ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.77
Committed: Sun Jan 4 01:06:15 2015 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.76: +1 -1 lines
Log Message:
use ReflectiveOperationException for Unsafe mechanics

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.atomic.AtomicReference;
10 import java.util.concurrent.locks.LockSupport;
11
12 /**
13 * A reusable synchronization barrier, similar in functionality to
14 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
15 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
16 * but supporting more flexible usage.
17 *
18 * <p><b>Registration.</b> Unlike the case for other barriers, the
19 * number of parties <em>registered</em> to synchronize on a phaser
20 * may vary over time. Tasks may be registered at any time (using
21 * methods {@link #register}, {@link #bulkRegister}, or forms of
22 * constructors establishing initial numbers of parties), and
23 * optionally deregistered upon any arrival (using {@link
24 * #arriveAndDeregister}). As is the case with most basic
25 * synchronization constructs, registration and deregistration affect
26 * only internal counts; they do not establish any further internal
27 * bookkeeping, so tasks cannot query whether they are registered.
28 * (However, you can introduce such bookkeeping by subclassing this
29 * class.)
30 *
31 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
32 * Phaser} may be repeatedly awaited. Method {@link
33 * #arriveAndAwaitAdvance} has effect analogous to {@link
34 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
35 * generation of a phaser has an associated phase number. The phase
36 * number starts at zero, and advances when all parties arrive at the
37 * phaser, wrapping around to zero after reaching {@code
38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
39 * control of actions upon arrival at a phaser and upon awaiting
40 * others, via two kinds of methods that may be invoked by any
41 * registered party:
42 *
43 * <ul>
44 *
45 * <li> <b>Arrival.</b> Methods {@link #arrive} and
46 * {@link #arriveAndDeregister} record arrival. These methods
47 * do not block, but return an associated <em>arrival phase
48 * number</em>; that is, the phase number of the phaser to which
49 * the arrival applied. When the final party for a given phase
50 * arrives, an optional action is performed and the phase
51 * advances. These actions are performed by the party
52 * triggering a phase advance, and are arranged by overriding
53 * method {@link #onAdvance(int, int)}, which also controls
54 * termination. Overriding this method is similar to, but more
55 * flexible than, providing a barrier action to a {@code
56 * CyclicBarrier}.
57 *
58 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
59 * argument indicating an arrival phase number, and returns when
60 * the phaser advances to (or is already at) a different phase.
61 * Unlike similar constructions using {@code CyclicBarrier},
62 * method {@code awaitAdvance} continues to wait even if the
63 * waiting thread is interrupted. Interruptible and timeout
64 * versions are also available, but exceptions encountered while
65 * tasks wait interruptibly or with timeout do not change the
66 * state of the phaser. If necessary, you can perform any
67 * associated recovery within handlers of those exceptions,
68 * often after invoking {@code forceTermination}. Phasers may
69 * also be used by tasks executing in a {@link ForkJoinPool},
70 * which will ensure sufficient parallelism to execute tasks
71 * when others are blocked waiting for a phase to advance.
72 *
73 * </ul>
74 *
75 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
76 * state, that may be checked using method {@link #isTerminated}. Upon
77 * termination, all synchronization methods immediately return without
78 * waiting for advance, as indicated by a negative return value.
79 * Similarly, attempts to register upon termination have no effect.
80 * Termination is triggered when an invocation of {@code onAdvance}
81 * returns {@code true}. The default implementation returns {@code
82 * true} if a deregistration has caused the number of registered
83 * parties to become zero. As illustrated below, when phasers control
84 * actions with a fixed number of iterations, it is often convenient
85 * to override this method to cause termination when the current phase
86 * number reaches a threshold. Method {@link #forceTermination} is
87 * also available to abruptly release waiting threads and allow them
88 * to terminate.
89 *
90 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
91 * constructed in tree structures) to reduce contention. Phasers with
92 * large numbers of parties that would otherwise experience heavy
93 * synchronization contention costs may instead be set up so that
94 * groups of sub-phasers share a common parent. This may greatly
95 * increase throughput even though it incurs greater per-operation
96 * overhead.
97 *
98 * <p>In a tree of tiered phasers, registration and deregistration of
99 * child phasers with their parent are managed automatically.
100 * Whenever the number of registered parties of a child phaser becomes
101 * non-zero (as established in the {@link #Phaser(Phaser,int)}
102 * constructor, {@link #register}, or {@link #bulkRegister}), the
103 * child phaser is registered with its parent. Whenever the number of
104 * registered parties becomes zero as the result of an invocation of
105 * {@link #arriveAndDeregister}, the child phaser is deregistered
106 * from its parent.
107 *
108 * <p><b>Monitoring.</b> While synchronization methods may be invoked
109 * only by registered parties, the current state of a phaser may be
110 * monitored by any caller. At any given moment there are {@link
111 * #getRegisteredParties} parties in total, of which {@link
112 * #getArrivedParties} have arrived at the current phase ({@link
113 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
114 * parties arrive, the phase advances. The values returned by these
115 * methods may reflect transient states and so are not in general
116 * useful for synchronization control. Method {@link #toString}
117 * returns snapshots of these state queries in a form convenient for
118 * informal monitoring.
