ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.65
Committed: Sun Oct 9 21:18:37 2011 UTC (12 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.64: +2 -2 lines
Log Message:
optimize for unarrived > 1

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (final Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four bit-fields:
241 *
242 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * parties -- the number of parties to wait (bits 16-31)
244 * phase -- the generation of the barrier (bits 32-62)
245 * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished by the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed -- see method
264 * reconcileState.
265 */
266 private volatile long state;
267
268 private static final int MAX_PARTIES = 0xffff;
269 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 private static final int PARTIES_SHIFT = 16;
271 private static final int PHASE_SHIFT = 32;
272 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274 private static final long TERMINATION_BIT = 1L << 63;
275
276 // some special values
277 private static final int ONE_ARRIVAL = 1;
278 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 private static final int EMPTY = 1;
280
281 // The following unpacking methods are usually manually inlined
282
283 private static int unarrivedOf(long s) {
284 int counts = (int)s;
285 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
286 }
287
288 private static int partiesOf(long s) {
289 return (int)s >>> PARTIES_SHIFT;
290 }
291
292 private static int phaseOf(long s) {
293 return (int)(s >>> PHASE_SHIFT);
294 }
295
296 private static int arrivedOf(long s) {
297 int counts = (int)s;
298 return (counts == EMPTY) ? 0 :
299 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 }
301
302 /**
303 * The parent of this phaser, or null if none
304 */
305 private final Phaser parent;
306
307 /**
308 * The root of phaser tree. Equals this if not in a tree.
309 */
310 private final Phaser root;
311
312 /**
313 * Heads of Treiber stacks for waiting threads. To eliminate
314 * contention when releasing some threads while adding others, we
315 * use two of them, alternating across even and odd phases.
316 * Subphasers share queues with root to speed up releases.
317 */
318 private final AtomicReference<QNode> evenQ;
319 private final AtomicReference<QNode> oddQ;
320
321 private AtomicReference<QNode> queueFor(int phase) {
322 return ((phase & 1) == 0) ? evenQ : oddQ;
323 }
324
325 /**
326 * Returns message string for bounds exceptions on arrival.
327 */
328 private String badArrive(long s) {
329 return "Attempted arrival of unregistered party for " +
330 stateToString(s);
331 }
332
333 /**
334 * Returns message string for bounds exceptions on registration.
335 */
336 private String badRegister(long s) {
337 return "Attempt to register more than " +
338 MAX_PARTIES + " parties for " + stateToString(s);
339 }
340
341 /**
342 * Main implementation for methods arrive and arriveAndDeregister.
343 * Manually tuned to speed up and minimize race windows for the
344 * common case of just decrementing unarrived field.
345 *
346 * @param deregister false for arrive, true for arriveAndDeregister
347 */
348 private int doArrive(boolean deregister) {
349 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 final Phaser root = this.root;
351 for (;;) {
352 long s = (root == this) ? state : reconcileState();
353 int phase = (int)(s >>> PHASE_SHIFT);
354 if (phase < 0)
355 return phase;
356 int counts = (int)s;
357 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
358 if (unarrived <= 0)
359 throw new IllegalStateException(badArrive(s));
360 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
361 if (unarrived == 1) {
362 long n = s & PARTIES_MASK; // base of next state
363 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
364 if (root == this) {
365 if (onAdvance(phase, nextUnarrived))
366 n |= TERMINATION_BIT;
367 else if (nextUnarrived == 0)
368 n |= EMPTY;
369 else
370 n |= nextUnarrived;
371 int nextPhase = (phase + 1) & MAX_PHASE;
372 n |= (long)nextPhase << PHASE_SHIFT;
373 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
374 }
375 else if (nextUnarrived == 0) { // propagate deregistration
376 phase = parent.doArrive(true);
377 UNSAFE.compareAndSwapLong(this, stateOffset,
378 s, s | EMPTY);
379 }
380 else
381 phase = parent.doArrive(false);
382 releaseWaiters(phase);
383 }
384 return phase;
385 }
386 }
387 }
388
389 /**
390 * Implementation of register, bulkRegister
391 *
392 * @param registrations number to add to both parties and
393 * unarrived fields. Must be greater than zero.
