ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.42
Committed: Fri Dec 3 01:49:18 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.41: +5 -5 lines
Log Message:
coding style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state in which all synchronization methods immediately return
79 * without updating phaser state or waiting for advance, and
80 * indicating (via a negative phase value) that execution is complete.
81 * Termination is triggered when an invocation of {@code onAdvance}
82 * returns {@code true}. The default implementation returns {@code
83 * true} if a deregistration has caused the number of registered
84 * parties to become zero. As illustrated below, when phasers control
85 * actions with a fixed number of iterations, it is often convenient
86 * to override this method to cause termination when the current phase
87 * number reaches a threshold. Method {@link #forceTermination} is
88 * also available to abruptly release waiting threads and allow them
89 * to terminate.
90 *
91 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 * constructed in tree structures) to reduce contention. Phasers with
93 * large numbers of parties that would otherwise experience heavy
94 * synchronization contention costs may instead be set up so that
95 * groups of sub-phasers share a common parent. This may greatly
96 * increase throughput even though it incurs greater per-operation
97 * overhead.
98 *
99 * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 * only by registered parties, the current state of a phaser may be
101 * monitored by any caller. At any given moment there are {@link
102 * #getRegisteredParties} parties in total, of which {@link
103 * #getArrivedParties} have arrived at the current phase ({@link
104 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105 * parties arrive, the phase advances. The values returned by these
106 * methods may reflect transient states and so are not in general
107 * useful for synchronization control. Method {@link #toString}
108 * returns snapshots of these state queries in a form convenient for
109 * informal monitoring.
110 *
111 * <p><b>Sample usages:</b>
112 *
113 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 * to control a one-shot action serving a variable number of parties.
115 * The typical idiom is for the method setting this up to first
116 * register, then start the actions, then deregister, as in:
117 *
118 * <pre> {@code
119 * void runTasks(List<Runnable> tasks) {
120 * final Phaser phaser = new Phaser(1); // "1" to register self
121 * // create and start threads
122 * for (Runnable task : tasks) {
123 * phaser.register();
124 * new Thread() {
125 * public void run() {
126 * phaser.arriveAndAwaitAdvance(); // await all creation
127 * task.run();
128 * }
129 * }.start();
130 * }
131 *
132 * // allow threads to start and deregister self
133 * phaser.arriveAndDeregister();
134 * }}</pre>
135 *
136 * <p>One way to cause a set of threads to repeatedly perform actions
137 * for a given number of iterations is to override {@code onAdvance}:
138 *
139 * <pre> {@code
140 * void startTasks(List<Runnable> tasks, final int iterations) {
141 * final Phaser phaser = new Phaser() {
142 * protected boolean onAdvance(int phase, int registeredParties) {
143 * return phase >= iterations || registeredParties == 0;
144 * }
145 * };
146 * phaser.register();
147 * for (final Runnable task : tasks) {
148 * phaser.register();
149 * new Thread() {
150 * public void run() {
151 * do {
152 * task.run();
153 * phaser.arriveAndAwaitAdvance();
154 * } while (!phaser.isTerminated());
155 * }
156 * }.start();
157 * }
158 * phaser.arriveAndDeregister(); // deregister self, don't wait
159 * }}</pre>
160 *
161 * If the main task must later await termination, it
162 * may re-register and then execute a similar loop:
163 * <pre> {@code
164 * // ...