119 *
120 * <p><b>Sample usages:</b>
121 *
122 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
123 * to control a one-shot action serving a variable number of parties.
124 * The typical idiom is for the method setting this up to first
125 * register, then start the actions, then deregister, as in:
126 *
127 * <pre> {@code
128 * void runTasks(List<Runnable> tasks) {
129 * final Phaser phaser = new Phaser(1); // "1" to register self
130 * // create and start threads
131 * for (final Runnable task : tasks) {
132 * phaser.register();
133 * new Thread() {
134 * public void run() {
135 * phaser.arriveAndAwaitAdvance(); // await all creation
136 * task.run();
137 * }
138 * }.start();
139 * }
140 *
141 * // allow threads to start and deregister self
142 * phaser.arriveAndDeregister();
143 * }}</pre>
144 *
145 * <p>One way to cause a set of threads to repeatedly perform actions
146 * for a given number of iterations is to override {@code onAdvance}:
147 *
148 * <pre> {@code
149 * void startTasks(List<Runnable> tasks, final int iterations) {
150 * final Phaser phaser = new Phaser() {
151 * protected boolean onAdvance(int phase, int registeredParties) {
152 * return phase >= iterations || registeredParties == 0;
153 * }
154 * };
155 * phaser.register();
156 * for (final Runnable task : tasks) {
157 * phaser.register();
158 * new Thread() {
159 * public void run() {
160 * do {
161 * task.run();
162 * phaser.arriveAndAwaitAdvance();
163 * } while (!phaser.isTerminated());
164 * }
165 * }.start();
166 * }
167 * phaser.arriveAndDeregister(); // deregister self, don't wait
168 * }}</pre>
169 *
170 * If the main task must later await termination, it
171 * may re-register and then execute a similar loop:
172 * <pre> {@code
173 * // ...
174 * phaser.register();
175 * while (!phaser.isTerminated())
176 * phaser.arriveAndAwaitAdvance();}</pre>
177 *
178 * <p>Related constructions may be used to await particular phase numbers
179 * in contexts where you are sure that the phase will never wrap around
180 * {@code Integer.MAX_VALUE}. For example:
181 *
182 * <pre> {@code
183 * void awaitPhase(Phaser phaser, int phase) {
184 * int p = phaser.register(); // assumes caller not already registered
185 * while (p < phase) {
186 * if (phaser.isTerminated())
187 * // ... deal with unexpected termination
188 * else
189 * p = phaser.arriveAndAwaitAdvance();
190 * }
191 * phaser.arriveAndDeregister();
192 * }}</pre>
193 *
194 *
195 * <p>To create a set of {@code n} tasks using a tree of phasers, you
196 * could use code of the following form, assuming a Task class with a
197 * constructor accepting a {@code Phaser} that it registers with upon
198 * construction. After invocation of {@code build(new Task[n], 0, n,
199 * new Phaser())}, these tasks could then be started, for example by
200 * submitting to a pool:
201 *
202 * <pre> {@code
203 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
204 * if (hi - lo > TASKS_PER_PHASER) {
205 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
206 * int j = Math.min(i + TASKS_PER_PHASER, hi);
207 * build(tasks, i, j, new Phaser(ph));
208 * }
209 * } else {
210 * for (int i = lo; i < hi; ++i)
211 * tasks[i] = new Task(ph);
212 * // assumes new Task(ph) performs ph.register()
213 * }
214 * }}</pre>
215 *
216 * The best value of {@code TASKS_PER_PHASER} depends mainly on
217 * expected synchronization rates. A value as low as four may
218 * be appropriate for extremely small per-phase task bodies (thus
219 * high rates), or up to hundreds for extremely large ones.
220 *
221 * <p><b>Implementation notes</b>: This implementation restricts the
222 * maximum number of parties to 65535. Attempts to register additional
223 * parties result in {@code IllegalStateException}. However, you can and
224 * should create tiered phasers to accommodate arbitrarily large sets
225 * of participants.
226 *
227 * @since 1.7
228 * @author Doug Lea
229 */
230 public class Phaser {
231 /*
232 * This class implements an extension of X10 "clocks". Thanks to
233 * Vijay Saraswat for the idea, and to Vivek Sarkar for
234 * enhancements to extend functionality.
235 */
236
237 /**
238 * Primary state representation, holding four bit-fields:
239 *
240 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
241 * parties -- the number of parties to wait (bits 16-31)
242 * phase -- the generation of the barrier (bits 32-62)
243 * terminated -- set if barrier is terminated (bit 63 / sign)
244 *
245 * Except that a phaser with no registered parties is
246 * distinguished by the otherwise illegal state of having zero
247 * parties and one unarrived parties (encoded as EMPTY below).
