ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.87
Committed: Thu Jun 2 13:16:27 2016 UTC (8 years ago) by dl
Branch: MAIN
Changes since 1.86: +20 -18 lines
Log Message:
VarHandles conversion; pass 1

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool}.
72 * Progress is ensured if the pool's parallelismLevel can
73 * accommodate the maximum number of simultaneously blocked
74 * parties.
75 *
76 * </ul>
77 *
78 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
79 * state, that may be checked using method {@link #isTerminated}. Upon
80 * termination, all synchronization methods immediately return without
81 * waiting for advance, as indicated by a negative return value.
82 * Similarly, attempts to register upon termination have no effect.
83 * Termination is triggered when an invocation of {@code onAdvance}
84 * returns {@code true}. The default implementation returns {@code
85 * true} if a deregistration has caused the number of registered
86 * parties to become zero. As illustrated below, when phasers control
87 * actions with a fixed number of iterations, it is often convenient
88 * to override this method to cause termination when the current phase
89 * number reaches a threshold. Method {@link #forceTermination} is
90 * also available to abruptly release waiting threads and allow them
91 * to terminate.
92 *
93 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
94 * constructed in tree structures) to reduce contention. Phasers with
95 * large numbers of parties that would otherwise experience heavy
96 * synchronization contention costs may instead be set up so that
97 * groups of sub-phasers share a common parent. This may greatly
98 * increase throughput even though it incurs greater per-operation
99 * overhead.
100 *
101 * <p>In a tree of tiered phasers, registration and deregistration of
102 * child phasers with their parent are managed automatically.
103 * Whenever the number of registered parties of a child phaser becomes
104 * non-zero (as established in the {@link #Phaser(Phaser,int)}
105 * constructor, {@link #register}, or {@link #bulkRegister}), the
106 * child phaser is registered with its parent. Whenever the number of
107 * registered parties becomes zero as the result of an invocation of
108 * {@link #arriveAndDeregister}, the child phaser is deregistered
109 * from its parent.
110 *
111 * <p><b>Monitoring.</b> While synchronization methods may be invoked
112 * only by registered parties, the current state of a phaser may be
113 * monitored by any caller. At any given moment there are {@link
114 * #getRegisteredParties} parties in total, of which {@link
115 * #getArrivedParties} have arrived at the current phase ({@link
116 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
117 * parties arrive, the phase advances. The values returned by these
118 * methods may reflect transient states and so are not in general
119 * useful for synchronization control. Method {@link #toString}
120 * returns snapshots of these state queries in a form convenient for
121 * informal monitoring.
122 *
123 * <p><b>Sample usages:</b>
124 *
125 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
126 * to control a one-shot action serving a variable number of parties.
127 * The typical idiom is for the method setting this up to first
128 * register, then start the actions, then deregister, as in:
129 *
130 * <pre> {@code
131 * void runTasks(List<Runnable> tasks) {
132 * final Phaser phaser = new Phaser(1); // "1" to register self
133 * // create and start threads
134 * for (final Runnable task : tasks) {
135 * phaser.register();
136 * new Thread() {
137 * public void run() {
138 * phaser.arriveAndAwaitAdvance(); // await all creation
139 * task.run();
140 * }
141 * }.start();
142 * }
143 *
144 * // allow threads to start and deregister self
145 * phaser.arriveAndDeregister();
146 * }}</pre>
147 *
148 * <p>One way to cause a set of threads to repeatedly perform actions
149 * for a given number of iterations is to override {@code onAdvance}:
150 *
151 * <pre> {@code
152 * void startTasks(List<Runnable> tasks, final int iterations) {
153 * final Phaser phaser = new Phaser() {
154 * protected boolean onAdvance(int phase, int registeredParties) {
155 * return phase >= iterations || registeredParties == 0;
156 * }
157 * };
158 * phaser.register();
159 * for (final Runnable task : tasks) {
160 * phaser.register();
161 * new Thread() {
162 * public void run() {
163 * do {
164 * task.run();
165 * phaser.arriveAndAwaitAdvance();
166 * } while (!phaser.isTerminated());
167 * }
168 * }.start();
169 * }
170 * phaser.arriveAndDeregister(); // deregister self, don't wait
171 * }}</pre>
172 *
173 * If the main task must later await termination, it
174 * may re-register and then execute a similar loop:
175 * <pre> {@code
176 * // ...