165 * phaser.register();
166 * while (!phaser.isTerminated())
167 * phaser.arriveAndAwaitAdvance();}</pre>
168 *
169 * <p>Related constructions may be used to await particular phase numbers
170 * in contexts where you are sure that the phase will never wrap around
171 * {@code Integer.MAX_VALUE}. For example:
172 *
173 * <pre> {@code
174 * void awaitPhase(Phaser phaser, int phase) {
175 * int p = phaser.register(); // assumes caller not already registered
176 * while (p < phase) {
177 * if (phaser.isTerminated())
178 * // ... deal with unexpected termination
179 * else
180 * p = phaser.arriveAndAwaitAdvance();
181 * }
182 * phaser.arriveAndDeregister();
183 * }}</pre>
184 *
185 *
186 * <p>To create a set of {@code n} tasks using a tree of phasers, you
187 * could use code of the following form, assuming a Task class with a
188 * constructor accepting a {@code Phaser} that it registers with upon
189 * construction. After invocation of {@code build(new Task[n], 0, n,
190 * new Phaser())}, these tasks could then be started, for example by
191 * submitting to a pool:
192 *
193 * <pre> {@code
194 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
195 * if (hi - lo > TASKS_PER_PHASER) {
196 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
197 * int j = Math.min(i + TASKS_PER_PHASER, hi);
198 * build(tasks, i, j, new Phaser(ph));
199 * }
200 * } else {
201 * for (int i = lo; i < hi; ++i)
202 * tasks[i] = new Task(ph);
203 * // assumes new Task(ph) performs ph.register()
204 * }
205 * }}</pre>
206 *
207 * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 * expected synchronization rates. A value as low as four may
209 * be appropriate for extremely small per-phase task bodies (thus
210 * high rates), or up to hundreds for extremely large ones.
211 *
212 * <p><b>Implementation notes</b>: This implementation restricts the
213 * maximum number of parties to 65535. Attempts to register additional
214 * parties result in {@code IllegalStateException}. However, you can and
215 * should create tiered phasers to accommodate arbitrarily large sets
216 * of participants.
217 *
218 * @since 1.7
219 * @author Doug Lea
220 */
221 public class Phaser {
222 /*
223 * This class implements an extension of X10 "clocks". Thanks to
224 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225 * enhancements to extend functionality.
226 */
227
228 /**
229 * Primary state representation, holding four fields:
230 *
231 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
232 * * parties -- the number of parties to wait (bits 16-31)
233 * * phase -- the generation of the barrier (bits 32-62)
234 * * terminated -- set if barrier is terminated (bit 63 / sign)
235 *
236 * Except that a phaser with no registered parties is
237 * distinguished with the otherwise illegal state of having zero
238 * parties and one unarrived parties (encoded as EMPTY below).
239 *
240 * To efficiently maintain atomicity, these values are packed into
241 * a single (atomic) long. Good performance relies on keeping
242 * state decoding and encoding simple, and keeping race windows
243 * short.
244 *
245 * All state updates are performed via CAS except initial
246 * registration of a sub-phaser (i.e., one with a non-null
247 * parent). In this (relatively rare) case, we use built-in
248 * synchronization to lock while first registering with its
249 * parent.
250 *
251 * The phase of a subphaser is allowed to lag that of its
252 * ancestors until it is actually accessed. Method reconcileState
253 * is usually attempted only only when the number of unarrived
254 * parties appears to be zero, which indicates a potential lag in
255 * updating phase after the root advanced.
256 */
257 private volatile long state;
258
259 private static final int MAX_PARTIES = 0xffff;
260 private static final int MAX_PHASE = 0x7fffffff;
261 private static final int PARTIES_SHIFT = 16;
262 private static final int PHASE_SHIFT = 32;
263 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
264 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
265 private static final long TERMINATION_BIT = 1L << 63;
266
267 // some special values
268 private static final int ONE_ARRIVAL = 1;
269 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
270 private static final int EMPTY = 1;
271
272 // The following unpacking methods are usually manually inlined
273
274 private static int unarrivedOf(long s) {
275 int counts = (int)s;
276 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
277 }
278
279 private static int partiesOf(long s) {
280 return (int)s >>> PARTIES_SHIFT;
281 }
282
283 private static int phaseOf(long s) {
284 return (int) (s >>> PHASE_SHIFT);
285 }
286
287 private static int arrivedOf(long s) {
288 int counts = (int)s;
289 return (counts == EMPTY) ? 0 :
290 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
291 }
292
293 /**
294 * The parent of this phaser, or null if none
295 */
296 private final Phaser parent;
297
298 /**
299 * The root of phaser tree. Equals this if not in a tree.
300 */
301 private final Phaser root;
302
303 /**
304 * Heads of Treiber stacks for waiting threads. To eliminate
305 * contention when releasing some threads while adding others, we
306 * use two of them, alternating across even and odd phases.