248 *
249 * To efficiently maintain atomicity, these values are packed into
250 * a single (atomic) long. Good performance relies on keeping
251 * state decoding and encoding simple, and keeping race windows
252 * short.
253 *
254 * All state updates are performed via CAS except initial
255 * registration of a sub-phaser (i.e., one with a non-null
256 * parent). In this (relatively rare) case, we use built-in
257 * synchronization to lock while first registering with its
258 * parent.
259 *
260 * The phase of a subphaser is allowed to lag that of its
261 * ancestors until it is actually accessed -- see method
262 * reconcileState.
263 */
264 private volatile long state;
265
266 private static final int MAX_PARTIES = 0xffff;
267 private static final int MAX_PHASE = Integer.MAX_VALUE;
268 private static final int PARTIES_SHIFT = 16;
269 private static final int PHASE_SHIFT = 32;
270 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
271 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
272 private static final long COUNTS_MASK = 0xffffffffL;
273 private static final long TERMINATION_BIT = 1L << 63;
274
275 // some special values
276 private static final int ONE_ARRIVAL = 1;
277 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
278 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
279 private static final int EMPTY = 1;
280
281 // The following unpacking methods are usually manually inlined
282
283 private static int unarrivedOf(long s) {
284 int counts = (int)s;
285 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
286 }
287
288 private static int partiesOf(long s) {
289 return (int)s >>> PARTIES_SHIFT;
290 }
291
292 private static int phaseOf(long s) {
293 return (int)(s >>> PHASE_SHIFT);
294 }
295
296 private static int arrivedOf(long s) {
297 int counts = (int)s;
298 return (counts == EMPTY) ? 0 :
299 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 }
301
302 /**
303 * The parent of this phaser, or null if none
304 */
305 private final Phaser parent;
306
307 /**
308 * The root of phaser tree. Equals this if not in a tree.
309 */
310 private final Phaser root;
311
312 /**
313 * Heads of Treiber stacks for waiting threads. To eliminate
314 * contention when releasing some threads while adding others, we
315 * use two of them, alternating across even and odd phases.
316 * Subphasers share queues with root to speed up releases.
317 */
318 private final AtomicReference<QNode> evenQ;
319 private final AtomicReference<QNode> oddQ;
320
321 private AtomicReference<QNode> queueFor(int phase) {
322 return ((phase & 1) == 0) ? evenQ : oddQ;
323 }
324
325 /**
326 * Returns message string for bounds exceptions on arrival.
327 */
328 private String badArrive(long s) {
329 return "Attempted arrival of unregistered party for " +
330 stateToString(s);
331 }
332
333 /**
334 * Returns message string for bounds exceptions on registration.
335 */
336 private String badRegister(long s) {
337 return "Attempt to register more than " +
338 MAX_PARTIES + " parties for " + stateToString(s);
339 }
340
341 /**
342 * Main implementation for methods arrive and arriveAndDeregister.
343 * Manually tuned to speed up and minimize race windows for the
344 * common case of just decrementing unarrived field.
345 *
346 * @param adjust value to subtract from state;
347 * ONE_ARRIVAL for arrive,
348 * ONE_DEREGISTER for arriveAndDeregister
349 */
350 private int doArrive(int adjust) {
351 final Phaser root = this.root;
352 for (;;) {
353 long s = (root == this) ? state : reconcileState();
354 int phase = (int)(s >>> PHASE_SHIFT);
355 if (phase < 0)
356 return phase;
357 int counts = (int)s;
358 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
359 if (unarrived <= 0)
360 throw new IllegalStateException(badArrive(s));
361 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
362 if (unarrived == 1) {
363 long n = s & PARTIES_MASK; // base of next state
364 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 if (root == this) {
366 if (onAdvance(phase, nextUnarrived))
367 n |= TERMINATION_BIT;
368 else if (nextUnarrived == 0)
369 n |= EMPTY;
370 else
371 n |= nextUnarrived;
372 int nextPhase = (phase + 1) & MAX_PHASE;
373 n |= (long)nextPhase << PHASE_SHIFT;
374 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375 releaseWaiters(phase);
376 }
377 else if (nextUnarrived == 0) { // propagate deregistration
378 phase = parent.doArrive(ONE_DEREGISTER);
379 UNSAFE.compareAndSwapLong(this, stateOffset,
380 s, s | EMPTY);
381 }
382 else
383 phase = parent.doArrive(ONE_ARRIVAL);
384 }
385 return phase;
386 }
387 }
388 }
389
390 /**
391 * Implementation of register, bulkRegister
392 *
393 * @param registrations number to add to both parties and
394 * unarrived fields. Must be greater than zero.