177 * phaser.register();
178 * while (!phaser.isTerminated())
179 * phaser.arriveAndAwaitAdvance();}</pre>
180 *
181 * <p>Related constructions may be used to await particular phase numbers
182 * in contexts where you are sure that the phase will never wrap around
183 * {@code Integer.MAX_VALUE}. For example:
184 *
185 * <pre> {@code
186 * void awaitPhase(Phaser phaser, int phase) {
187 * int p = phaser.register(); // assumes caller not already registered
188 * while (p < phase) {
189 * if (phaser.isTerminated())
190 * // ... deal with unexpected termination
191 * else
192 * p = phaser.arriveAndAwaitAdvance();
193 * }
194 * phaser.arriveAndDeregister();
195 * }}</pre>
196 *
197 *
198 * <p>To create a set of {@code n} tasks using a tree of phasers, you
199 * could use code of the following form, assuming a Task class with a
200 * constructor accepting a {@code Phaser} that it registers with upon
201 * construction. After invocation of {@code build(new Task[n], 0, n,
202 * new Phaser())}, these tasks could then be started, for example by
203 * submitting to a pool:
204 *
205 * <pre> {@code
206 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
207 * if (hi - lo > TASKS_PER_PHASER) {
208 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
209 * int j = Math.min(i + TASKS_PER_PHASER, hi);
210 * build(tasks, i, j, new Phaser(ph));
211 * }
212 * } else {
213 * for (int i = lo; i < hi; ++i)
214 * tasks[i] = new Task(ph);
215 * // assumes new Task(ph) performs ph.register()
216 * }
217 * }}</pre>
218 *
219 * The best value of {@code TASKS_PER_PHASER} depends mainly on
220 * expected synchronization rates. A value as low as four may
221 * be appropriate for extremely small per-phase task bodies (thus
222 * high rates), or up to hundreds for extremely large ones.
223 *
224 * <p><b>Implementation notes</b>: This implementation restricts the
225 * maximum number of parties to 65535. Attempts to register additional
226 * parties result in {@code IllegalStateException}. However, you can and
227 * should create tiered phasers to accommodate arbitrarily large sets
228 * of participants.
229 *
230 * @since 1.7
231 * @author Doug Lea
232 */
233 public class Phaser {
234 /*
235 * This class implements an extension of X10 "clocks". Thanks to
236 * Vijay Saraswat for the idea, and to Vivek Sarkar for
237 * enhancements to extend functionality.
238 */
239
240 /**
241 * Primary state representation, holding four bit-fields:
242 *
243 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
244 * parties -- the number of parties to wait (bits 16-31)
245 * phase -- the generation of the barrier (bits 32-62)
246 * terminated -- set if barrier is terminated (bit 63 / sign)
247 *
248 * Except that a phaser with no registered parties is
249 * distinguished by the otherwise illegal state of having zero
250 * parties and one unarrived parties (encoded as EMPTY below).
251 *
252 * To efficiently maintain atomicity, these values are packed into
253 * a single (atomic) long. Good performance relies on keeping
254 * state decoding and encoding simple, and keeping race windows
255 * short.
256 *
257 * All state updates are performed via CAS except initial
258 * registration of a sub-phaser (i.e., one with a non-null
259 * parent). In this (relatively rare) case, we use built-in
260 * synchronization to lock while first registering with its
261 * parent.
262 *
263 * The phase of a subphaser is allowed to lag that of its
264 * ancestors until it is actually accessed -- see method
265 * reconcileState.
266 */
267 private volatile long state;
268
269 private static final int MAX_PARTIES = 0xffff;
270 private static final int MAX_PHASE = Integer.MAX_VALUE;
271 private static final int PARTIES_SHIFT = 16;
272 private static final int PHASE_SHIFT = 32;
273 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
274 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
275 private static final long COUNTS_MASK = 0xffffffffL;
276 private static final long TERMINATION_BIT = 1L << 63;
277
278 // some special values
279 private static final int ONE_ARRIVAL = 1;
280 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
281 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
282 private static final int EMPTY = 1;
283
284 // The following unpacking methods are usually manually inlined
285
286 private static int unarrivedOf(long s) {
287 int counts = (int)s;
288 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
289 }
290
291 private static int partiesOf(long s) {
292 return (int)s >>> PARTIES_SHIFT;
293 }
294
295 private static int phaseOf(long s) {
296 return (int)(s >>> PHASE_SHIFT);
297 }
298
299 private static int arrivedOf(long s) {
300 int counts = (int)s;
301 return (counts == EMPTY) ? 0 :
302 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
303 }
304
305 /**
306 * The parent of this phaser, or null if none.
307 */
308 private final Phaser parent;
309
310 /**
311 * The root of phaser tree. Equals this if not in a tree.