307 * Subphasers share queues with root to speed up releases.
308 */
309 private final AtomicReference<QNode> evenQ;
310 private final AtomicReference<QNode> oddQ;
311
312 private AtomicReference<QNode> queueFor(int phase) {
313 return ((phase & 1) == 0) ? evenQ : oddQ;
314 }
315
316 /**
317 * Returns message string for bounds exceptions on arrival.
318 */
319 private String badArrive(long s) {
320 return "Attempted arrival of unregistered party for " +
321 stateToString(s);
322 }
323
324 /**
325 * Returns message string for bounds exceptions on registration.
326 */
327 private String badRegister(long s) {
328 return "Attempt to register more than " +
329 MAX_PARTIES + " parties for " + stateToString(s);
330 }
331
332 /**
333 * Main implementation for methods arrive and arriveAndDeregister.
334 * Manually tuned to speed up and minimize race windows for the
335 * common case of just decrementing unarrived field.
336 *
337 * @param deregister false for arrive, true for arriveAndDeregister
338 */
339 private int doArrive(boolean deregister) {
340 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
341 long s;
342 int phase;
343 while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
344 int counts = (int)s;
345 int unarrived = counts & UNARRIVED_MASK;
346 if (counts == EMPTY || unarrived == 0) {
347 if (reconcileState() == s)
348 throw new IllegalStateException(badArrive(s));
349 }
350 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
351 if (unarrived == 1) {
352 long n = s & PARTIES_MASK; // unshifted parties field
353 int u = ((int)n) >>> PARTIES_SHIFT;
354 Phaser par = parent;
355 if (par != null) {
356 par.doArrive(u == 0);
357 reconcileState();
358 }
359 else {
360 n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
361 if (onAdvance(phase, u))
362 n |= TERMINATION_BIT;
363 else if (u == 0)
364 n |= EMPTY; // reset to unregistered
365 else
366 n |= (long)u; // reset unarr to parties
367 // assert state == s || isTerminated();
368 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
369 releaseWaiters(phase);
370 }
371 }
372 break;
373 }
374 }
375 return phase;
376 }
377
378 /**
379 * Implementation of register, bulkRegister
380 *
381 * @param registrations number to add to both parties and
382 * unarrived fields. Must be greater than zero.
383 */
384 private int doRegister(int registrations) {
385 // adjustment to state
386 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
387 Phaser par = parent;
388 int phase;
389 for (;;) {
390 long s = state;
391 int counts = (int)s;
392 int parties = counts >>> PARTIES_SHIFT;
393 int unarrived = counts & UNARRIVED_MASK;
394 if (registrations > MAX_PARTIES - parties)
395 throw new IllegalStateException(badRegister(s));
396 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
397 break;
398 else if (counts != EMPTY) { // not 1st registration
399 if (par == null || reconcileState() == s) {
400 if (unarrived == 0) // wait out advance
401 root.internalAwaitAdvance(phase, null);
402 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
403 s, s + adj))
404 break;
405 }
406 }
407 else if (par == null) { // 1st root registration
408 long next = (((long) phase) << PHASE_SHIFT) | adj;
409 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
410 break;
411 }
412 else {
413 synchronized (this) { // 1st sub registration
414 if (state == s) { // recheck under lock
415 par.doRegister(1);
416 do { // force current phase
417 phase = (int)(root.state >>> PHASE_SHIFT);
418 // assert phase < 0 || (int)state == EMPTY;
419 } while (!UNSAFE.compareAndSwapLong
420 (this, stateOffset, state,
421 (((long) phase) << PHASE_SHIFT) | adj));
422 break;
423 }
424 }
425 }
426 }
427 return phase;
428 }
429
430 /**
431 * Resolves lagged phase propagation from root if necessary.
