ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.52
Committed: Wed Dec 8 08:11:26 2010 UTC (13 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.51: +12 -19 lines
Log Message:
reconcileState rework

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four fields:
241 *
242 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * * parties -- the number of parties to wait (bits 16-31)
244 * * phase -- the generation of the barrier (bits 32-62)
245 * * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished with the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed. Method reconcileState
264 * is usually attempted only only when the number of unarrived
265 * parties appears to be zero, which indicates a potential lag in
266 * updating phase after the root advanced.
267 */
268 private volatile long state;
269
270 private static final int MAX_PARTIES = 0xffff;
271 private static final int MAX_PHASE = 0x7fffffff;
272 private static final int PARTIES_SHIFT = 16;
273 private static final int PHASE_SHIFT = 32;
274 private static final long PHASE_MASK = -1L << PHASE_SHIFT;
275 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
276 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
277 private static final long TERMINATION_BIT = 1L << 63;
278
279 // some special values
280 private static final int ONE_ARRIVAL = 1;
281 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
282 private static final int EMPTY = 1;
283
284 // The following unpacking methods are usually manually inlined
285
286 private static int unarrivedOf(long s) {
287 int counts = (int)s;
288 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
289 }
290
291 private static int partiesOf(long s) {
292 return (int)s >>> PARTIES_SHIFT;
293 }
294
295 private static int phaseOf(long s) {
296 return (int) (s >>> PHASE_SHIFT);
297 }
298
299 private static int arrivedOf(long s) {
300 int counts = (int)s;
301 return (counts == EMPTY) ? 0 :
302 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
303 }
304
305 /**
306 * The parent of this phaser, or null if none
307 */
308 private final Phaser parent;
309
310 /**
311 * The root of phaser tree. Equals this if not in a tree.
312 */
313 private final Phaser root;
314
315 /**
316 * Heads of Treiber stacks for waiting threads. To eliminate
317 * contention when releasing some threads while adding others, we
318 * use two of them, alternating across even and odd phases.
319 * Subphasers share queues with root to speed up releases.
320 */
321 private final AtomicReference<QNode> evenQ;
322 private final AtomicReference<QNode> oddQ;
323
324 private AtomicReference<QNode> queueFor(int phase) {
325 return ((phase & 1) == 0) ? evenQ : oddQ;
326 }
327
328 /**
329 * Returns message string for bounds exceptions on arrival.
330 */
331 private String badArrive(long s) {
332 return "Attempted arrival of unregistered party for " +
333 stateToString(s);
334 }
335
336 /**
337 * Returns message string for bounds exceptions on registration.
338 */
339 private String badRegister(long s) {
340 return "Attempt to register more than " +
341 MAX_PARTIES + " parties for " + stateToString(s);
342 }
343
344 /**
345 * Main implementation for methods arrive and arriveAndDeregister.
346 * Manually tuned to speed up and minimize race windows for the
347 * common case of just decrementing unarrived field.
348 *
349 * @param deregister false for arrive, true for arriveAndDeregister
350 */
351 private int doArrive(boolean deregister) {
352 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
353 final Phaser root = this.root;
354 for (;;) {
355 long s = (root == this) ? state : reconcileState();
356 int phase = (int)(s >>> PHASE_SHIFT);
357 int counts = (int)s;
358 int unarrived = (counts & UNARRIVED_MASK) - 1;
359 if (phase < 0)
360 return phase;
361 else if (counts == EMPTY || unarrived < 0) {
362 if (root == this || reconcileState() == s)
363 throw new IllegalStateException(badArrive(s));
364 }
365 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
366 if (unarrived == 0) {
367 long n = s & PARTIES_MASK; // base of next state
368 int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
369 if (root != this)
370 return parent.doArrive(nextUnarrived == 0);
371 if (onAdvance(phase, nextUnarrived))
372 n |= TERMINATION_BIT;
373 else if (nextUnarrived == 0)
374 n |= EMPTY;
375 else
376 n |= nextUnarrived;
377 n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
378 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
379 releaseWaiters(phase);
380 }
381 return phase;
382 }
383 }
384 }
385
386 /**
387 * Implementation of register, bulkRegister
388 *
389 * @param registrations number to add to both parties and
390 * unarrived fields. Must be greater than zero.