394 */
395 private int doRegister(int registrations) {
396 // adjustment to state
397 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
398 final Phaser parent = this.parent;
399 int phase;
400 for (;;) {
401 long s = (parent == null) ? state : reconcileState();
402 int counts = (int)s;
403 int parties = counts >>> PARTIES_SHIFT;
404 int unarrived = counts & UNARRIVED_MASK;
405 if (registrations > MAX_PARTIES - parties)
406 throw new IllegalStateException(badRegister(s));
407 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
408 break;
409 else if (counts != EMPTY) { // not 1st registration
410 if (parent == null || reconcileState() == s) {
411 if (unarrived == 0) // wait out advance
412 root.internalAwaitAdvance(phase, null);
413 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
414 s, s + adj))
415 break;
416 }
417 }
418 else if (parent == null) { // 1st root registration
419 long next = ((long)phase << PHASE_SHIFT) | adj;
420 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
421 break;
422 }
423 else {
424 synchronized (this) { // 1st sub registration
425 if (state == s) { // recheck under lock
426 parent.doRegister(1);
427 do { // force current phase
428 phase = (int)(root.state >>> PHASE_SHIFT);
429 // assert phase < 0 || (int)state == EMPTY;
430 } while (!UNSAFE.compareAndSwapLong
431 (this, stateOffset, state,
432 ((long)phase << PHASE_SHIFT) | adj));
433 break;
434 }
435 }
436 }
437 }
438 return phase;
439 }
440
441 /**
442 * Resolves lagged phase propagation from root if necessary.
443 * Reconciliation normally occurs when root has advanced but
444 * subphasers have not yet done so, in which case they must finish
445 * their own advance by setting unarrived to parties (or if
446 * parties is zero, resetting to unregistered EMPTY state).
447 * However, this method may also be called when "floating"
448 * subphasers with possibly some unarrived parties are merely
449 * catching up to current phase, in which case counts are
450 * unaffected.
451 *
452 * @return reconciled state
453 */
454 private long reconcileState() {
455 final Phaser root = this.root;
456 long s = state;
457 if (root != this) {
458 int phase, u, p;
459 // CAS root phase with current parties; possibly trip unarrived
460 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
461 (int)(s >>> PHASE_SHIFT) &&
462 !UNSAFE.compareAndSwapLong
463 (this, stateOffset, s,
464 s = (((long)phase << PHASE_SHIFT) |
465 (s & PARTIES_MASK) |
466 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
467 ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
468 p : u))))
469 s = state;
470 }
471 return s;
472 }
473
474 /**
475 * Creates a new phaser with no initially registered parties, no
476 * parent, and initial phase number 0. Any thread using this
477 * phaser will need to first register for it.
478 */
479 public Phaser() {
480 this(null, 0);
481 }
482
483 /**
484 * Creates a new phaser with the given number of registered
485 * unarrived parties, no parent, and initial phase number 0.
486 *
487 * @param parties the number of parties required to advance to the
488 * next phase
489 * @throws IllegalArgumentException if parties less than zero
490 * or greater than the maximum number of parties supported
491 */
492 public Phaser(int parties) {
493 this(null, parties);
494 }
495
496 /**
497 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
498 *
499 * @param parent the parent phaser
500 */
501 public Phaser(Phaser parent) {
502 this(parent, 0);
503 }
504
505 /**
506 * Creates a new phaser with the given parent and number of
507 * registered unarrived parties. When the given parent is non-null
508 * and the given number of parties is greater than zero, this
509 * child phaser is registered with its parent.