432 */
433 private long reconcileState() {
434 Phaser rt = root;
435 long s = state;
436 if (rt != this) {
437 int phase;
438 while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
439 (int)(s >>> PHASE_SHIFT)) {
440 // assert phase < 0 || unarrivedOf(s) == 0
441 long t; // to reread s
442 long p = s & PARTIES_MASK; // unshifted parties field
443 long n = (((long) phase) << PHASE_SHIFT) | p;
444 if (phase >= 0) {
445 if (p == 0L)
446 n |= EMPTY; // reset to empty
447 else
448 n |= p >>> PARTIES_SHIFT; // set unarr to parties
449 }
450 if ((t = state) == s &&
451 UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
452 break;
453 s = t;
454 }
455 }
456 return s;
457 }
458
459 /**
460 * Creates a new phaser with no initially registered parties, no
461 * parent, and initial phase number 0. Any thread using this
462 * phaser will need to first register for it.
463 */
464 public Phaser() {
465 this(null, 0);
466 }
467
468 /**
469 * Creates a new phaser with the given number of registered
470 * unarrived parties, no parent, and initial phase number 0.
471 *
472 * @param parties the number of parties required to advance to the
473 * next phase
474 * @throws IllegalArgumentException if parties less than zero
475 * or greater than the maximum number of parties supported
476 */
477 public Phaser(int parties) {
478 this(null, parties);
479 }
480
481 /**
482 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
483 *
484 * @param parent the parent phaser
485 */
486 public Phaser(Phaser parent) {
487 this(parent, 0);
488 }
489
490 /**
491 * Creates a new phaser with the given parent and number of
492 * registered unarrived parties. Registration and deregistration
493 * of this child phaser with its parent are managed automatically.
494 * If the given parent is non-null, whenever this child phaser has
495 * any registered parties (as established in this constructor,
496 * {@link #register}, or {@link #bulkRegister}), this child phaser
497 * is registered with its parent. Whenever the number of
498 * registered parties becomes zero as the result of an invocation
499 * of {@link #arriveAndDeregister}, this child phaser is
500 * deregistered from its parent.
501 *
502 * @param parent the parent phaser
503 * @param parties the number of parties required to advance to the
504 * next phase
505 * @throws IllegalArgumentException if parties less than zero
506 * or greater than the maximum number of parties supported
507 */
508 public Phaser(Phaser parent, int parties) {
509 if (parties >>> PARTIES_SHIFT != 0)
510 throw new IllegalArgumentException("Illegal number of parties");
511 int phase = 0;
512 this.parent = parent;
513 if (parent != null) {
514 final Phaser root = parent.root;
515 this.root = root;
516 this.evenQ = root.evenQ;
517 this.oddQ = root.oddQ;
518 if (parties != 0)
519 phase = parent.doRegister(1);
520 }
521 else {
522 this.root = this;
523 this.evenQ = new AtomicReference<QNode>();
524 this.oddQ = new AtomicReference<QNode>();
525 }
526 this.state = (parties == 0) ? (long) EMPTY :
527 ((((long) phase) << PHASE_SHIFT) |
528 (((long) parties) << PARTIES_SHIFT) |
529 ((long) parties));
530 }
531
532 /**
533 * Adds a new unarrived party to this phaser. If an ongoing
534 * invocation of {@link #onAdvance} is in progress, this method
535 * may await its completion before returning. If this phaser has
536 * a parent, and this phaser previously had no registered parties,
537 * this phaser is also registered with its parent.
538 *
539 * @return the arrival phase number to which this registration applied
540 * @throws IllegalStateException if attempting to register more
541 * than the maximum supported number of parties
542 */
543 public int register() {
544 return doRegister(1);
545 }
546
547 /**
548 * Adds the given number of new unarrived parties to this phaser.
549 * If an ongoing invocation of {@link #onAdvance} is in progress,
550 * this method may await its completion before returning. If this
551 * phaser has a parent, and the given number of parities is
552 * greater than zero, and this phaser previously had no registered
553 * parties, this phaser is also registered with its parent.
554 *
555 * @param parties the number of additional parties required to
556 * advance to the next phase
557 * @return the arrival phase number to which this registration applied
558 * @throws IllegalStateException if attempting to register more
559 * than the maximum supported number of parties
560 * @throws IllegalArgumentException if {@code parties < 0}
561 */
562 public int bulkRegister(int parties) {
563 if (parties < 0)
564 throw new IllegalArgumentException();
565 if (parties == 0)
566 return getPhase();
567 return doRegister(parties);
568 }
569
570 /**
571 * Arrives at this phaser, without waiting for others to arrive.