391 */
392 private int doRegister(int registrations) {
393 // adjustment to state
394 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
395 Phaser par = parent;
396 int phase;
397 for (;;) {
398 long s = state;
399 int counts = (int)s;
400 int parties = counts >>> PARTIES_SHIFT;
401 int unarrived = counts & UNARRIVED_MASK;
402 if (registrations > MAX_PARTIES - parties)
403 throw new IllegalStateException(badRegister(s));
404 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
405 break;
406 else if (counts != EMPTY) { // not 1st registration
407 if (par == null || reconcileState() == s) {
408 if (unarrived == 0) // wait out advance
409 root.internalAwaitAdvance(phase, null);
410 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
411 s, s + adj))
412 break;
413 }
414 }
415 else if (par == null) { // 1st root registration
416 long next = (((long) phase) << PHASE_SHIFT) | adj;
417 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
418 break;
419 }
420 else {
421 synchronized (this) { // 1st sub registration
422 if (state == s) { // recheck under lock
423 par.doRegister(1);
424 do { // force current phase
425 phase = (int)(root.state >>> PHASE_SHIFT);
426 // assert phase < 0 || (int)state == EMPTY;
427 } while (!UNSAFE.compareAndSwapLong
428 (this, stateOffset, state,
429 (((long) phase) << PHASE_SHIFT) | adj));
430 break;
431 }
432 }
433 }
434 }
435 return phase;
436 }
437
438 /**
439 * Resolves lagged phase propagation from root if necessary.
440 */
441 private long reconcileState() {
442 final Phaser root = this.root;
443 long s = state;
444 if (root != this) {
445 for (long rs; ((rs = root.state) ^ s) >>> PHASE_SHIFT != 0;) {
446 // assert rs < 0 || (s != state) || unarrivedOf(s) == 0;
447 long lp = s & PARTIES_MASK;
448 long n = (rs & PHASE_MASK) | lp;
449 if (rs >= 0)
450 n |= (lp == 0L) ? EMPTY : (lp >>> PARTIES_SHIFT);
451 if (s == (s = state) &&
452 UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
453 return n;
454 }
455 }
456 return s;
457 }
458
459 /**
460 * Creates a new phaser with no initially registered parties, no
461 * parent, and initial phase number 0. Any thread using this
462 * phaser will need to first register for it.
463 */
464 public Phaser() {
465 this(null, 0);
466 }
467
468 /**
469 * Creates a new phaser with the given number of registered
470 * unarrived parties, no parent, and initial phase number 0.
471 *
472 * @param parties the number of parties required to advance to the
473 * next phase
474 * @throws IllegalArgumentException if parties less than zero
475 * or greater than the maximum number of parties supported
476 */
477 public Phaser(int parties) {
478 this(null, parties);
479 }
480
481 /**
482 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
483 *
484 * @param parent the parent phaser
485 */
486 public Phaser(Phaser parent) {
487 this(parent, 0);
488 }
489
490 /**
491 * Creates a new phaser with the given parent and number of
492 * registered unarrived parties. When the given parent is non-null
493 * and the given number of parties is greater than zero, this
494 * child phaser is registered with its parent.
495 *
496 * @param parent the parent phaser
497 * @param parties the number of parties required to advance to the
498 * next phase
499 * @throws IllegalArgumentException if parties less than zero
500 * or greater than the maximum number of parties supported
501 */
502 public Phaser(Phaser parent, int parties) {
503 if (parties >>> PARTIES_SHIFT != 0)
504 throw new IllegalArgumentException("Illegal number of parties");
505 int phase = 0;
506 this.parent = parent;
507 if (parent != null) {
508 final Phaser root = parent.root;
509 this.root = root;
510 this.evenQ = root.evenQ;
511 this.oddQ = root.oddQ;
512 if (parties != 0)
513 phase = parent.doRegister(1);
514 }
515 else {
516 this.root = this;
517 this.evenQ = new AtomicReference<QNode>();
518 this.oddQ = new AtomicReference<QNode>();
519 }
520 this.state = (parties == 0) ? (long) EMPTY :
521 ((((long) phase) << PHASE_SHIFT) |
522 (((long) parties) << PARTIES_SHIFT) |
523 ((long) parties));
524 }
525
526 /**
527 * Adds a new unarrived party to this phaser. If an ongoing
528 * invocation of {@link #onAdvance} is in progress, this method
529 * may await its completion before returning. If this phaser has
530 * a parent, and this phaser previously had no registered parties,
531 * this child phaser is also registered with its parent. If
532 * this phaser is terminated, the attempt to register has
533 * no effect, and a negative value is returned.
