 * transition until those parties also arrive, re-triggering this
726 * method.
727 *
728 * @param phase the phase number on entering the barrier
729 * @param registeredParties the current number of registered parties
730 * @return {@code true} if this barrier should terminate
731 */
732 protected boolean onAdvance(int phase, int registeredParties) {
733 return registeredParties <= 0;
734 }
735
736 /**
737 * Returns a string identifying this phaser, as well as its
738 * state. The state, in brackets, includes the String {@code
739 * "phase = "} followed by the phase number, {@code "parties = "}
740 * followed by the number of registered parties, and {@code
741 * "arrived = "} followed by the number of arrived parties.
742 *
743 * @return a string identifying this barrier, as well as its state
744 */
745 public String toString() {
746 long s = getReconciledState();
747 return super.toString() +
748 "[phase = " + phaseOf(s) +
749 " parties = " + partiesOf(s) +
750 " arrived = " + arrivedOf(s) + "]";
751 }
752
753 // methods for waiting
754
755 /**
756 * Wait nodes for Treiber stack representing wait queue
757 */
758 static final class QNode implements ForkJoinPool.ManagedBlocker {
759 final Phaser phaser;
760 final int phase;
761 final long startTime;
762 final long nanos;
763 final boolean timed;
764 final boolean interruptible;
765 volatile boolean wasInterrupted = false;
766 volatile Thread thread; // nulled to cancel wait
767 QNode next;
768 QNode(Phaser phaser, int phase, boolean interruptible,
769 boolean timed, long startTime, long nanos) {
770 this.phaser = phaser;
771 this.phase = phase;
772 this.timed = timed;
773 this.interruptible = interruptible;
774 this.startTime = startTime;
775 this.nanos = nanos;
776 thread = Thread.currentThread();
777 }
778 public boolean isReleasable() {
779 return (thread == null ||
780 phaser.getPhase() != phase ||
781 (interruptible && wasInterrupted) ||
782 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
783 }
784 public boolean block() {
785 if (Thread.interrupted()) {
786 wasInterrupted = true;
787 if (interruptible)
788 return true;
789 }
790 if (!timed)
791 LockSupport.park(this);
792 else {
793 long waitTime = nanos - (System.nanoTime() - startTime);
794 if (waitTime <= 0)
795 return true;
796 LockSupport.parkNanos(this, waitTime);
797 }
798 return isReleasable();
799 }
800 void signal() {
801 Thread t = thread;
802 if (t != null) {
803 thread = null;
804 LockSupport.unpark(t);
805 }
806 }
807 boolean doWait() {
808 if (thread != null) {
809 try {
810 ForkJoinPool.managedBlock(this, false);
811 } catch (InterruptedException ie) {
812 }
813 }
814 return wasInterrupted;
815 }
816
817 }
818
819 /**
820 * Removes and signals waiting threads from wait queue.
821 */
822 private void releaseWaiters(int phase) {
823 AtomicReference<QNode> head = queueFor(phase);
824 QNode q;
825 while ((q = head.get()) != null) {
826 if (head.compareAndSet(q, q.next))
827 q.signal();
828 }
829 }
830
831 /**
832 * Tries to enqueue given node in the appropriate wait queue.
833 *
834 * @return true if successful
835 */
836 private boolean tryEnqueue(QNode node) {
837 AtomicReference<QNode> head = queueFor(node.phase);
838 return head.compareAndSet(node.next = head.get(), node);
839 }
840
841 /**
842 * Enqueues node and waits unless aborted or signalled.
843 *
844 * @return current phase
845 */
846 private int untimedWait(int phase) {
847 QNode node = null;
848 boolean queued = false;
849 boolean interrupted = false;
850 int p;
851 while ((p = getPhase()) == phase) {
852 if (Thread.interrupted())
853 interrupted = true;
854 else if (node == null)
855 node = new QNode(this, phase, false, false, 0, 0);
856 else if (!queued)
857 queued = tryEnqueue(node);
858 else
859 interrupted = node.doWait();
860 }
861 if (node != null)
862 node.thread = null;
863 releaseWaiters(phase);
864 if (interrupted)
865 Thread.currentThread().interrupt();
866 return p;
867 }
868
869 /**
870 * Interruptible version
871 * @return current phase
872 */
873 private int interruptibleWait(int phase) throws InterruptedException {
874 QNode node = null;
875 boolean queued = false;
876 boolean interrupted = false;
877 int p;
878 while ((p = getPhase()) == phase && !interrupted) {
879 if (Thread.interrupted())
880 interrupted = true;
881 else if (node == null)
882 node = new QNode(this, phase, true, false, 0, 0);
883 else if (!queued)
884 queued = tryEnqueue(node);
885 else
886 interrupted = node.doWait();
887 }
888 if (node != null)
889 node.thread = null;
890 if (p != phase || (p = getPhase()) != phase)
891 releaseWaiters(phase);
892 if (interrupted)
893 throw new InterruptedException();
894 return p;
895 }
896
897 /**
898 * Timeout version.
899 * @return current phase
900 */
901 private int timedWait(int phase, long nanos)
902 throws InterruptedException, TimeoutException {
903 long startTime = System.nanoTime();
904 QNode node = null;
905 boolean queued = false;
906 boolean interrupted = false;
907 int p;
908 while ((p = getPhase()) == phase && !interrupted) {
909 if (Thread.interrupted())
910 interrupted = true;
911 else if (nanos - (System.nanoTime() - startTime) <= 0)
912 break;
913 else if (node == null)
914 node = new QNode(this, phase, true, true, startTime, nanos);
915 else if (!queued)
916 queued = tryEnqueue(node);
917 else
918 interrupted = node.doWait();
919 }
920 if (node != null)
921 node.thread = null;
922 if (p != phase || (p = getPhase()) != phase)
923 releaseWaiters(phase);
924 if (interrupted)
925 throw new InterruptedException();
926 if (p == phase)
927 throw new TimeoutException();
928 return p;
929 }
930
931 // Unsafe mechanics
932
933 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
934 private static final long stateOffset =
935 objectFieldOffset("state", Phaser.class);
936
937 private final boolean casState(long cmp, long val) {
938 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
939 }
940
941 private static long objectFieldOffset(String field, Class<?> klazz) {
942 try {
943 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
944 } catch (NoSuchFieldException e) {
945 // Convert Exception to corresponding Error
946 NoSuchFieldError error = new NoSuchFieldError(field);
947 error.initCause(e);
948 throw error;
949 }
950 }
951 }