572 *
573 * <p>It is a usage error for an unregistered party to invoke this
574 * method. However, this error may result in an {@code
575 * IllegalStateException} only upon some subsequent operation on
576 * this phaser, if ever.
577 *
578 * @return the arrival phase number, or a negative value if terminated
579 * @throws IllegalStateException if not terminated and the number
580 * of unarrived parties would become negative
581 */
582 public int arrive() {
583 return doArrive(false);
584 }
585
586 /**
587 * Arrives at this phaser and deregisters from it without waiting
588 * for others to arrive. Deregistration reduces the number of
589 * parties required to advance in future phases. If this phaser
590 * has a parent, and deregistration causes this phaser to have
591 * zero parties, this phaser is also deregistered from its parent.
592 *
593 * <p>It is a usage error for an unregistered party to invoke this
594 * method. However, this error may result in an {@code
595 * IllegalStateException} only upon some subsequent operation on
596 * this phaser, if ever.
597 *
598 * @return the arrival phase number, or a negative value if terminated
599 * @throws IllegalStateException if not terminated and the number
600 * of registered or unarrived parties would become negative
601 */
602 public int arriveAndDeregister() {
603 return doArrive(true);
604 }
605
606 /**
607 * Arrives at this phaser and awaits others. Equivalent in effect
608 * to {@code awaitAdvance(arrive())}. If you need to await with
609 * interruption or timeout, you can arrange this with an analogous
610 * construction using one of the other forms of the {@code
611 * awaitAdvance} method. If instead you need to deregister upon
612 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
613 *
614 * <p>It is a usage error for an unregistered party to invoke this
615 * method. However, this error may result in an {@code
616 * IllegalStateException} only upon some subsequent operation on
617 * this phaser, if ever.
618 *
619 * @return the arrival phase number, or a negative number if terminated
620 * @throws IllegalStateException if not terminated and the number
621 * of unarrived parties would become negative
622 */
623 public int arriveAndAwaitAdvance() {
624 return awaitAdvance(doArrive(false));
625 }
626
627 /**
628 * Awaits the phase of this phaser to advance from the given phase
629 * value, returning immediately if the current phase is not equal
630 * to the given phase value or this phaser is terminated.
631 *
632 * @param phase an arrival phase number, or negative value if
633 * terminated; this argument is normally the value returned by a
634 * previous call to {@code arrive} or {@code arriveAndDeregister}.
635 * @return the next arrival phase number, or a negative value
636 * if terminated or argument is negative
637 */
638 public int awaitAdvance(int phase) {
639 Phaser rt;
640 int p = (int)(state >>> PHASE_SHIFT);
641 if (phase < 0)
642 return phase;
643 if (p == phase) {
644 if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
645 return rt.internalAwaitAdvance(phase, null);
646 reconcileState();
647 }
648 return p;
649 }
650
651 /**
652 * Awaits the phase of this phaser to advance from the given phase
653 * value, throwing {@code InterruptedException} if interrupted
654 * while waiting, or returning immediately if the current phase is
655 * not equal to the given phase value or this phaser is
656 * terminated.
657 *
658 * @param phase an arrival phase number, or negative value if
659 * terminated; this argument is normally the value returned by a
660 * previous call to {@code arrive} or {@code arriveAndDeregister}.
661 * @return the next arrival phase number, or a negative value
662 * if terminated or argument is negative
663 * @throws InterruptedException if thread interrupted while waiting
664 */
665 public int awaitAdvanceInterruptibly(int phase)
666 throws InterruptedException {
667 Phaser rt;
668 int p = (int)(state >>> PHASE_SHIFT);
669 if (phase < 0)
670 return phase;
671 if (p == phase) {
672 if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
673 QNode node = new QNode(this, phase, true, false, 0L);
674 p = rt.internalAwaitAdvance(phase, node);
675 if (node.wasInterrupted)
676 throw new InterruptedException();
677 }
678 else
679 reconcileState();
680 }
681 return p;
682 }
683
684 /**
685 * Awaits the phase of this phaser to advance from the given phase
686 * value or the given timeout to elapse, throwing {@code
687 * InterruptedException} if interrupted while waiting, or
688 * returning immediately if the current phase is not equal to the
689 * given phase value or this phaser is terminated.