534 *
535 * @return the arrival phase number to which this registration
536 * applied. If this value is negative, then this phaser has
537 * terminated, in which case registration has no effect.
538 * @throws IllegalStateException if attempting to register more
539 * than the maximum supported number of parties
540 */
541 public int register() {
542 return doRegister(1);
543 }
544
545 /**
546 * Adds the given number of new unarrived parties to this phaser.
547 * If an ongoing invocation of {@link #onAdvance} is in progress,
548 * this method may await its completion before returning. If this
549 * phaser has a parent, and the given number of parties is greater
550 * than zero, and this phaser previously had no registered
551 * parties, this child phaser is also registered with its parent.
552 * If this phaser is terminated, the attempt to register has no
553 * effect, and a negative value is returned.
554 *
555 * @param parties the number of additional parties required to
556 * advance to the next phase
557 * @return the arrival phase number to which this registration
558 * applied. If this value is negative, then this phaser has
559 * terminated, in which case registration has no effect.
560 * @throws IllegalStateException if attempting to register more
561 * than the maximum supported number of parties
562 * @throws IllegalArgumentException if {@code parties < 0}
563 */
564 public int bulkRegister(int parties) {
565 if (parties < 0)
566 throw new IllegalArgumentException();
567 if (parties == 0)
568 return getPhase();
569 return doRegister(parties);
570 }
571
572 /**
573 * Arrives at this phaser, without waiting for others to arrive.
574 *
575 * <p>It is a usage error for an unregistered party to invoke this
576 * method. However, this error may result in an {@code
577 * IllegalStateException} only upon some subsequent operation on
578 * this phaser, if ever.
579 *
580 * @return the arrival phase number, or a negative value if terminated
581 * @throws IllegalStateException if not terminated and the number
582 * of unarrived parties would become negative
583 */
584 public int arrive() {
585 return doArrive(false);
586 }
587
588 /**
589 * Arrives at this phaser and deregisters from it without waiting
590 * for others to arrive. Deregistration reduces the number of
591 * parties required to advance in future phases. If this phaser
592 * has a parent, and deregistration causes this phaser to have
593 * zero parties, this phaser is also deregistered from its parent.
594 *
595 * <p>It is a usage error for an unregistered party to invoke this
596 * method. However, this error may result in an {@code
597 * IllegalStateException} only upon some subsequent operation on
598 * this phaser, if ever.
599 *
600 * @return the arrival phase number, or a negative value if terminated
601 * @throws IllegalStateException if not terminated and the number
602 * of registered or unarrived parties would become negative
603 */
604 public int arriveAndDeregister() {
605 return doArrive(true);
606 }
607
608 /**
609 * Arrives at this phaser and awaits others. Equivalent in effect
610 * to {@code awaitAdvance(arrive())}. If you need to await with
611 * interruption or timeout, you can arrange this with an analogous
612 * construction using one of the other forms of the {@code
613 * awaitAdvance} method. If instead you need to deregister upon
614 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
615 *
616 * <p>It is a usage error for an unregistered party to invoke this
617 * method. However, this error may result in an {@code
618 * IllegalStateException} only upon some subsequent operation on
619 * this phaser, if ever.