395 */
396 private int doRegister(int registrations) {
397 // adjustment to state
398 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
399 final Phaser parent = this.parent;
400 int phase;
401 for (;;) {
402 long s = (parent == null) ? state : reconcileState();
403 int counts = (int)s;
404 int parties = counts >>> PARTIES_SHIFT;
405 int unarrived = counts & UNARRIVED_MASK;
406 if (registrations > MAX_PARTIES - parties)
407 throw new IllegalStateException(badRegister(s));
408 phase = (int)(s >>> PHASE_SHIFT);
409 if (phase < 0)
410 break;
411 if (counts != EMPTY) { // not 1st registration
412 if (parent == null || reconcileState() == s) {
413 if (unarrived == 0) // wait out advance
414 root.internalAwaitAdvance(phase, null);
415 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
416 s, s + adjust))
417 break;
418 }
419 }
420 else if (parent == null) { // 1st root registration
421 long next = ((long)phase << PHASE_SHIFT) | adjust;
422 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
423 break;
424 }
425 else {
426 synchronized (this) { // 1st sub registration
427 if (state == s) { // recheck under lock
428 phase = parent.doRegister(1);
429 if (phase < 0)
430 break;
431 // finish registration whenever parent registration
432 // succeeded, even when racing with termination,
433 // since these are part of the same "transaction".
434 while (!UNSAFE.compareAndSwapLong
435 (this, stateOffset, s,
436 ((long)phase << PHASE_SHIFT) | adjust)) {
437 s = state;
438 phase = (int)(root.state >>> PHASE_SHIFT);
439 // assert (int)s == EMPTY;
440 }
441 break;
442 }
443 }
444 }
445 }
446 return phase;
447 }
448
449 /**
450 * Resolves lagged phase propagation from root if necessary.
451 * Reconciliation normally occurs when root has advanced but
452 * subphasers have not yet done so, in which case they must finish
453 * their own advance by setting unarrived to parties (or if
454 * parties is zero, resetting to unregistered EMPTY state).
455 *
456 * @return reconciled state
457 */
458 private long reconcileState() {
459 final Phaser root = this.root;
460 long s = state;
461 if (root != this) {
462 int phase, p;
463 // CAS to root phase with current parties, tripping unarrived
464 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
465 (int)(s >>> PHASE_SHIFT) &&
466 !UNSAFE.compareAndSwapLong
467 (this, stateOffset, s,
468 s = (((long)phase << PHASE_SHIFT) |
469 ((phase < 0) ? (s & COUNTS_MASK) :
470 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
471 ((s & PARTIES_MASK) | p))))))
472 s = state;
473 }
474 return s;
475 }
476
477 /**
478 * Creates a new phaser with no initially registered parties, no
479 * parent, and initial phase number 0. Any thread using this
480 * phaser will need to first register for it.
481 */
482 public Phaser() {
483 this(null, 0);
484 }
485
486 /**
487 * Creates a new phaser with the given number of registered
488 * unarrived parties, no parent, and initial phase number 0.
489 *
490 * @param parties the number of parties required to advance to the
491 * next phase
492 * @throws IllegalArgumentException if parties less than zero
493 * or greater than the maximum number of parties supported
494 */
495 public Phaser(int parties) {
496 this(null, parties);
497 }
498
499 /**
500 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
501 *
502 * @param parent the parent phaser
503 */
504 public Phaser(Phaser parent) {
505 this(parent, 0);
506 }
507
508 /**
509 * Creates a new phaser with the given parent and number of
510 * registered unarrived parties. When the given parent is non-null
511 * and the given number of parties is greater than zero, this
512 * child phaser is registered with its parent.
513 *
514 * @param parent the parent phaser
515 * @param parties the number of parties required to advance to the
516 * next phase
517 * @throws IllegalArgumentException if parties less than zero
518 * or greater than the maximum number of parties supported
519 */
520 public Phaser(Phaser parent, int parties) {
521 if (parties >>> PARTIES_SHIFT != 0)
522 throw new IllegalArgumentException("Illegal number of parties");
523 int phase = 0;
524 this.parent = parent;
525 if (parent != null) {
526 final Phaser root = parent.root;
527 this.root = root;
528 this.evenQ = root.evenQ;
529 this.oddQ = root.oddQ;
530 if (parties != 0)
531 phase = parent.doRegister(1);
532 }
533 else {
534 this.root = this;
535 this.evenQ = new AtomicReference<QNode>();
536 this.oddQ = new AtomicReference<QNode>();
537 }
538 this.state = (parties == 0) ? (long)EMPTY :
539 ((long)phase << PHASE_SHIFT) |
540 ((long)parties << PARTIES_SHIFT) |
541 ((long)parties);
542 }
543
544 /**
545 * Adds a new unarrived party to this phaser. If an ongoing
546 * invocation of {@link #onAdvance} is in progress, this method
547 * may await its completion before returning. If this phaser has
548 * a parent, and this phaser previously had no registered parties,
549 * this child phaser is also registered with its parent. If
550 * this phaser is terminated, the attempt to register has
551 * no effect, and a negative value is returned.