510 *
511 * @param parent the parent phaser
512 * @param parties the number of parties required to advance to the
513 * next phase
514 * @throws IllegalArgumentException if parties less than zero
515 * or greater than the maximum number of parties supported
516 */
517 public Phaser(Phaser parent, int parties) {
518 if (parties >>> PARTIES_SHIFT != 0)
519 throw new IllegalArgumentException("Illegal number of parties");
520 int phase = 0;
521 this.parent = parent;
522 if (parent != null) {
523 final Phaser root = parent.root;
524 this.root = root;
525 this.evenQ = root.evenQ;
526 this.oddQ = root.oddQ;
527 if (parties != 0)
528 phase = parent.doRegister(1);
529 }
530 else {
531 this.root = this;
532 this.evenQ = new AtomicReference<QNode>();
533 this.oddQ = new AtomicReference<QNode>();
534 }
535 this.state = (parties == 0) ? (long)EMPTY :
536 ((long)phase << PHASE_SHIFT) |
537 ((long)parties << PARTIES_SHIFT) |
538 ((long)parties);
539 }
540
541 /**
542 * Adds a new unarrived party to this phaser. If an ongoing
543 * invocation of {@link #onAdvance} is in progress, this method
544 * may await its completion before returning. If this phaser has
545 * a parent, and this phaser previously had no registered parties,
546 * this child phaser is also registered with its parent. If
547 * this phaser is terminated, the attempt to register has
548 * no effect, and a negative value is returned.
549 *
550 * @return the arrival phase number to which this registration
551 * applied. If this value is negative, then this phaser has
552 * terminated, in which case registration has no effect.
553 * @throws IllegalStateException if attempting to register more
554 * than the maximum supported number of parties
555 */
556 public int register() {
557 return doRegister(1);
558 }
559
560 /**
561 * Adds the given number of new unarrived parties to this phaser.
562 * If an ongoing invocation of {@link #onAdvance} is in progress,
563 * this method may await its completion before returning. If this
564 * phaser has a parent, and the given number of parties is greater
565 * than zero, and this phaser previously had no registered
566 * parties, this child phaser is also registered with its parent.
567 * If this phaser is terminated, the attempt to register has no
568 * effect, and a negative value is returned.
569 *
570 * @param parties the number of additional parties required to
571 * advance to the next phase
572 * @return the arrival phase number to which this registration
573 * applied. If this value is negative, then this phaser has
574 * terminated, in which case registration has no effect.
575 * @throws IllegalStateException if attempting to register more
576 * than the maximum supported number of parties
577 * @throws IllegalArgumentException if {@code parties < 0}
578 */
579 public int bulkRegister(int parties) {
580 if (parties < 0)
581 throw new IllegalArgumentException();
582 if (parties == 0)
583 return getPhase();
584 return doRegister(parties);
585 }
586
587 /**
588 * Arrives at this phaser, without waiting for others to arrive.
589 *
590 * <p>It is a usage error for an unregistered party to invoke this
591 * method. However, this error may result in an {@code
592 * IllegalStateException} only upon some subsequent operation on
593 * this phaser, if ever.
594 *
595 * @return the arrival phase number, or a negative value if terminated
596 * @throws IllegalStateException if not terminated and the number
597 * of unarrived parties would become negative
598 */
599 public int arrive() {
600 return doArrive(false);
601 }
602
603 /**
604 * Arrives at this phaser and deregisters from it without waiting
605 * for others to arrive. Deregistration reduces the number of
606 * parties required to advance in future phases. If this phaser
607 * has a parent, and deregistration causes this phaser to have
608 * zero parties, this phaser is also deregistered from its parent.
609 *
610 * <p>It is a usage error for an unregistered party to invoke this
611 * method. However, this error may result in an {@code
612 * IllegalStateException} only upon some subsequent operation on
613 * this phaser, if ever.
614 *
615 * @return the arrival phase number, or a negative value if terminated
616 * @throws IllegalStateException if not terminated and the number
617 * of registered or unarrived parties would become negative
618 */
619 public int arriveAndDeregister() {
620 return doArrive(true);
621 }
622
623 /**
624 * Arrives at this phaser and awaits others. Equivalent in effect
625 * to {@code awaitAdvance(arrive())}. If you need to await with
626 * interruption or timeout, you can arrange this with an analogous
627 * construction using one of the other forms of the {@code
628 * awaitAdvance} method. If instead you need to deregister upon
629 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
630 *
631 * <p>It is a usage error for an unregistered party to invoke this
632 * method. However, this error may result in an {@code
633 * IllegalStateException} only upon some subsequent operation on
634 * this phaser, if ever.