312 */
313 private final Phaser root;
314
315 /**
316 * Heads of Treiber stacks for waiting threads. To eliminate
317 * contention when releasing some threads while adding others, we
318 * use two of them, alternating across even and odd phases.
319 * Subphasers share queues with root to speed up releases.
320 */
321 private final AtomicReference<QNode> evenQ;
322 private final AtomicReference<QNode> oddQ;
323
324 /**
325 * Returns message string for bounds exceptions on arrival.
326 */
327 private String badArrive(long s) {
328 return "Attempted arrival of unregistered party for " +
329 stateToString(s);
330 }
331
332 /**
333 * Returns message string for bounds exceptions on registration.
334 */
335 private String badRegister(long s) {
336 return "Attempt to register more than " +
337 MAX_PARTIES + " parties for " + stateToString(s);
338 }
339
340 /**
341 * Main implementation for methods arrive and arriveAndDeregister.
342 * Manually tuned to speed up and minimize race windows for the
343 * common case of just decrementing unarrived field.
344 *
345 * @param adjust value to subtract from state;
346 * ONE_ARRIVAL for arrive,
347 * ONE_DEREGISTER for arriveAndDeregister
348 */
349 private int doArrive(int adjust) {
350 final Phaser root = this.root;
351 for (;;) {
352 long s = (root == this) ? state : reconcileState();
353 int phase = (int)(s >>> PHASE_SHIFT);
354 if (phase < 0)
355 return phase;
356 int counts = (int)s;
357 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
358 if (unarrived <= 0)
359 throw new IllegalStateException(badArrive(s));
360 if (STATE.compareAndSet(this, s, s-=adjust)) {
361 if (unarrived == 1) {
362 long n = s & PARTIES_MASK; // base of next state
363 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
364 if (root == this) {
365 if (onAdvance(phase, nextUnarrived))
366 n |= TERMINATION_BIT;
367 else if (nextUnarrived == 0)
368 n |= EMPTY;
369 else
370 n |= nextUnarrived;
371 int nextPhase = (phase + 1) & MAX_PHASE;
372 n |= (long)nextPhase << PHASE_SHIFT;
373 STATE.compareAndSet(this, s, n);
374 releaseWaiters(phase);
375 }
376 else if (nextUnarrived == 0) { // propagate deregistration
377 phase = parent.doArrive(ONE_DEREGISTER);
378 STATE.compareAndSet(this, s, s | EMPTY);
379 }
380 else
381 phase = parent.doArrive(ONE_ARRIVAL);
382 }
383 return phase;
384 }
385 }
386 }
387
388 /**
389 * Implementation of register, bulkRegister.
390 *
391 * @param registrations number to add to both parties and
392 * unarrived fields. Must be greater than zero.
393 */
394 private int doRegister(int registrations) {
395 // adjustment to state
396 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
397 final Phaser parent = this.parent;
398 int phase;
399 for (;;) {
400 long s = (parent == null) ? state : reconcileState();
401 int counts = (int)s;
402 int parties = counts >>> PARTIES_SHIFT;
403 int unarrived = counts & UNARRIVED_MASK;
404 if (registrations > MAX_PARTIES - parties)
405 throw new IllegalStateException(badRegister(s));
406 phase = (int)(s >>> PHASE_SHIFT);
407 if (phase < 0)
408 break;
409 if (counts != EMPTY) { // not 1st registration
410 if (parent == null || reconcileState() == s) {
411 if (unarrived == 0) // wait out advance
412 root.internalAwaitAdvance(phase, null);
413 else if (STATE.compareAndSet(this, s, s + adjust))
414 break;
415 }
416 }
417 else if (parent == null) { // 1st root registration
418 long next = ((long)phase << PHASE_SHIFT) | adjust;
419 if (STATE.compareAndSet(this, s, next))
420 break;
421 }
422 else {
423 synchronized (this) { // 1st sub registration
424 if (state == s) { // recheck under lock
425 phase = parent.doRegister(1);
426 if (phase < 0)
427 break;
428 // finish registration whenever parent registration
429 // succeeded, even when racing with termination,
430 // since these are part of the same "transaction".
431 while (!STATE.compareAndSet
432 (this, s,
433 ((long)phase << PHASE_SHIFT) | adjust)) {
434 s = state;
435 phase = (int)(root.state >>> PHASE_SHIFT);
436 // assert (int)s == EMPTY;
437 }
438 break;
439 }
440 }
441 }
442 }
443 return phase;
444 }
445
446 /**
447 * Resolves lagged phase propagation from root if necessary.
448 * Reconciliation normally occurs when root has advanced but
449 * subphasers have not yet done so, in which case they must finish
450 * their own advance by setting unarrived to parties (or if
451 * parties is zero, resetting to unregistered EMPTY state).