690 *
691 * @param phase an arrival phase number, or negative value if
692 * terminated; this argument is normally the value returned by a
693 * previous call to {@code arrive} or {@code arriveAndDeregister}.
694 * @param timeout how long to wait before giving up, in units of
695 * {@code unit}
696 * @param unit a {@code TimeUnit} determining how to interpret the
697 * {@code timeout} parameter
698 * @return the next arrival phase number, or a negative value
699 * if terminated or argument is negative
700 * @throws InterruptedException if thread interrupted while waiting
701 * @throws TimeoutException if timed out while waiting
702 */
703 public int awaitAdvanceInterruptibly(int phase,
704 long timeout, TimeUnit unit)
705 throws InterruptedException, TimeoutException {
706 long nanos = unit.toNanos(timeout);
707 Phaser rt;
708 int p = (int)(state >>> PHASE_SHIFT);
709 if (phase < 0)
710 return phase;
711 if (p == phase) {
712 if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
713 QNode node = new QNode(this, phase, true, true, nanos);
714 p = rt.internalAwaitAdvance(phase, node);
715 if (node.wasInterrupted)
716 throw new InterruptedException();
717 else if (p == phase)
718 throw new TimeoutException();
719 }
720 else
721 reconcileState();
722 }
723 return p;
724 }
725
726 /**
727 * Forces this phaser to enter termination state. Counts of
728 * registered parties are unaffected. If this phaser is a member
729 * of a tiered set of phasers, then all of the phasers in the set
730 * are terminated. If this phaser is already terminated, this
731 * method has no effect. This method may be useful for
732 * coordinating recovery after one or more tasks encounter
733 * unexpected exceptions.
734 */
735 public void forceTermination() {
736 // Only need to change root state
737 final Phaser root = this.root;
738 long s;
739 while ((s = root.state) >= 0) {
740 long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
741 if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
742 releaseWaiters(0); // signal all threads
743 releaseWaiters(1);
744 return;
745 }
746 }
747 }
748
749 /**
750 * Returns the current phase number. The maximum phase number is
751 * {@code Integer.MAX_VALUE}, after which it restarts at
752 * zero. Upon termination, the phase number is negative,
753 * in which case the prevailing phase prior to termination
754 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
755 *
756 * @return the phase number, or a negative value if terminated
757 */
758 public final int getPhase() {
759 return (int)(root.state >>> PHASE_SHIFT);
760 }
761
762 /**
763 * Returns the number of parties registered at this phaser.
764 *
765 * @return the number of parties
766 */
767 public int getRegisteredParties() {
768 return partiesOf(state);
769 }
770
771 /**
772 * Returns the number of registered parties that have arrived at
773 * the current phase of this phaser.
774 *
775 * @return the number of arrived parties
776 */
777 public int getArrivedParties() {
778 return arrivedOf(reconcileState());
779 }
780
781 /**
782 * Returns the number of registered parties that have not yet
783 * arrived at the current phase of this phaser.
784 *
785 * @return the number of unarrived parties
786 */
787 public int getUnarrivedParties() {
788 return unarrivedOf(reconcileState());
789 }
790
791 /**
792 * Returns the parent of this phaser, or {@code null} if none.
793 *
794 * @return the parent of this phaser, or {@code null} if none
795 */
796 public Phaser getParent() {
797 return parent;
798 }
799
800 /**
801 * Returns the root ancestor of this phaser, which is the same as
802 * this phaser if it has no parent.
803 *
804 * @return the root ancestor of this phaser
805 */
806 public Phaser getRoot() {
807 return root;
808 }
809
810 /**
811 * Returns {@code true} if this phaser has been terminated.