552 *
553 * @return the arrival phase number to which this registration
554 * applied. If this value is negative, then this phaser has
555 * terminated, in which case registration has no effect.
556 * @throws IllegalStateException if attempting to register more
557 * than the maximum supported number of parties
558 */
559 public int register() {
560 return doRegister(1);
561 }
562
563 /**
564 * Adds the given number of new unarrived parties to this phaser.
565 * If an ongoing invocation of {@link #onAdvance} is in progress,
566 * this method may await its completion before returning. If this
567 * phaser has a parent, and the given number of parties is greater
568 * than zero, and this phaser previously had no registered
569 * parties, this child phaser is also registered with its parent.
570 * If this phaser is terminated, the attempt to register has no
571 * effect, and a negative value is returned.
572 *
573 * @param parties the number of additional parties required to
574 * advance to the next phase
575 * @return the arrival phase number to which this registration
576 * applied. If this value is negative, then this phaser has
577 * terminated, in which case registration has no effect.
578 * @throws IllegalStateException if attempting to register more
579 * than the maximum supported number of parties
580 * @throws IllegalArgumentException if {@code parties < 0}
581 */
582 public int bulkRegister(int parties) {
583 if (parties < 0)
584 throw new IllegalArgumentException();
585 if (parties == 0)
586 return getPhase();
587 return doRegister(parties);
588 }
589
590 /**
591 * Arrives at this phaser, without waiting for others to arrive.
592 *
593 * <p>It is a usage error for an unregistered party to invoke this
594 * method. However, this error may result in an {@code
595 * IllegalStateException} only upon some subsequent operation on
596 * this phaser, if ever.
597 *
598 * @return the arrival phase number, or a negative value if terminated
599 * @throws IllegalStateException if not terminated and the number
600 * of unarrived parties would become negative
601 */
602 public int arrive() {
603 return doArrive(ONE_ARRIVAL);
604 }
605
606 /**
607 * Arrives at this phaser and deregisters from it without waiting
608 * for others to arrive. Deregistration reduces the number of
609 * parties required to advance in future phases. If this phaser
610 * has a parent, and deregistration causes this phaser to have
611 * zero parties, this phaser is also deregistered from its parent.
612 *
613 * <p>It is a usage error for an unregistered party to invoke this
614 * method. However, this error may result in an {@code
615 * IllegalStateException} only upon some subsequent operation on
616 * this phaser, if ever.
617 *
618 * @return the arrival phase number, or a negative value if terminated
619 * @throws IllegalStateException if not terminated and the number
620 * of registered or unarrived parties would become negative
621 */
622 public int arriveAndDeregister() {
623 return doArrive(ONE_DEREGISTER);
624 }
625
626 /**
627 * Arrives at this phaser and awaits others. Equivalent in effect
628 * to {@code awaitAdvance(arrive())}. If you need to await with
629 * interruption or timeout, you can arrange this with an analogous
630 * construction using one of the other forms of the {@code
631 * awaitAdvance} method. If instead you need to deregister upon
632 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
633 *
634 * <p>It is a usage error for an unregistered party to invoke this
635 * method. However, this error may result in an {@code
636 * IllegalStateException} only upon some subsequent operation on
637 * this phaser, if ever.
638 *
639 * @return the arrival phase number, or the (negative)
640 * {@linkplain #getPhase() current phase} if terminated
641 * @throws IllegalStateException if not terminated and the number
642 * of unarrived parties would become negative
643 */
644 public int arriveAndAwaitAdvance() {
645 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
646 final Phaser root = this.root;
647 for (;;) {
648 long s = (root == this) ? state : reconcileState();
649 int phase = (int)(s >>> PHASE_SHIFT);
650 if (phase < 0)
651 return phase;
652 int counts = (int)s;
653 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
654 if (unarrived <= 0)
655 throw new IllegalStateException(badArrive(s));
656 if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657 s -= ONE_ARRIVAL)) {
658 if (unarrived > 1)
659 return root.internalAwaitAdvance(phase, null);
660 if (root != this)
661 return parent.arriveAndAwaitAdvance();
662 long n = s & PARTIES_MASK; // base of next state
663 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 if (onAdvance(phase, nextUnarrived))
665 n |= TERMINATION_BIT;
666 else if (nextUnarrived == 0)
667 n |= EMPTY;
668 else
669 n |= nextUnarrived;
670 int nextPhase = (phase + 1) & MAX_PHASE;
671 n |= (long)nextPhase << PHASE_SHIFT;
672 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673 return (int)(state >>> PHASE_SHIFT); // terminated
674 releaseWaiters(phase);
675 return nextPhase;
676 }
677 }
678 }
679
680 /**
681 * Awaits the phase of this phaser to advance from the given phase
682 * value, returning immediately if the current phase is not equal
683 * to the given phase value or this phaser is terminated.