635 *
636 * @return the arrival phase number, or the (negative)
637 * {@linkplain #getPhase() current phase} if terminated
638 * @throws IllegalStateException if not terminated and the number
639 * of unarrived parties would become negative
640 */
641 public int arriveAndAwaitAdvance() {
642 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
643 final Phaser root = this.root;
644 for (;;) {
645 long s = (root == this) ? state : reconcileState();
646 int phase = (int)(s >>> PHASE_SHIFT);
647 if (phase < 0)
648 return phase;
649 int counts = (int)s;
650 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
651 if (unarrived <= 0)
652 throw new IllegalStateException(badArrive(s));
653 if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
654 s -= ONE_ARRIVAL)) {
655 if (unarrived > 1)
656 return root.internalAwaitAdvance(phase, null);
657 if (root != this)
658 return parent.arriveAndAwaitAdvance();
659 long n = s & PARTIES_MASK; // base of next state
660 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
661 if (onAdvance(phase, nextUnarrived))
662 n |= TERMINATION_BIT;
663 else if (nextUnarrived == 0)
664 n |= EMPTY;
665 else
666 n |= nextUnarrived;
667 int nextPhase = (phase + 1) & MAX_PHASE;
668 n |= (long)nextPhase << PHASE_SHIFT;
669 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
670 return (int)(state >>> PHASE_SHIFT); // terminated
671 releaseWaiters(phase);
672 return nextPhase;
673 }
674 }
675 }
676
677 /**
678 * Awaits the phase of this phaser to advance from the given phase
679 * value, returning immediately if the current phase is not equal
680 * to the given phase value or this phaser is terminated.
681 *
682 * @param phase an arrival phase number, or negative value if
683 * terminated; this argument is normally the value returned by a
684 * previous call to {@code arrive} or {@code arriveAndDeregister}.
685 * @return the next arrival phase number, or the argument if it is
686 * negative, or the (negative) {@linkplain #getPhase() current phase}
687 * if terminated
688 */
689 public int awaitAdvance(int phase) {
690 final Phaser root = this.root;
691 long s = (root == this) ? state : reconcileState();
692 int p = (int)(s >>> PHASE_SHIFT);
693 if (phase < 0)
694 return phase;
695 if (p == phase)
696 return root.internalAwaitAdvance(phase, null);
697 return p;
698 }
699
700 /**
701 * Awaits the phase of this phaser to advance from the given phase
702 * value, throwing {@code InterruptedException} if interrupted
703 * while waiting, or returning immediately if the current phase is
704 * not equal to the given phase value or this phaser is
705 * terminated.
706 *
707 * @param phase an arrival phase number, or negative value if
708 * terminated; this argument is normally the value returned by a
709 * previous call to {@code arrive} or {@code arriveAndDeregister}.
710 * @return the next arrival phase number, or the argument if it is
711 * negative, or the (negative) {@linkplain #getPhase() current phase}
712 * if terminated
713 * @throws InterruptedException if thread interrupted while waiting
714 */
715 public int awaitAdvanceInterruptibly(int phase)
716 throws InterruptedException {
717 final Phaser root = this.root;
718 long s = (root == this) ? state : reconcileState();
719 int p = (int)(s >>> PHASE_SHIFT);
720 if (phase < 0)
721 return phase;
722 if (p == phase) {
723 QNode node = new QNode(this, phase, true, false, 0L);
724 p = root.internalAwaitAdvance(phase, node);
725 if (node.wasInterrupted)
726 throw new InterruptedException();
727 }
728 return p;
729 }
730
731 /**
732 * Awaits the phase of this phaser to advance from the given phase
733 * value or the given timeout to elapse, throwing {@code
734 * InterruptedException} if interrupted while waiting, or
735 * returning immediately if the current phase is not equal to the
736 * given phase value or this phaser is terminated.
737 *
738 * @param phase an arrival phase number, or negative value if
739 * terminated; this argument is normally the value returned by a
740 * previous call to {@code arrive} or {@code arriveAndDeregister}.