620 *
621 * @return the arrival phase number, or the (negative)
622 * {@linkplain #getPhase() current phase} if terminated
623 * @throws IllegalStateException if not terminated and the number
624 * of unarrived parties would become negative
625 */
626 public int arriveAndAwaitAdvance() {
627 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
628 final Phaser root = this.root;
629 for (;;) {
630 long s = (root == this) ? state : reconcileState();
631 int phase = (int)(s >>> PHASE_SHIFT);
632 int counts = (int)s;
633 int unarrived = (counts & UNARRIVED_MASK) - 1;
634 if (phase < 0)
635 return phase;
636 else if (counts == EMPTY || unarrived < 0) {
637 if (reconcileState() == s)
638 throw new IllegalStateException(badArrive(s));
639 }
640 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
641 s -= ONE_ARRIVAL)) {
642 if (unarrived != 0)
643 return root.internalAwaitAdvance(phase, null);
644 if (root != this)
645 return parent.arriveAndAwaitAdvance();
646 long n = s & PARTIES_MASK; // base of next state
647 int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
648 if (onAdvance(phase, nextUnarrived))
649 n |= TERMINATION_BIT;
650 else if (nextUnarrived == 0)
651 n |= EMPTY;
652 else
653 n |= nextUnarrived;
654 int nextPhase = (phase + 1) & MAX_PHASE;
655 n |= (long)nextPhase << PHASE_SHIFT;
656 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
657 return (int)(state >>> PHASE_SHIFT); // terminated
658 releaseWaiters(phase);
659 return nextPhase;
660 }
661 }
662 }
663
664 /**
665 * Awaits the phase of this phaser to advance from the given phase
666 * value, returning immediately if the current phase is not equal
667 * to the given phase value or this phaser is terminated.
668 *
669 * @param phase an arrival phase number, or negative value if
670 * terminated; this argument is normally the value returned by a
671 * previous call to {@code arrive} or {@code arriveAndDeregister}.
672 * @return the next arrival phase number, or the argument if it is
673 * negative, or the (negative) {@linkplain #getPhase() current phase}
674 * if terminated
675 */
676 public int awaitAdvance(int phase) {
677 final Phaser root = this.root;
678 long s = (root == this) ? state : reconcileState();
679 int p = (int)(s >>> PHASE_SHIFT);
680 if (phase < 0)
681 return phase;
682 if (p == phase)
683 return root.internalAwaitAdvance(phase, null);
684 return p;
685 }
686
687 /**
688 * Awaits the phase of this phaser to advance from the given phase
689 * value, throwing {@code InterruptedException} if interrupted
690 * while waiting, or returning immediately if the current phase is
691 * not equal to the given phase value or this phaser is
692 * terminated.
693 *
694 * @param phase an arrival phase number, or negative value if
695 * terminated; this argument is normally the value returned by a
696 * previous call to {@code arrive} or {@code arriveAndDeregister}.
697 * @return the next arrival phase number, or the argument if it is
698 * negative, or the (negative) {@linkplain #getPhase() current phase}
699 * if terminated
700 * @throws InterruptedException if thread interrupted while waiting
701 */
702 public int awaitAdvanceInterruptibly(int phase)
703 throws InterruptedException {
704 final Phaser root = this.root;
705 long s = (root == this) ? state : reconcileState();
706 int p = (int)(s >>> PHASE_SHIFT);
707 if (phase < 0)
708 return phase;
709 if (p == phase) {
710 QNode node = new QNode(this, phase, true, false, 0L);
711 p = root.internalAwaitAdvance(phase, node);
712 if (node.wasInterrupted)
713 throw new InterruptedException();
714 }
715 return p;
716 }
717
718 /**
719 * Awaits the phase of this phaser to advance from the given phase
720 * value or the given timeout to elapse, throwing {@code
721 * InterruptedException} if interrupted while waiting, or
722 * returning immediately if the current phase is not equal to the
723 * given phase value or this phaser is terminated.
724 *
725 * @param phase an arrival phase number, or negative value if
726 * terminated; this argument is normally the value returned by a
727 * previous call to {@code arrive} or {@code arriveAndDeregister}.