684 *
685 * @param phase an arrival phase number, or negative value if
686 * terminated; this argument is normally the value returned by a
687 * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 * @return the next arrival phase number, or the argument if it is
689 * negative, or the (negative) {@linkplain #getPhase() current phase}
690 * if terminated
691 */
692 public int awaitAdvance(int phase) {
693 final Phaser root = this.root;
694 long s = (root == this) ? state : reconcileState();
695 int p = (int)(s >>> PHASE_SHIFT);
696 if (phase < 0)
697 return phase;
698 if (p == phase)
699 return root.internalAwaitAdvance(phase, null);
700 return p;
701 }
702
703 /**
704 * Awaits the phase of this phaser to advance from the given phase
705 * value, throwing {@code InterruptedException} if interrupted
706 * while waiting, or returning immediately if the current phase is
707 * not equal to the given phase value or this phaser is
708 * terminated.
709 *
710 * @param phase an arrival phase number, or negative value if
711 * terminated; this argument is normally the value returned by a
712 * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 * @return the next arrival phase number, or the argument if it is
714 * negative, or the (negative) {@linkplain #getPhase() current phase}
715 * if terminated
716 * @throws InterruptedException if thread interrupted while waiting
717 */
718 public int awaitAdvanceInterruptibly(int phase)
719 throws InterruptedException {
720 final Phaser root = this.root;
721 long s = (root == this) ? state : reconcileState();
722 int p = (int)(s >>> PHASE_SHIFT);
723 if (phase < 0)
724 return phase;
725 if (p == phase) {
726 QNode node = new QNode(this, phase, true, false, 0L);
727 p = root.internalAwaitAdvance(phase, node);
728 if (node.wasInterrupted)
729 throw new InterruptedException();
730 }
731 return p;
732 }
733
734 /**
735 * Awaits the phase of this phaser to advance from the given phase
736 * value or the given timeout to elapse, throwing {@code
737 * InterruptedException} if interrupted while waiting, or
738 * returning immediately if the current phase is not equal to the
739 * given phase value or this phaser is terminated.
740 *
741 * @param phase an arrival phase number, or negative value if
742 * terminated; this argument is normally the value returned by a
743 * previous call to {@code arrive} or {@code arriveAndDeregister}.
744 * @param timeout how long to wait before giving up, in units of
745 * {@code unit}
746 * @param unit a {@code TimeUnit} determining how to interpret the
747 * {@code timeout} parameter
748 * @return the next arrival phase number, or the argument if it is
749 * negative, or the (negative) {@linkplain #getPhase() current phase}
750 * if terminated
751 * @throws InterruptedException if thread interrupted while waiting
752 * @throws TimeoutException if timed out while waiting
753 */
754 public int awaitAdvanceInterruptibly(int phase,
755 long timeout, TimeUnit unit)
756 throws InterruptedException, TimeoutException {
757 long nanos = unit.toNanos(timeout);
758 final Phaser root = this.root;
759 long s = (root == this) ? state : reconcileState();
760 int p = (int)(s >>> PHASE_SHIFT);
761 if (phase < 0)
762 return phase;
763 if (p == phase) {
764 QNode node = new QNode(this, phase, true, true, nanos);
765 p = root.internalAwaitAdvance(phase, node);
766 if (node.wasInterrupted)
767 throw new InterruptedException();
768 else if (p == phase)
769 throw new TimeoutException();
770 }
771 return p;
772 }
773
774 /**
775 * Forces this phaser to enter termination state. Counts of
776 * registered parties are unaffected. If this phaser is a member
777 * of a tiered set of phasers, then all of the phasers in the set
778 * are terminated. If this phaser is already terminated, this
779 * method has no effect. This method may be useful for
780 * coordinating recovery after one or more tasks encounter
781 * unexpected exceptions.
782 */
783 public void forceTermination() {
784 // Only need to change root state
785 final Phaser root = this.root;
786 long s;
787 while ((s = root.state) >= 0) {
788 if (UNSAFE.compareAndSwapLong(root, stateOffset,
789 s, s | TERMINATION_BIT)) {
790 // signal all threads
791 releaseWaiters(0); // Waiters on evenQ
792 releaseWaiters(1); // Waiters on oddQ
793 return;
794 }
795 }
796 }
797
798 /**
799 * Returns the current phase number. The maximum phase number is
800 * {@code Integer.MAX_VALUE}, after which it restarts at
801 * zero. Upon termination, the phase number is negative,
802 * in which case the prevailing phase prior to termination
803 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804 *
805 * @return the phase number, or a negative value if terminated
806 */
807 public final int getPhase() {
808 return (int)(root.state >>> PHASE_SHIFT);
809 }
810
811 /**
812 * Returns the number of parties registered at this phaser.
813 *
814 * @return the number of parties
815 */
816 public int getRegisteredParties() {
817 return partiesOf(state);
818 }
819
820 /**
821 * Returns the number of registered parties that have arrived at
822 * the current phase of this phaser. If this phaser has terminated,
823 * the returned value is meaningless and arbitrary.