452 *
453 * @return reconciled state
454 */
455 private long reconcileState() {
456 final Phaser root = this.root;
457 long s = state;
458 if (root != this) {
459 int phase, p;
460 // CAS to root phase with current parties, tripping unarrived
461 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462 (int)(s >>> PHASE_SHIFT) &&
463 !STATE.compareAndSet
464 (this, s,
465 s = (((long)phase << PHASE_SHIFT) |
466 ((phase < 0) ? (s & COUNTS_MASK) :
467 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
468 ((s & PARTIES_MASK) | p))))))
469 s = state;
470 }
471 return s;
472 }
473
474 /**
475 * Creates a new phaser with no initially registered parties, no
476 * parent, and initial phase number 0. Any thread using this
477 * phaser will need to first register for it.
478 */
479 public Phaser() {
480 this(null, 0);
481 }
482
483 /**
484 * Creates a new phaser with the given number of registered
485 * unarrived parties, no parent, and initial phase number 0.
486 *
487 * @param parties the number of parties required to advance to the
488 * next phase
489 * @throws IllegalArgumentException if parties less than zero
490 * or greater than the maximum number of parties supported
491 */
492 public Phaser(int parties) {
493 this(null, parties);
494 }
495
496 /**
497 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
498 *
499 * @param parent the parent phaser
500 */
501 public Phaser(Phaser parent) {
502 this(parent, 0);
503 }
504
505 /**
506 * Creates a new phaser with the given parent and number of
507 * registered unarrived parties. When the given parent is non-null
508 * and the given number of parties is greater than zero, this
509 * child phaser is registered with its parent.
510 *
511 * @param parent the parent phaser
512 * @param parties the number of parties required to advance to the
513 * next phase
514 * @throws IllegalArgumentException if parties less than zero
515 * or greater than the maximum number of parties supported
516 */
517 public Phaser(Phaser parent, int parties) {
518 if (parties >>> PARTIES_SHIFT != 0)
519 throw new IllegalArgumentException("Illegal number of parties");
520 int phase = 0;
521 this.parent = parent;
522 if (parent != null) {
523 final Phaser root = parent.root;
524 this.root = root;
525 this.evenQ = root.evenQ;
526 this.oddQ = root.oddQ;
527 if (parties != 0)
528 phase = parent.doRegister(1);
529 }
530 else {
531 this.root = this;
532 this.evenQ = new AtomicReference<QNode>();
533 this.oddQ = new AtomicReference<QNode>();
534 }
535 this.state = (parties == 0) ? (long)EMPTY :
536 ((long)phase << PHASE_SHIFT) |
537 ((long)parties << PARTIES_SHIFT) |
538 ((long)parties);
539 }
540
541 /**
542 * Adds a new unarrived party to this phaser. If an ongoing
543 * invocation of {@link #onAdvance} is in progress, this method
544 * may await its completion before returning. If this phaser has
545 * a parent, and this phaser previously had no registered parties,
546 * this child phaser is also registered with its parent. If
547 * this phaser is terminated, the attempt to register has
548 * no effect, and a negative value is returned.
549 *
550 * @return the arrival phase number to which this registration
551 * applied. If this value is negative, then this phaser has
552 * terminated, in which case registration has no effect.
553 * @throws IllegalStateException if attempting to register more
554 * than the maximum supported number of parties
555 */
556 public int register() {
557 return doRegister(1);
558 }
559
560 /**
561 * Adds the given number of new unarrived parties to this phaser.
562 * If an ongoing invocation of {@link #onAdvance} is in progress,
563 * this method may await its completion before returning. If this
564 * phaser has a parent, and the given number of parties is greater
565 * than zero, and this phaser previously had no registered
566 * parties, this child phaser is also registered with its parent.
567 * If this phaser is terminated, the attempt to register has no
568 * effect, and a negative value is returned.
569 *
570 * @param parties the number of additional parties required to
571 * advance to the next phase
572 * @return the arrival phase number to which this registration
573 * applied. If this value is negative, then this phaser has
574 * terminated, in which case registration has no effect.
575 * @throws IllegalStateException if attempting to register more
576 * than the maximum supported number of parties
577 * @throws IllegalArgumentException if {@code parties < 0}
578 */
579 public int bulkRegister(int parties) {
580 if (parties < 0)
581 throw new IllegalArgumentException();
582 if (parties == 0)
583 return getPhase();
584 return doRegister(parties);
585 }
586
587 /**
588 * Arrives at this phaser, without waiting for others to arrive.