741 * @param timeout how long to wait before giving up, in units of
742 * {@code unit}
743 * @param unit a {@code TimeUnit} determining how to interpret the
744 * {@code timeout} parameter
745 * @return the next arrival phase number, or the argument if it is
746 * negative, or the (negative) {@linkplain #getPhase() current phase}
747 * if terminated
748 * @throws InterruptedException if thread interrupted while waiting
749 * @throws TimeoutException if timed out while waiting
750 */
751 public int awaitAdvanceInterruptibly(int phase,
752 long timeout, TimeUnit unit)
753 throws InterruptedException, TimeoutException {
754 long nanos = unit.toNanos(timeout);
755 final Phaser root = this.root;
756 long s = (root == this) ? state : reconcileState();
757 int p = (int)(s >>> PHASE_SHIFT);
758 if (phase < 0)
759 return phase;
760 if (p == phase) {
761 QNode node = new QNode(this, phase, true, true, nanos);
762 p = root.internalAwaitAdvance(phase, node);
763 if (node.wasInterrupted)
764 throw new InterruptedException();
765 else if (p == phase)
766 throw new TimeoutException();
767 }
768 return p;
769 }
770
771 /**
772 * Forces this phaser to enter termination state. Counts of
773 * registered parties are unaffected. If this phaser is a member
774 * of a tiered set of phasers, then all of the phasers in the set
775 * are terminated. If this phaser is already terminated, this
776 * method has no effect. This method may be useful for
777 * coordinating recovery after one or more tasks encounter
778 * unexpected exceptions.
779 */
780 public void forceTermination() {
781 // Only need to change root state
782 final Phaser root = this.root;
783 long s;
784 while ((s = root.state) >= 0) {
785 if (UNSAFE.compareAndSwapLong(root, stateOffset,
786 s, s | TERMINATION_BIT)) {
787 // signal all threads
788 releaseWaiters(0);
789 releaseWaiters(1);
790 return;
791 }
792 }
793 }
794
795 /**
796 * Returns the current phase number. The maximum phase number is
797 * {@code Integer.MAX_VALUE}, after which it restarts at
798 * zero. Upon termination, the phase number is negative,
799 * in which case the prevailing phase prior to termination
800 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
801 *
802 * @return the phase number, or a negative value if terminated
803 */
804 public final int getPhase() {
805 return (int)(root.state >>> PHASE_SHIFT);
806 }
807
808 /**
809 * Returns the number of parties registered at this phaser.
810 *
811 * @return the number of parties
812 */
813 public int getRegisteredParties() {
814 return partiesOf(state);
815 }
816
817 /**
818 * Returns the number of registered parties that have arrived at
819 * the current phase of this phaser. If this phaser has terminated,
820 * the returned value is meaningless and arbitrary.
821 *
822 * @return the number of arrived parties
823 */
824 public int getArrivedParties() {
825 return arrivedOf(reconcileState());
826 }
827
828 /**
829 * Returns the number of registered parties that have not yet
830 * arrived at the current phase of this phaser. If this phaser has
831 * terminated, the returned value is meaningless and arbitrary.
832 *
833 * @return the number of unarrived parties
834 */
835 public int getUnarrivedParties() {
836 return unarrivedOf(reconcileState());
837 }
838
839 /**
840 * Returns the parent of this phaser, or {@code null} if none.
841 *
842 * @return the parent of this phaser, or {@code null} if none
843 */
844 public Phaser getParent() {
845 return parent;
846 }
847
848 /**
849 * Returns the root ancestor of this phaser, which is the same as
850 * this phaser if it has no parent.
851 *
852 * @return the root ancestor of this phaser
853 */
854 public Phaser getRoot() {
855 return root;
856 }
857
858 /**
859 * Returns {@code true} if this phaser has been terminated.
860 *
861 * @return {@code true} if this phaser has been terminated
862 */
863 public boolean isTerminated() {
864 return root.state < 0L;
865 }
866
867 /**
868 * Overridable method to perform an action upon impending phase
869 * advance, and to control termination. This method is invoked
870 * upon arrival of the party advancing this phaser (when all other
871 * waiting parties are dormant). If this method returns {@code
872 * true}, this phaser will be set to a final termination state
873 * upon advance, and subsequent calls to {@link #isTerminated}
874 * will return true. Any (unchecked) Exception or Error thrown by
875 * an invocation of this method is propagated to the party
876 * attempting to advance this phaser, in which case no advance
877 * occurs.