728 * @param timeout how long to wait before giving up, in units of
729 * {@code unit}
730 * @param unit a {@code TimeUnit} determining how to interpret the
731 * {@code timeout} parameter
732 * @return the next arrival phase number, or the argument if it is
733 * negative, or the (negative) {@linkplain #getPhase() current phase}
734 * if terminated
735 * @throws InterruptedException if thread interrupted while waiting
736 * @throws TimeoutException if timed out while waiting
737 */
738 public int awaitAdvanceInterruptibly(int phase,
739 long timeout, TimeUnit unit)
740 throws InterruptedException, TimeoutException {
741 long nanos = unit.toNanos(timeout);
742 final Phaser root = this.root;
743 long s = (root == this) ? state : reconcileState();
744 int p = (int)(s >>> PHASE_SHIFT);
745 if (phase < 0)
746 return phase;
747 if (p == phase) {
748 QNode node = new QNode(this, phase, true, true, nanos);
749 p = root.internalAwaitAdvance(phase, node);
750 if (node.wasInterrupted)
751 throw new InterruptedException();
752 else if (p == phase)
753 throw new TimeoutException();
754 }
755 return p;
756 }
757
758 /**
759 * Forces this phaser to enter termination state. Counts of
760 * registered parties are unaffected. If this phaser is a member
761 * of a tiered set of phasers, then all of the phasers in the set
762 * are terminated. If this phaser is already terminated, this
763 * method has no effect. This method may be useful for
764 * coordinating recovery after one or more tasks encounter
765 * unexpected exceptions.
766 */
767 public void forceTermination() {
768 // Only need to change root state
769 final Phaser root = this.root;
770 long s;
771 while ((s = root.state) >= 0) {
772 long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
773 if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
774 // signal all threads
775 releaseWaiters(0);
776 releaseWaiters(1);
777 return;
778 }
779 }
780 }
781
782 /**
783 * Returns the current phase number. The maximum phase number is
784 * {@code Integer.MAX_VALUE}, after which it restarts at
785 * zero. Upon termination, the phase number is negative,
786 * in which case the prevailing phase prior to termination
787 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
788 *
789 * @return the phase number, or a negative value if terminated
790 */
791 public final int getPhase() {
792 return (int)(root.state >>> PHASE_SHIFT);
793 }
794
795 /**
796 * Returns the number of parties registered at this phaser.
797 *
798 * @return the number of parties
799 */
800 public int getRegisteredParties() {
801 return partiesOf(state);
802 }
803
804 /**
805 * Returns the number of registered parties that have arrived at
806 * the current phase of this phaser.
807 *
808 * @return the number of arrived parties
809 */
810 public int getArrivedParties() {
811 return arrivedOf(reconcileState());
812 }
813
814 /**
815 * Returns the number of registered parties that have not yet
816 * arrived at the current phase of this phaser.
817 *
818 * @return the number of unarrived parties
819 */
820 public int getUnarrivedParties() {
821 return unarrivedOf(reconcileState());
822 }
823
824 /**
825 * Returns the parent of this phaser, or {@code null} if none.
826 *
827 * @return the parent of this phaser, or {@code null} if none
828 */
829 public Phaser getParent() {
830 return parent;
831 }
832
833 /**
834 * Returns the root ancestor of this phaser, which is the same as
835 * this phaser if it has no parent.
836 *
837 * @return the root ancestor of this phaser
838 */
839 public Phaser getRoot() {
840 return root;
841 }
842
843 /**
844 * Returns {@code true} if this phaser has been terminated.
845 *
846 * @return {@code true} if this phaser has been terminated
847 */
848 public boolean isTerminated() {
849 return root.state < 0L;
850 }
851
852 /**
853 * Overridable method to perform an action upon impending phase
854 * advance, and to control termination. This method is invoked
855 * upon arrival of the party advancing this phaser (when all other
856 * waiting parties are dormant). If this method returns {@code
857 * true}, this phaser will be set to a final termination state
858 * upon advance, and subsequent calls to {@link #isTerminated}
859 * will return true. Any (unchecked) Exception or Error thrown by
860 * an invocation of this method is propagated to the party
861 * attempting to advance this phaser, in which case no advance
862 * occurs.