589 *
590 * <p>It is a usage error for an unregistered party to invoke this
591 * method. However, this error may result in an {@code
592 * IllegalStateException} only upon some subsequent operation on
593 * this phaser, if ever.
594 *
595 * @return the arrival phase number, or a negative value if terminated
596 * @throws IllegalStateException if not terminated and the number
597 * of unarrived parties would become negative
598 */
599 public int arrive() {
600 return doArrive(ONE_ARRIVAL);
601 }
602
603 /**
604 * Arrives at this phaser and deregisters from it without waiting
605 * for others to arrive. Deregistration reduces the number of
606 * parties required to advance in future phases. If this phaser
607 * has a parent, and deregistration causes this phaser to have
608 * zero parties, this phaser is also deregistered from its parent.
609 *
610 * <p>It is a usage error for an unregistered party to invoke this
611 * method. However, this error may result in an {@code
612 * IllegalStateException} only upon some subsequent operation on
613 * this phaser, if ever.
614 *
615 * @return the arrival phase number, or a negative value if terminated
616 * @throws IllegalStateException if not terminated and the number
617 * of registered or unarrived parties would become negative
618 */
619 public int arriveAndDeregister() {
620 return doArrive(ONE_DEREGISTER);
621 }
622
623 /**
624 * Arrives at this phaser and awaits others. Equivalent in effect
625 * to {@code awaitAdvance(arrive())}. If you need to await with
626 * interruption or timeout, you can arrange this with an analogous
627 * construction using one of the other forms of the {@code
628 * awaitAdvance} method. If instead you need to deregister upon
629 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
630 *
631 * <p>It is a usage error for an unregistered party to invoke this
632 * method. However, this error may result in an {@code
633 * IllegalStateException} only upon some subsequent operation on
634 * this phaser, if ever.
635 *
636 * @return the arrival phase number, or the (negative)
637 * {@linkplain #getPhase() current phase} if terminated
638 * @throws IllegalStateException if not terminated and the number
639 * of unarrived parties would become negative
640 */
641 public int arriveAndAwaitAdvance() {
642 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
643 final Phaser root = this.root;
644 for (;;) {
645 long s = (root == this) ? state : reconcileState();
646 int phase = (int)(s >>> PHASE_SHIFT);
647 if (phase < 0)
648 return phase;
649 int counts = (int)s;
650 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
651 if (unarrived <= 0)
652 throw new IllegalStateException(badArrive(s));
653 if (STATE.compareAndSet(this, s, s -= ONE_ARRIVAL)) {
654 if (unarrived > 1)
655 return root.internalAwaitAdvance(phase, null);
656 if (root != this)
657 return parent.arriveAndAwaitAdvance();
658 long n = s & PARTIES_MASK; // base of next state
659 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
660 if (onAdvance(phase, nextUnarrived))
661 n |= TERMINATION_BIT;
662 else if (nextUnarrived == 0)
663 n |= EMPTY;
664 else
665 n |= nextUnarrived;
666 int nextPhase = (phase + 1) & MAX_PHASE;
667 n |= (long)nextPhase << PHASE_SHIFT;
668 if (!STATE.compareAndSet(this, s, n))
669 return (int)(state >>> PHASE_SHIFT); // terminated
670 releaseWaiters(phase);
671 return nextPhase;
672 }
673 }
674 }
675
676 /**
677 * Awaits the phase of this phaser to advance from the given phase
678 * value, returning immediately if the current phase is not equal
679 * to the given phase value or this phaser is terminated.
680 *
681 * @param phase an arrival phase number, or negative value if
682 * terminated; this argument is normally the value returned by a
683 * previous call to {@code arrive} or {@code arriveAndDeregister}.
684 * @return the next arrival phase number, or the argument if it is
685 * negative, or the (negative) {@linkplain #getPhase() current phase}
686 * if terminated
687 */
688 public int awaitAdvance(int phase) {
689 final Phaser root = this.root;
690 long s = (root == this) ? state : reconcileState();
691 int p = (int)(s >>> PHASE_SHIFT);
692 if (phase < 0)
693 return phase;
694 if (p == phase)
695 return root.internalAwaitAdvance(phase, null);
696 return p;
697 }
698
699 /**
700 * Awaits the phase of this phaser to advance from the given phase
701 * value, throwing {@code InterruptedException} if interrupted
702 * while waiting, or returning immediately if the current phase is
703 * not equal to the given phase value or this phaser is
704 * terminated.
705 *
706 * @param phase an arrival phase number, or negative value if
707 * terminated; this argument is normally the value returned by a
708 * previous call to {@code arrive} or {@code arriveAndDeregister}.