878 *
879 * <p>The arguments to this method provide the state of the phaser
880 * prevailing for the current transition. The effects of invoking
881 * arrival, registration, and waiting methods on this phaser from
882 * within {@code onAdvance} are unspecified and should not be
883 * relied on.
884 *
885 * <p>If this phaser is a member of a tiered set of phasers, then
886 * {@code onAdvance} is invoked only for its root phaser on each
887 * advance.
888 *
889 * <p>To support the most common use cases, the default
890 * implementation of this method returns {@code true} when the
891 * number of registered parties has become zero as the result of a
892 * party invoking {@code arriveAndDeregister}. You can disable
893 * this behavior, thus enabling continuation upon future
894 * registrations, by overriding this method to always return
895 * {@code false}:
896 *
897 * <pre> {@code
898 * Phaser phaser = new Phaser() {
899 * protected boolean onAdvance(int phase, int parties) { return false; }
900 * }}</pre>
901 *
902 * @param phase the current phase number on entry to this method,
903 * before this phaser is advanced
904 * @param registeredParties the current number of registered parties
905 * @return {@code true} if this phaser should terminate
906 */
907 protected boolean onAdvance(int phase, int registeredParties) {
908 return registeredParties == 0;
909 }
910
911 /**
912 * Returns a string identifying this phaser, as well as its
913 * state. The state, in brackets, includes the String {@code
914 * "phase = "} followed by the phase number, {@code "parties = "}
915 * followed by the number of registered parties, and {@code
916 * "arrived = "} followed by the number of arrived parties.
917 *
918 * @return a string identifying this phaser, as well as its state
919 */
920 public String toString() {
921 return stateToString(reconcileState());
922 }
923
924 /**
925 * Implementation of toString and string-based error messages
926 */
927 private String stateToString(long s) {
928 return super.toString() +
929 "[phase = " + phaseOf(s) +
930 " parties = " + partiesOf(s) +
931 " arrived = " + arrivedOf(s) + "]";
932 }
933
934 // Waiting mechanics
935
936 /**
937 * Removes and signals threads from queue for phase.
938 */
939 private void releaseWaiters(int phase) {
940 QNode q; // first element of queue
941 Thread t; // its thread
942 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
943 while ((q = head.get()) != null &&
944 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
945 if (head.compareAndSet(q, q.next) &&
946 (t = q.thread) != null) {
947 q.thread = null;
948 LockSupport.unpark(t);
949 }
950 }
951 }
952
953 /**
954 * Variant of releaseWaiters that additionally tries to remove any
955 * nodes no longer waiting for advance due to timeout or
956 * interrupt. Currently, nodes are removed only if they are at
957 * head of queue, which suffices to reduce memory footprint in
958 * most usages.
959 *
960 * @return current phase on exit
961 */
962 private int abortWait(int phase) {
963 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
964 for (;;) {
965 Thread t;
966 QNode q = head.get();
967 int p = (int)(root.state >>> PHASE_SHIFT);
968 if (q == null || ((t = q.thread) != null && q.phase == p))
969 return p;
970 if (head.compareAndSet(q, q.next) && t != null) {
971 q.thread = null;
972 LockSupport.unpark(t);
973 }
974 }
975 }
976
977 /** The number of CPUs, for spin control */
978 private static final int NCPU = Runtime.getRuntime().availableProcessors();
979
980 /**
981 * The number of times to spin before blocking while waiting for
982 * advance, per arrival while waiting. On multiprocessors, fully
983 * blocking and waking up a large number of threads all at once is
984 * usually a very slow process, so we use rechargeable spins to
985 * avoid it when threads regularly arrive: When a thread in
986 * internalAwaitAdvance notices another arrival before blocking,
987 * and there appear to be enough CPUs available, it spins
988 * SPINS_PER_ARRIVAL more times before blocking. The value trades
989 * off good-citizenship vs big unnecessary slowdowns.
990 */
991 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
992
993 /**
994 * Possibly blocks and waits for phase to advance unless aborted.
995 * Call only on root phaser.