863 *
864 * <p>The arguments to this method provide the state of the phaser
865 * prevailing for the current transition. The effects of invoking
866 * arrival, registration, and waiting methods on this phaser from
867 * within {@code onAdvance} are unspecified and should not be
868 * relied on.
869 *
870 * <p>If this phaser is a member of a tiered set of phasers, then
871 * {@code onAdvance} is invoked only for its root phaser on each
872 * advance.
873 *
874 * <p>To support the most common use cases, the default
875 * implementation of this method returns {@code true} when the
876 * number of registered parties has become zero as the result of a
877 * party invoking {@code arriveAndDeregister}. You can disable
878 * this behavior, thus enabling continuation upon future
879 * registrations, by overriding this method to always return
880 * {@code false}:
881 *
882 * <pre> {@code
883 * Phaser phaser = new Phaser() {
884 * protected boolean onAdvance(int phase, int parties) { return false; }
885 * }}</pre>
886 *
887 * @param phase the current phase number on entry to this method,
888 * before this phaser is advanced
889 * @param registeredParties the current number of registered parties
890 * @return {@code true} if this phaser should terminate
891 */
892 protected boolean onAdvance(int phase, int registeredParties) {
893 return registeredParties == 0;
894 }
895
896 /**
897 * Returns a string identifying this phaser, as well as its
898 * state. The state, in brackets, includes the String {@code
899 * "phase = "} followed by the phase number, {@code "parties = "}
900 * followed by the number of registered parties, and {@code
901 * "arrived = "} followed by the number of arrived parties.
902 *
903 * @return a string identifying this phaser, as well as its state
904 */
905 public String toString() {
906 return stateToString(reconcileState());
907 }
908
909 /**
910 * Implementation of toString and string-based error messages
911 */
912 private String stateToString(long s) {
913 return super.toString() +
914 "[phase = " + phaseOf(s) +
915 " parties = " + partiesOf(s) +
916 " arrived = " + arrivedOf(s) + "]";
917 }
918
919 // Waiting mechanics
920
921 /**
922 * Removes and signals threads from queue for phase.
923 */
924 private void releaseWaiters(int phase) {
925 QNode q; // first element of queue
926 Thread t; // its thread
927 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
928 while ((q = head.get()) != null &&
929 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
930 if (head.compareAndSet(q, q.next) &&
931 (t = q.thread) != null) {
932 q.thread = null;
933 LockSupport.unpark(t);
934 }
935 }
936 }
937
938 /**
939 * Variant of releaseWaiters that additionally tries to remove any
940 * nodes no longer waiting for advance due to timeout or
941 * interrupt. Currently, nodes are removed only if they are at
942 * head of queue, which suffices to reduce memory footprint in
943 * most usages.
944 *
945 * @return current phase on exit
946 */
947 private int abortWait(int phase) {
948 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
949 for (;;) {
950 Thread t;
951 QNode q = head.get();
952 int p = (int)(root.state >>> PHASE_SHIFT);
953 if (q == null || ((t = q.thread) != null && q.phase == p))
954 return p;
955 if (head.compareAndSet(q, q.next) && t != null) {
956 q.thread = null;
957 LockSupport.unpark(t);
958 }
959 }
960 }
961
962 /** The number of CPUs, for spin control */
963 private static final int NCPU = Runtime.getRuntime().availableProcessors();
964
965 /**
966 * The number of times to spin before blocking while waiting for
967 * advance, per arrival while waiting. On multiprocessors, fully
968 * blocking and waking up a large number of threads all at once is
969 * usually a very slow process, so we use rechargeable spins to
970 * avoid it when threads regularly arrive: When a thread in
971 * internalAwaitAdvance notices another arrival before blocking,
972 * and there appear to be enough CPUs available, it spins
973 * SPINS_PER_ARRIVAL more times before blocking. The value trades
974 * off good-citizenship vs big unnecessary slowdowns.
975 */
976 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
977
978 /**
979 * Possibly blocks and waits for phase to advance unless aborted.
980 * Call only from root node.