709 * @return the next arrival phase number, or the argument if it is
710 * negative, or the (negative) {@linkplain #getPhase() current phase}
711 * if terminated
712 * @throws InterruptedException if thread interrupted while waiting
713 */
714 public int awaitAdvanceInterruptibly(int phase)
715 throws InterruptedException {
716 final Phaser root = this.root;
717 long s = (root == this) ? state : reconcileState();
718 int p = (int)(s >>> PHASE_SHIFT);
719 if (phase < 0)
720 return phase;
721 if (p == phase) {
722 QNode node = new QNode(this, phase, true, false, 0L);
723 p = root.internalAwaitAdvance(phase, node);
724 if (node.wasInterrupted)
725 throw new InterruptedException();
726 }
727 return p;
728 }
729
730 /**
731 * Awaits the phase of this phaser to advance from the given phase
732 * value or the given timeout to elapse, throwing {@code
733 * InterruptedException} if interrupted while waiting, or
734 * returning immediately if the current phase is not equal to the
735 * given phase value or this phaser is terminated.
736 *
737 * @param phase an arrival phase number, or negative value if
738 * terminated; this argument is normally the value returned by a
739 * previous call to {@code arrive} or {@code arriveAndDeregister}.
740 * @param timeout how long to wait before giving up, in units of
741 * {@code unit}
742 * @param unit a {@code TimeUnit} determining how to interpret the
743 * {@code timeout} parameter
744 * @return the next arrival phase number, or the argument if it is
745 * negative, or the (negative) {@linkplain #getPhase() current phase}
746 * if terminated
747 * @throws InterruptedException if thread interrupted while waiting
748 * @throws TimeoutException if timed out while waiting
749 */
750 public int awaitAdvanceInterruptibly(int phase,
751 long timeout, TimeUnit unit)
752 throws InterruptedException, TimeoutException {
753 long nanos = unit.toNanos(timeout);
754 final Phaser root = this.root;
755 long s = (root == this) ? state : reconcileState();
756 int p = (int)(s >>> PHASE_SHIFT);
757 if (phase < 0)
758 return phase;
759 if (p == phase) {
760 QNode node = new QNode(this, phase, true, true, nanos);
761 p = root.internalAwaitAdvance(phase, node);
762 if (node.wasInterrupted)
763 throw new InterruptedException();
764 else if (p == phase)
765 throw new TimeoutException();
766 }
767 return p;
768 }
769
770 /**
771 * Forces this phaser to enter termination state. Counts of
772 * registered parties are unaffected. If this phaser is a member
773 * of a tiered set of phasers, then all of the phasers in the set
774 * are terminated. If this phaser is already terminated, this
775 * method has no effect. This method may be useful for
776 * coordinating recovery after one or more tasks encounter
777 * unexpected exceptions.
778 */
779 public void forceTermination() {
780 // Only need to change root state
781 final Phaser root = this.root;
782 long s;
783 while ((s = root.state) >= 0) {
784 if (STATE.compareAndSet(root, s, s | TERMINATION_BIT)) {
785 // signal all threads
786 releaseWaiters(0); // Waiters on evenQ
787 releaseWaiters(1); // Waiters on oddQ
788 return;
789 }
790 }
791 }
792
793 /**
794 * Returns the current phase number. The maximum phase number is
795 * {@code Integer.MAX_VALUE}, after which it restarts at
796 * zero. Upon termination, the phase number is negative,
797 * in which case the prevailing phase prior to termination
798 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
799 *
800 * @return the phase number, or a negative value if terminated
801 */
802 public final int getPhase() {
803 return (int)(root.state >>> PHASE_SHIFT);
804 }
805
806 /**
807 * Returns the number of parties registered at this phaser.
808 *
809 * @return the number of parties
810 */
811 public int getRegisteredParties() {
812 return partiesOf(state);
813 }
814
815 /**
816 * Returns the number of registered parties that have arrived at
817 * the current phase of this phaser. If this phaser has terminated,
818 * the returned value is meaningless and arbitrary.
819 *
820 * @return the number of arrived parties
821 */
822 public int getArrivedParties() {
823 return arrivedOf(reconcileState());
824 }
825
826 /**
827 * Returns the number of registered parties that have not yet
828 * arrived at the current phase of this phaser. If this phaser has
829 * terminated, the returned value is meaningless and arbitrary.
830 *
831 * @return the number of unarrived parties
832 */
833 public int getUnarrivedParties() {
834 return unarrivedOf(reconcileState());
835 }
836
837 /**
838 * Returns the parent of this phaser, or {@code null} if none.