996 *
997 * @param phase current phase
998 * @param node if non-null, the wait node to track interrupt and timeout;
999 * if null, denotes noninterruptible wait
1000 * @return current phase
1001 */
1002 private int internalAwaitAdvance(int phase, QNode node) {
1003 // assert root == this;
1004 releaseWaiters(phase-1); // ensure old queue clean
1005 boolean queued = false; // true when node is enqueued
1006 int lastUnarrived = 0; // to increase spins upon change
1007 int spins = SPINS_PER_ARRIVAL;
1008 long s;
1009 int p;
1010 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1011 if (node == null) { // spinning in noninterruptible mode
1012 int unarrived = (int)s & UNARRIVED_MASK;
1013 if (unarrived != lastUnarrived &&
1014 (lastUnarrived = unarrived) < NCPU)
1015 spins += SPINS_PER_ARRIVAL;
1016 boolean interrupted = Thread.interrupted();
1017 if (interrupted || --spins < 0) { // need node to record intr
1018 node = new QNode(this, phase, false, false, 0L);
1019 node.wasInterrupted = interrupted;
1020 }
1021 }
1022 else if (node.isReleasable()) // done or aborted
1023 break;
1024 else if (!queued) { // push onto queue
1025 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1026 QNode q = node.next = head.get();
1027 if ((q == null || q.phase == phase) &&
1028 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1029 queued = head.compareAndSet(q, node);
1030 }
1031 else {
1032 try {
1033 ForkJoinPool.managedBlock(node);
1034 } catch (InterruptedException ie) {
1035 node.wasInterrupted = true;
1036 }
1037 }
1038 }
1039
1040 if (node != null) {
1041 if (node.thread != null)
1042 node.thread = null; // avoid need for unpark()
1043 if (node.wasInterrupted && !node.interruptible)
1044 Thread.currentThread().interrupt();
1045 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1046 return abortWait(phase); // possibly clean up on abort
1047 }
1048 releaseWaiters(phase);
1049 return p;
1050 }
1051
1052 /**
1053 * Wait nodes for Treiber stack representing wait queue
1054 */
1055 static final class QNode implements ForkJoinPool.ManagedBlocker {
1056 final Phaser phaser;
1057 final int phase;
1058 final boolean interruptible;
1059 final boolean timed;
1060 boolean wasInterrupted;
1061 long nanos;
1062 long lastTime;
1063 volatile Thread thread; // nulled to cancel wait
1064 QNode next;
1065
1066 QNode(Phaser phaser, int phase, boolean interruptible,
1067 boolean timed, long nanos) {
1068 this.phaser = phaser;
1069 this.phase = phase;
1070 this.interruptible = interruptible;
1071 this.nanos = nanos;
1072 this.timed = timed;
1073 this.lastTime = timed ? System.nanoTime() : 0L;
1074 thread = Thread.currentThread();
1075 }
1076
1077 public boolean isReleasable() {
1078 if (thread == null)
1079 return true;
1080 if (phaser.getPhase() != phase) {
1081 thread = null;
1082 return true;
1083 }
1084 if (Thread.interrupted())
1085 wasInterrupted = true;
1086 if (wasInterrupted && interruptible) {
1087 thread = null;
1088 return true;
1089 }
1090 if (timed) {
1091 if (nanos > 0L) {
1092 long now = System.nanoTime();
1093 nanos -= now - lastTime;
1094 lastTime = now;
1095 }
1096 if (nanos <= 0L) {
1097 thread = null;
1098 return true;
1099 }
1100 }
1101 return false;
1102 }
1103
1104 public boolean block() {
1105 if (isReleasable())
1106 return true;
1107 else if (!timed)
1108 LockSupport.park(this);
1109 else if (nanos > 0)
1110 LockSupport.parkNanos(this, nanos);
1111 return isReleasable();
1112 }
1113 }
1114
1115 // Unsafe mechanics
1116
1117 private static final sun.misc.Unsafe UNSAFE;
1118 private static final long stateOffset;
1119 static {
1120 try {
1121 UNSAFE = sun.misc.Unsafe.getUnsafe();
1122 Class<?> k = Phaser.class;
1123 stateOffset = UNSAFE.objectFieldOffset
1124 (k.getDeclaredField("state"));
1125 } catch (Exception e) {
1126 throw new Error(e);
1127 }
1128 }
1129 }