812 *
813 * @return {@code true} if this phaser has been terminated
814 */
815 public boolean isTerminated() {
816 return root.state < 0L;
817 }
818
819 /**
820 * Overridable method to perform an action upon impending phase
821 * advance, and to control termination. This method is invoked
822 * upon arrival of the party advancing this phaser (when all other
823 * waiting parties are dormant). If this method returns {@code
824 * true}, this phaser will be set to a final termination state
825 * upon advance, and subsequent calls to {@link #isTerminated}
826 * will return true. Any (unchecked) Exception or Error thrown by
827 * an invocation of this method is propagated to the party
828 * attempting to advance this phaser, in which case no advance
829 * occurs.
830 *
831 * <p>The arguments to this method provide the state of the phaser
832 * prevailing for the current transition. The effects of invoking
833 * arrival, registration, and waiting methods on this phaser from
834 * within {@code onAdvance} are unspecified and should not be
835 * relied on.
836 *
837 * <p>If this phaser is a member of a tiered set of phasers, then
838 * {@code onAdvance} is invoked only for its root phaser on each
839 * advance.
840 *
841 * <p>To support the most common use cases, the default
842 * implementation of this method returns {@code true} when the
843 * number of registered parties has become zero as the result of a
844 * party invoking {@code arriveAndDeregister}. You can disable
845 * this behavior, thus enabling continuation upon future
846 * registrations, by overriding this method to always return
847 * {@code false}:
848 *
849 * <pre> {@code
850 * Phaser phaser = new Phaser() {
851 * protected boolean onAdvance(int phase, int parties) { return false; }
852 * }}</pre>
853 *
854 * @param phase the current phase number on entry to this method,
855 * before this phaser is advanced
856 * @param registeredParties the current number of registered parties
857 * @return {@code true} if this phaser should terminate
858 */
859 protected boolean onAdvance(int phase, int registeredParties) {
860 return registeredParties == 0;
861 }
862
863 /**
864 * Returns a string identifying this phaser, as well as its
865 * state. The state, in brackets, includes the String {@code
866 * "phase = "} followed by the phase number, {@code "parties = "}
867 * followed by the number of registered parties, and {@code
868 * "arrived = "} followed by the number of arrived parties.
869 *
870 * @return a string identifying this phaser, as well as its state
871 */
872 public String toString() {
873 return stateToString(reconcileState());
874 }
875
876 /**
877 * Implementation of toString and string-based error messages
878 */
879 private String stateToString(long s) {
880 return super.toString() +
881 "[phase = " + phaseOf(s) +
882 " parties = " + partiesOf(s) +
883 " arrived = " + arrivedOf(s) + "]";
884 }
885
886 // Waiting mechanics
887
888 /**
889 * Removes and signals threads from queue for phase.
890 */
891 private void releaseWaiters(int phase) {
892 QNode q; // first element of queue
893 int p; // its phase
894 Thread t; // its thread
895 // assert phase != phaseOf(root.state);
896 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
897 while ((q = head.get()) != null &&
898 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
899 if (head.compareAndSet(q, q.next) &&
900 (t = q.thread) != null) {
901 q.thread = null;
902 LockSupport.unpark(t);
903 }
904 }
905 }
906
907 /** The number of CPUs, for spin control */
908 private static final int NCPU = Runtime.getRuntime().availableProcessors();
909
910 /**
911 * The number of times to spin before blocking while waiting for
912 * advance, per arrival while waiting. On multiprocessors, fully
913 * blocking and waking up a large number of threads all at once is
914 * usually a very slow process, so we use rechargeable spins to
915 * avoid it when threads regularly arrive: When a thread in
916 * internalAwaitAdvance notices another arrival before blocking,
917 * and there appear to be enough CPUs available, it spins
918 * SPINS_PER_ARRIVAL more times before blocking. The value trades
919 * off good-citizenship vs big unnecessary slowdowns.
920 */
921 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
922
923 /**
924 * Possibly blocks and waits for phase to advance unless aborted.
925 * Call only from root node.