839 *
840 * @return the parent of this phaser, or {@code null} if none
841 */
842 public Phaser getParent() {
843 return parent;
844 }
845
846 /**
847 * Returns the root ancestor of this phaser, which is the same as
848 * this phaser if it has no parent.
849 *
850 * @return the root ancestor of this phaser
851 */
852 public Phaser getRoot() {
853 return root;
854 }
855
856 /**
857 * Returns {@code true} if this phaser has been terminated.
858 *
859 * @return {@code true} if this phaser has been terminated
860 */
861 public boolean isTerminated() {
862 return root.state < 0L;
863 }
864
865 /**
866 * Overridable method to perform an action upon impending phase
867 * advance, and to control termination. This method is invoked
868 * upon arrival of the party advancing this phaser (when all other
869 * waiting parties are dormant). If this method returns {@code
870 * true}, this phaser will be set to a final termination state
871 * upon advance, and subsequent calls to {@link #isTerminated}
872 * will return true. Any (unchecked) Exception or Error thrown by
873 * an invocation of this method is propagated to the party
874 * attempting to advance this phaser, in which case no advance
875 * occurs.
876 *
877 * <p>The arguments to this method provide the state of the phaser
878 * prevailing for the current transition. The effects of invoking
879 * arrival, registration, and waiting methods on this phaser from
880 * within {@code onAdvance} are unspecified and should not be
881 * relied on.
882 *
883 * <p>If this phaser is a member of a tiered set of phasers, then
884 * {@code onAdvance} is invoked only for its root phaser on each
885 * advance.
886 *
887 * <p>To support the most common use cases, the default
888 * implementation of this method returns {@code true} when the
889 * number of registered parties has become zero as the result of a
890 * party invoking {@code arriveAndDeregister}. You can disable
891 * this behavior, thus enabling continuation upon future
892 * registrations, by overriding this method to always return
893 * {@code false}:
894 *
895 * <pre> {@code
896 * Phaser phaser = new Phaser() {
897 * protected boolean onAdvance(int phase, int parties) { return false; }
898 * }}</pre>
899 *
900 * @param phase the current phase number on entry to this method,
901 * before this phaser is advanced
902 * @param registeredParties the current number of registered parties
903 * @return {@code true} if this phaser should terminate
904 */
905 protected boolean onAdvance(int phase, int registeredParties) {
906 return registeredParties == 0;
907 }
908
909 /**
910 * Returns a string identifying this phaser, as well as its
911 * state. The state, in brackets, includes the String {@code
912 * "phase = "} followed by the phase number, {@code "parties = "}
913 * followed by the number of registered parties, and {@code
914 * "arrived = "} followed by the number of arrived parties.
915 *
916 * @return a string identifying this phaser, as well as its state
917 */
918 public String toString() {
919 return stateToString(reconcileState());
920 }
921
922 /**
923 * Implementation of toString and string-based error messages.
924 */
925 private String stateToString(long s) {
926 return super.toString() +
927 "[phase = " + phaseOf(s) +
928 " parties = " + partiesOf(s) +
929 " arrived = " + arrivedOf(s) + "]";
930 }
931
932 // Waiting mechanics
933
934 /**
935 * Removes and signals threads from queue for phase.
936 */
937 private void releaseWaiters(int phase) {
938 QNode q; // first element of queue
939 Thread t; // its thread
940 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
941 while ((q = head.get()) != null &&
942 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
943 if (head.compareAndSet(q, q.next) &&
944 (t = q.thread) != null) {
945 q.thread = null;
946 LockSupport.unpark(t);
947 }
948 }
949 }
950
951 /**
952 * Variant of releaseWaiters that additionally tries to remove any
953 * nodes no longer waiting for advance due to timeout or
954 * interrupt. Currently, nodes are removed only if they are at
955 * head of queue, which suffices to reduce memory footprint in
956 * most usages.
957 *
958 * @return current phase on exit
959 */
960 private int abortWait(int phase) {
961 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
962 for (;;) {
963 Thread t;
964 QNode q = head.get();
965 int p = (int)(root.state >>> PHASE_SHIFT);
966 if (q == null || ((t = q.thread) != null && q.phase == p))
967 return p;
968 if (head.compareAndSet(q, q.next) && t != null) {
969 q.thread = null;
970 LockSupport.unpark(t);
971 }
972 }
973 }
974
975 /** The number of CPUs, for spin control */
976 private static final int NCPU = Runtime.getRuntime().availableProcessors();
977
978 /**
979 * The number of times to spin before blocking while waiting for
980 * advance, per arrival while waiting. On multiprocessors, fully
981 * blocking and waking up a large number of threads all at once is
982 * usually a very slow process, so we use rechargeable spins to
983 * avoid it when threads regularly arrive: When a thread in
984 * internalAwaitAdvance notices another arrival before blocking,
985 * and there appear to be enough CPUs available, it spins
986 * SPINS_PER_ARRIVAL more times before blocking. The value trades
987 * off good-citizenship vs big unnecessary slowdowns.