981 *
982 * @param phase current phase
983 * @param node if non-null, the wait node to track interrupt and timeout;
984 * if null, denotes noninterruptible wait
985 * @return current phase
986 */
987 private int internalAwaitAdvance(int phase, QNode node) {
988 releaseWaiters(phase-1); // ensure old queue clean
989 boolean queued = false; // true when node is enqueued
990 int lastUnarrived = 0; // to increase spins upon change
991 int spins = SPINS_PER_ARRIVAL;
992 long s;
993 int p;
994 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
995 if (node == null) { // spinning in noninterruptible mode
996 int unarrived = (int)s & UNARRIVED_MASK;
997 if (unarrived != lastUnarrived &&
998 (lastUnarrived = unarrived) < NCPU)
999 spins += SPINS_PER_ARRIVAL;
1000 boolean interrupted = Thread.interrupted();
1001 if (interrupted || --spins < 0) { // need node to record intr
1002 node = new QNode(this, phase, false, false, 0L);
1003 node.wasInterrupted = interrupted;
1004 }
1005 }
1006 else if (node.isReleasable()) // done or aborted
1007 break;
1008 else if (!queued) { // push onto queue
1009 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1010 QNode q = node.next = head.get();
1011 if ((q == null || q.phase == phase) &&
1012 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1013 queued = head.compareAndSet(q, node);
1014 }
1015 else {
1016 try {
1017 ForkJoinPool.managedBlock(node);
1018 } catch (InterruptedException ie) {
1019 node.wasInterrupted = true;
1020 }
1021 }
1022 }
1023
1024 if (node != null) {
1025 if (node.thread != null)
1026 node.thread = null; // avoid need for unpark()
1027 if (node.wasInterrupted && !node.interruptible)
1028 Thread.currentThread().interrupt();
1029 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1030 return abortWait(phase); // possibly clean up on abort
1031 }
1032 releaseWaiters(phase);
1033 return p;
1034 }
1035
1036 /**
1037 * Wait nodes for Treiber stack representing wait queue
1038 */
1039 static final class QNode implements ForkJoinPool.ManagedBlocker {
1040 final Phaser phaser;
1041 final int phase;
1042 final boolean interruptible;
1043 final boolean timed;
1044 boolean wasInterrupted;
1045 long nanos;
1046 long lastTime;
1047 volatile Thread thread; // nulled to cancel wait
1048 QNode next;
1049
1050 QNode(Phaser phaser, int phase, boolean interruptible,
1051 boolean timed, long nanos) {
1052 this.phaser = phaser;
1053 this.phase = phase;
1054 this.interruptible = interruptible;
1055 this.nanos = nanos;
1056 this.timed = timed;
1057 this.lastTime = timed ? System.nanoTime() : 0L;
1058 thread = Thread.currentThread();
1059 }
1060
1061 public boolean isReleasable() {
1062 if (thread == null)
1063 return true;
1064 if (phaser.getPhase() != phase) {
1065 thread = null;
1066 return true;
1067 }
1068 if (Thread.interrupted())
1069 wasInterrupted = true;
1070 if (wasInterrupted && interruptible) {
1071 thread = null;
1072 return true;
1073 }
1074 if (timed) {
1075 if (nanos > 0L) {
1076 long now = System.nanoTime();
1077 nanos -= now - lastTime;
1078 lastTime = now;
1079 }
1080 if (nanos <= 0L) {
1081 thread = null;
1082 return true;
1083 }
1084 }
1085 return false;
1086 }
1087
1088 public boolean block() {
1089 if (isReleasable())
1090 return true;
1091 else if (!timed)
1092 LockSupport.park(this);
1093 else if (nanos > 0)
1094 LockSupport.parkNanos(this, nanos);
1095 return isReleasable();
1096 }
1097 }
1098
1099 // Unsafe mechanics
1100
1101 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1102 private static final long stateOffset =
1103 objectFieldOffset("state", Phaser.class);
1104
1105 private static long objectFieldOffset(String field, Class<?> klazz) {
1106 try {
1107 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1108 } catch (NoSuchFieldException e) {
1109 // Convert Exception to corresponding Error
1110 NoSuchFieldError error = new NoSuchFieldError(field);
1111 error.initCause(e);
1112 throw error;
1113 }
1114 }
1115 }