926 *
927 * @param phase current phase
928 * @param node if non-null, the wait node to track interrupt and timeout;
929 * if null, denotes noninterruptible wait
930 * @return current phase
931 */
932 private int internalAwaitAdvance(int phase, QNode node) {
933 releaseWaiters(phase-1); // ensure old queue clean
934 boolean queued = false; // true when node is enqueued
935 int lastUnarrived = 0; // to increase spins upon change
936 int spins = SPINS_PER_ARRIVAL;
937 long s;
938 int p;
939 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
940 if (node == null) { // spinning in noninterruptible mode
941 int unarrived = (int)s & UNARRIVED_MASK;
942 if (unarrived != lastUnarrived &&
943 (lastUnarrived = unarrived) < NCPU)
944 spins += SPINS_PER_ARRIVAL;
945 boolean interrupted = Thread.interrupted();
946 if (interrupted || --spins < 0) { // need node to record intr
947 node = new QNode(this, phase, false, false, 0L);
948 node.wasInterrupted = interrupted;
949 }
950 }
951 else if (node.isReleasable()) // done or aborted
952 break;
953 else if (!queued) { // push onto queue
954 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
955 QNode q = node.next = head.get();
956 if ((q == null || q.phase == phase) &&
957 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
958 queued = head.compareAndSet(q, node);
959 }
960 else {
961 try {
962 ForkJoinPool.managedBlock(node);
963 } catch (InterruptedException ie) {
964 node.wasInterrupted = true;
965 }
966 }
967 }
968
969 if (node != null) {
970 if (node.thread != null)
971 node.thread = null; // avoid need for unpark()
972 if (node.wasInterrupted && !node.interruptible)
973 Thread.currentThread().interrupt();
974 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
975 return p; // recheck abort
976 }
977 releaseWaiters(phase);
978 return p;
979 }
980
981 /**
982 * Wait nodes for Treiber stack representing wait queue
983 */
984 static final class QNode implements ForkJoinPool.ManagedBlocker {
985 final Phaser phaser;
986 final int phase;
987 final boolean interruptible;
988 final boolean timed;
989 boolean wasInterrupted;
990 long nanos;
991 long lastTime;
992 volatile Thread thread; // nulled to cancel wait
993 QNode next;
994
995 QNode(Phaser phaser, int phase, boolean interruptible,
996 boolean timed, long nanos) {
997 this.phaser = phaser;
998 this.phase = phase;
999 this.interruptible = interruptible;
1000 this.nanos = nanos;
1001 this.timed = timed;
1002 this.lastTime = timed ? System.nanoTime() : 0L;
1003 thread = Thread.currentThread();
1004 }
1005
1006 public boolean isReleasable() {
1007 if (thread == null)
1008 return true;
1009 if (phaser.getPhase() != phase) {
1010 thread = null;
1011 return true;
1012 }
1013 if (Thread.interrupted())
1014 wasInterrupted = true;
1015 if (wasInterrupted && interruptible) {
1016 thread = null;
1017 return true;
1018 }
1019 if (timed) {
1020 if (nanos > 0L) {
1021 long now = System.nanoTime();
1022 nanos -= now - lastTime;
1023 lastTime = now;
1024 }
1025 if (nanos <= 0L) {
1026 thread = null;
1027 return true;
1028 }
1029 }
1030 return false;
1031 }
1032
1033 public boolean block() {
1034 if (isReleasable())
1035 return true;
1036 else if (!timed)
1037 LockSupport.park(this);
1038 else if (nanos > 0)
1039 LockSupport.parkNanos(this, nanos);
1040 return isReleasable();
1041 }
1042 }
1043
1044 // Unsafe mechanics
1045
1046 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1047 private static final long stateOffset =
1048 objectFieldOffset("state", Phaser.class);
1049
1050 private static long objectFieldOffset(String field, Class<?> klazz) {
1051 try {
1052 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1053 } catch (NoSuchFieldException e) {
1054 // Convert Exception to corresponding Error
1055 NoSuchFieldError error = new NoSuchFieldError(field);
1056 error.initCause(e);
1057 throw error;
1058 }
1059 }
1060 }