824 *
825 * @return the number of arrived parties
826 */
827 public int getArrivedParties() {
828 return arrivedOf(reconcileState());
829 }
830
831 /**
832 * Returns the number of registered parties that have not yet
833 * arrived at the current phase of this phaser. If this phaser has
834 * terminated, the returned value is meaningless and arbitrary.
835 *
836 * @return the number of unarrived parties
837 */
838 public int getUnarrivedParties() {
839 return unarrivedOf(reconcileState());
840 }
841
842 /**
843 * Returns the parent of this phaser, or {@code null} if none.
844 *
845 * @return the parent of this phaser, or {@code null} if none
846 */
847 public Phaser getParent() {
848 return parent;
849 }
850
851 /**
852 * Returns the root ancestor of this phaser, which is the same as
853 * this phaser if it has no parent.
854 *
855 * @return the root ancestor of this phaser
856 */
857 public Phaser getRoot() {
858 return root;
859 }
860
861 /**
862 * Returns {@code true} if this phaser has been terminated.
863 *
864 * @return {@code true} if this phaser has been terminated
865 */
866 public boolean isTerminated() {
867 return root.state < 0L;
868 }
869
870 /**
871 * Overridable method to perform an action upon impending phase
872 * advance, and to control termination. This method is invoked
873 * upon arrival of the party advancing this phaser (when all other
874 * waiting parties are dormant). If this method returns {@code
875 * true}, this phaser will be set to a final termination state
876 * upon advance, and subsequent calls to {@link #isTerminated}
877 * will return true. Any (unchecked) Exception or Error thrown by
878 * an invocation of this method is propagated to the party
879 * attempting to advance this phaser, in which case no advance
880 * occurs.
881 *
882 * <p>The arguments to this method provide the state of the phaser
883 * prevailing for the current transition. The effects of invoking
884 * arrival, registration, and waiting methods on this phaser from
885 * within {@code onAdvance} are unspecified and should not be
886 * relied on.
887 *
888 * <p>If this phaser is a member of a tiered set of phasers, then
889 * {@code onAdvance} is invoked only for its root phaser on each
890 * advance.
891 *
892 * <p>To support the most common use cases, the default
893 * implementation of this method returns {@code true} when the
894 * number of registered parties has become zero as the result of a
895 * party invoking {@code arriveAndDeregister}. You can disable
896 * this behavior, thus enabling continuation upon future
897 * registrations, by overriding this method to always return
898 * {@code false}:
899 *
900 * <pre> {@code
901 * Phaser phaser = new Phaser() {
902 * protected boolean onAdvance(int phase, int parties) { return false; }
903 * }}</pre>
904 *
905 * @param phase the current phase number on entry to this method,
906 * before this phaser is advanced
907 * @param registeredParties the current number of registered parties
908 * @return {@code true} if this phaser should terminate
909 */
910 protected boolean onAdvance(int phase, int registeredParties) {
911 return registeredParties == 0;
912 }
913
914 /**
915 * Returns a string identifying this phaser, as well as its
916 * state. The state, in brackets, includes the String {@code
917 * "phase = "} followed by the phase number, {@code "parties = "}
918 * followed by the number of registered parties, and {@code
919 * "arrived = "} followed by the number of arrived parties.
920 *
921 * @return a string identifying this phaser, as well as its state
922 */
923 public String toString() {
924 return stateToString(reconcileState());
925 }
926
927 /**
928 * Implementation of toString and string-based error messages
929 */
930 private String stateToString(long s) {
931 return super.toString() +
932 "[phase = " + phaseOf(s) +
933 " parties = " + partiesOf(s) +
934 " arrived = " + arrivedOf(s) + "]";
935 }
936
937 // Waiting mechanics
938
939 /**
940 * Removes and signals threads from queue for phase.
941 */
942 private void releaseWaiters(int phase) {
943 QNode q; // first element of queue
944 Thread t; // its thread
945 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946 while ((q = head.get()) != null &&
947 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 if (head.compareAndSet(q, q.next) &&
949 (t = q.thread) != null) {
950 q.thread = null;
951 LockSupport.unpark(t);
952 }
953 }
954 }
955
956 /**
957 * Variant of releaseWaiters that additionally tries to remove any
958 * nodes no longer waiting for advance due to timeout or
959 * interrupt. Currently, nodes are removed only if they are at
960 * head of queue, which suffices to reduce memory footprint in
961 * most usages.
962 *
963 * @return current phase on exit
964 */
965 private int abortWait(int phase) {
966 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967 for (;;) {
968 Thread t;
969 QNode q = head.get();
970 int p = (int)(root.state >>> PHASE_SHIFT);
971 if (q == null || ((t = q.thread) != null && q.phase == p))
972 return p;
973 if (head.compareAndSet(q, q.next) && t != null) {
974 q.thread = null;
975 LockSupport.unpark(t);
976 }
977 }
978 }
979
980 /** The number of CPUs, for spin control */
981 private static final int NCPU = Runtime.getRuntime().availableProcessors();
982
983 /**
984 * The number of times to spin before blocking while waiting for
985 * advance, per arrival while waiting. On multiprocessors, fully
986 * blocking and waking up a large number of threads all at once is
987 * usually a very slow process, so we use rechargeable spins to
988 * avoid it when threads regularly arrive: When a thread in
989 * internalAwaitAdvance notices another arrival before blocking,
990 * and there appear to be enough CPUs available, it spins
991 * SPINS_PER_ARRIVAL more times before blocking. The value trades
992 * off good-citizenship vs big unnecessary slowdowns.