988 */
989 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
990
991 /**
992 * Possibly blocks and waits for phase to advance unless aborted.
993 * Call only on root phaser.
994 *
995 * @param phase current phase
996 * @param node if non-null, the wait node to track interrupt and timeout;
997 * if null, denotes noninterruptible wait
998 * @return current phase
999 */
1000 private int internalAwaitAdvance(int phase, QNode node) {
1001 // assert root == this;
1002 releaseWaiters(phase-1); // ensure old queue clean
1003 boolean queued = false; // true when node is enqueued
1004 int lastUnarrived = 0; // to increase spins upon change
1005 int spins = SPINS_PER_ARRIVAL;
1006 long s;
1007 int p;
1008 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1009 if (node == null) { // spinning in noninterruptible mode
1010 int unarrived = (int)s & UNARRIVED_MASK;
1011 if (unarrived != lastUnarrived &&
1012 (lastUnarrived = unarrived) < NCPU)
1013 spins += SPINS_PER_ARRIVAL;
1014 boolean interrupted = Thread.interrupted();
1015 if (interrupted || --spins < 0) { // need node to record intr
1016 node = new QNode(this, phase, false, false, 0L);
1017 node.wasInterrupted = interrupted;
1018 }
1019 else
1020 Thread.onSpinWait();
1021 }
1022 else if (node.isReleasable()) // done or aborted
1023 break;
1024 else if (!queued) { // push onto queue
1025 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1026 QNode q = node.next = head.get();
1027 if ((q == null || q.phase == phase) &&
1028 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1029 queued = head.compareAndSet(q, node);
1030 }
1031 else {
1032 try {
1033 ForkJoinPool.managedBlock(node);
1034 } catch (InterruptedException cantHappen) {
1035 node.wasInterrupted = true;
1036 }
1037 }
1038 }
1039
1040 if (node != null) {
1041 if (node.thread != null)
1042 node.thread = null; // avoid need for unpark()
1043 if (node.wasInterrupted && !node.interruptible)
1044 Thread.currentThread().interrupt();
1045 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1046 return abortWait(phase); // possibly clean up on abort
1047 }
1048 releaseWaiters(phase);
1049 return p;
1050 }
1051
1052 /**
1053 * Wait nodes for Treiber stack representing wait queue.
1054 */
1055 static final class QNode implements ForkJoinPool.ManagedBlocker {
1056 final Phaser phaser;
1057 final int phase;
1058 final boolean interruptible;
1059 final boolean timed;
1060 boolean wasInterrupted;
1061 long nanos;
1062 final long deadline;
1063 volatile Thread thread; // nulled to cancel wait
1064 QNode next;
1065
1066 QNode(Phaser phaser, int phase, boolean interruptible,
1067 boolean timed, long nanos) {
1068 this.phaser = phaser;
1069 this.phase = phase;
1070 this.interruptible = interruptible;
1071 this.nanos = nanos;
1072 this.timed = timed;
1073 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1074 thread = Thread.currentThread();
1075 }
1076
1077 public boolean isReleasable() {
1078 if (thread == null)
1079 return true;
1080 if (phaser.getPhase() != phase) {
1081 thread = null;
1082 return true;
1083 }
1084 if (Thread.interrupted())
1085 wasInterrupted = true;
1086 if (wasInterrupted && interruptible) {
1087 thread = null;
1088 return true;
1089 }
1090 if (timed &&
1091 (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1092 thread = null;
1093 return true;
1094 }
1095 return false;
1096 }
1097
1098 public boolean block() {
1099 while (!isReleasable()) {
1100 if (timed)
1101 LockSupport.parkNanos(this, nanos);
1102 else
1103 LockSupport.park(this);
1104 }
1105 return true;
1106 }
1107 }
1108
1109 // VarHandle mechanics
1110 private static final VarHandle STATE;
1111 static {
1112 try {
1113 MethodHandles.Lookup l = MethodHandles.lookup();
1114 STATE = l.findVarHandle(Phaser.class, "state", long.class);
1115 } catch (ReflectiveOperationException e) {
1116 throw new Error(e);
1117 }
1118
1119 // Reduce the risk of rare disastrous classloading in first call to
1120 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1121 Class<?> ensureLoaded = LockSupport.class;
1122 }
1123 }