993 */
994 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
995
996 /**
997 * Possibly blocks and waits for phase to advance unless aborted.
998 * Call only on root phaser.
999 *
1000 * @param phase current phase
1001 * @param node if non-null, the wait node to track interrupt and timeout;
1002 * if null, denotes noninterruptible wait
1003 * @return current phase
1004 */
1005 private int internalAwaitAdvance(int phase, QNode node) {
1006 // assert root == this;
1007 releaseWaiters(phase-1); // ensure old queue clean
1008 boolean queued = false; // true when node is enqueued
1009 int lastUnarrived = 0; // to increase spins upon change
1010 int spins = SPINS_PER_ARRIVAL;
1011 long s;
1012 int p;
1013 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1014 if (node == null) { // spinning in noninterruptible mode
1015 int unarrived = (int)s & UNARRIVED_MASK;
1016 if (unarrived != lastUnarrived &&
1017 (lastUnarrived = unarrived) < NCPU)
1018 spins += SPINS_PER_ARRIVAL;
1019 boolean interrupted = Thread.interrupted();
1020 if (interrupted || --spins < 0) { // need node to record intr
1021 node = new QNode(this, phase, false, false, 0L);
1022 node.wasInterrupted = interrupted;
1023 }
1024 }
1025 else if (node.isReleasable()) // done or aborted
1026 break;
1027 else if (!queued) { // push onto queue
1028 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1029 QNode q = node.next = head.get();
1030 if ((q == null || q.phase == phase) &&
1031 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1032 queued = head.compareAndSet(q, node);
1033 }
1034 else {
1035 try {
1036 ForkJoinPool.managedBlock(node);
1037 } catch (InterruptedException cantHappen) {
1038 node.wasInterrupted = true;
1039 }
1040 }
1041 }
1042
1043 if (node != null) {
1044 if (node.thread != null)
1045 node.thread = null; // avoid need for unpark()
1046 if (node.wasInterrupted && !node.interruptible)
1047 Thread.currentThread().interrupt();
1048 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1049 return abortWait(phase); // possibly clean up on abort
1050 }
1051 releaseWaiters(phase);
1052 return p;
1053 }
1054
1055 /**
1056 * Wait nodes for Treiber stack representing wait queue
1057 */
1058 static final class QNode implements ForkJoinPool.ManagedBlocker {
1059 final Phaser phaser;
1060 final int phase;
1061 final boolean interruptible;
1062 final boolean timed;
1063 boolean wasInterrupted;
1064 long nanos;
1065 final long deadline;
1066 volatile Thread thread; // nulled to cancel wait
1067 QNode next;
1068
1069 QNode(Phaser phaser, int phase, boolean interruptible,
1070 boolean timed, long nanos) {
1071 this.phaser = phaser;
1072 this.phase = phase;
1073 this.interruptible = interruptible;
1074 this.nanos = nanos;
1075 this.timed = timed;
1076 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1077 thread = Thread.currentThread();
1078 }
1079
1080 public boolean isReleasable() {
1081 if (thread == null)
1082 return true;
1083 if (phaser.getPhase() != phase) {
1084 thread = null;
1085 return true;
1086 }
1087 if (Thread.interrupted())
1088 wasInterrupted = true;
1089 if (wasInterrupted && interruptible) {
1090 thread = null;
1091 return true;
1092 }
1093 if (timed) {
1094 if (nanos > 0L) {
1095 nanos = deadline - System.nanoTime();
1096 }
1097 if (nanos <= 0L) {
1098 thread = null;
1099 return true;
1100 }
1101 }
1102 return false;
1103 }
1104
1105 public boolean block() {
1106 while (!isReleasable()) {
1107 if (timed)
1108 LockSupport.parkNanos(this, nanos);
1109 else
1110 LockSupport.park(this);
1111 }
1112 return true;
1113 }
1114 }
1115
1116 // Unsafe mechanics
1117
1118 private static final sun.misc.Unsafe UNSAFE;
1119 private static final long stateOffset;
1120 static {
1121 try {
1122 UNSAFE = sun.misc.Unsafe.getUnsafe();
1123 Class<?> k = Phaser.class;
1124 stateOffset = UNSAFE.objectFieldOffset
1125 (k.getDeclaredField("state"));
1126 } catch (ReflectiveOperationException e) {
1127 throw new Error(e);
1128 }
1129 }
1130 }