ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/Phaser.java
Revision: 1.89
Committed: Fri Jul 8 20:02:54 2016 UTC (7 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.88: +0 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool}.
72 * Progress is ensured if the pool's parallelismLevel can
73 * accommodate the maximum number of simultaneously blocked
74 * parties.
75 *
76 * </ul>
77 *
78 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
79 * state, that may be checked using method {@link #isTerminated}. Upon
80 * termination, all synchronization methods immediately return without
81 * waiting for advance, as indicated by a negative return value.
82 * Similarly, attempts to register upon termination have no effect.
83 * Termination is triggered when an invocation of {@code onAdvance}
84 * returns {@code true}. The default implementation returns {@code
85 * true} if a deregistration has caused the number of registered
86 * parties to become zero. As illustrated below, when phasers control
87 * actions with a fixed number of iterations, it is often convenient
88 * to override this method to cause termination when the current phase
89 * number reaches a threshold. Method {@link #forceTermination} is
90 * also available to abruptly release waiting threads and allow them
91 * to terminate.
92 *
93 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
94 * constructed in tree structures) to reduce contention. Phasers with
95 * large numbers of parties that would otherwise experience heavy
96 * synchronization contention costs may instead be set up so that
97 * groups of sub-phasers share a common parent. This may greatly
98 * increase throughput even though it incurs greater per-operation
99 * overhead.
100 *
101 * <p>In a tree of tiered phasers, registration and deregistration of
102 * child phasers with their parent are managed automatically.
103 * Whenever the number of registered parties of a child phaser becomes
104 * non-zero (as established in the {@link #Phaser(Phaser,int)}
105 * constructor, {@link #register}, or {@link #bulkRegister}), the
106 * child phaser is registered with its parent. Whenever the number of
107 * registered parties becomes zero as the result of an invocation of
108 * {@link #arriveAndDeregister}, the child phaser is deregistered
109 * from its parent.
110 *
111 * <p><b>Monitoring.</b> While synchronization methods may be invoked
112 * only by registered parties, the current state of a phaser may be
113 * monitored by any caller. At any given moment there are {@link
114 * #getRegisteredParties} parties in total, of which {@link
115 * #getArrivedParties} have arrived at the current phase ({@link
116 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
117 * parties arrive, the phase advances. The values returned by these
118 * methods may reflect transient states and so are not in general
119 * useful for synchronization control. Method {@link #toString}
120 * returns snapshots of these state queries in a form convenient for
121 * informal monitoring.
122 *
123 * <p><b>Sample usages:</b>
124 *
125 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
126 * to control a one-shot action serving a variable number of parties.
127 * The typical idiom is for the method setting this up to first
128 * register, then start the actions, then deregister, as in:
129 *
130 * <pre> {@code
131 * void runTasks(List<Runnable> tasks) {
132 * final Phaser phaser = new Phaser(1); // "1" to register self
133 * // create and start threads
134 * for (final Runnable task : tasks) {
135 * phaser.register();
136 * new Thread() {
137 * public void run() {
138 * phaser.arriveAndAwaitAdvance(); // await all creation
139 * task.run();
140 * }
141 * }.start();
142 * }
143 *
144 * // allow threads to start and deregister self
145 * phaser.arriveAndDeregister();
146 * }}</pre>
147 *
148 * <p>One way to cause a set of threads to repeatedly perform actions
149 * for a given number of iterations is to override {@code onAdvance}:
150 *
151 * <pre> {@code
152 * void startTasks(List<Runnable> tasks, final int iterations) {
153 * final Phaser phaser = new Phaser() {
154 * protected boolean onAdvance(int phase, int registeredParties) {
155 * return phase >= iterations || registeredParties == 0;
156 * }
157 * };
158 * phaser.register();
159 * for (final Runnable task : tasks) {
160 * phaser.register();
161 * new Thread() {
162 * public void run() {
163 * do {
164 * task.run();
165 * phaser.arriveAndAwaitAdvance();
166 * } while (!phaser.isTerminated());
167 * }
168 * }.start();
169 * }
170 * phaser.arriveAndDeregister(); // deregister self, don't wait
171 * }}</pre>
172 *
173 * If the main task must later await termination, it
174 * may re-register and then execute a similar loop:
175 * <pre> {@code
176 * // ...
177 * phaser.register();
178 * while (!phaser.isTerminated())
179 * phaser.arriveAndAwaitAdvance();}</pre>
180 *
181 * <p>Related constructions may be used to await particular phase numbers
182 * in contexts where you are sure that the phase will never wrap around
183 * {@code Integer.MAX_VALUE}. For example:
184 *
185 * <pre> {@code
186 * void awaitPhase(Phaser phaser, int phase) {
187 * int p = phaser.register(); // assumes caller not already registered
188 * while (p < phase) {
189 * if (phaser.isTerminated())
190 * // ... deal with unexpected termination
191 * else
192 * p = phaser.arriveAndAwaitAdvance();
193 * }
194 * phaser.arriveAndDeregister();
195 * }}</pre>
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four bit-fields:
241 *
242 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * parties -- the number of parties to wait (bits 16-31)
244 * phase -- the generation of the barrier (bits 32-62)
245 * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished by the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed -- see method
264 * reconcileState.
265 */
266 private volatile long state;
267
268 private static final int MAX_PARTIES = 0xffff;
269 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 private static final int PARTIES_SHIFT = 16;
271 private static final int PHASE_SHIFT = 32;
272 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274 private static final long COUNTS_MASK = 0xffffffffL;
275 private static final long TERMINATION_BIT = 1L << 63;
276
277 // some special values
278 private static final int ONE_ARRIVAL = 1;
279 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
280 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
281 private static final int EMPTY = 1;
282
283 // The following unpacking methods are usually manually inlined
284
285 private static int unarrivedOf(long s) {
286 int counts = (int)s;
287 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288 }
289
290 private static int partiesOf(long s) {
291 return (int)s >>> PARTIES_SHIFT;
292 }
293
294 private static int phaseOf(long s) {
295 return (int)(s >>> PHASE_SHIFT);
296 }
297
298 private static int arrivedOf(long s) {
299 int counts = (int)s;
300 return (counts == EMPTY) ? 0 :
301 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302 }
303
304 /**
305 * The parent of this phaser, or null if none.
306 */
307 private final Phaser parent;
308
309 /**
310 * The root of phaser tree. Equals this if not in a tree.
311 */
312 private final Phaser root;
313
314 /**
315 * Heads of Treiber stacks for waiting threads. To eliminate
316 * contention when releasing some threads while adding others, we
317 * use two of them, alternating across even and odd phases.
318 * Subphasers share queues with root to speed up releases.
319 */
320 private final AtomicReference<QNode> evenQ;
321 private final AtomicReference<QNode> oddQ;
322
323 /**
324 * Returns message string for bounds exceptions on arrival.
325 */
326 private String badArrive(long s) {
327 return "Attempted arrival of unregistered party for " +
328 stateToString(s);
329 }
330
331 /**
332 * Returns message string for bounds exceptions on registration.
333 */
334 private String badRegister(long s) {
335 return "Attempt to register more than " +
336 MAX_PARTIES + " parties for " + stateToString(s);
337 }
338
339 /**
340 * Main implementation for methods arrive and arriveAndDeregister.
341 * Manually tuned to speed up and minimize race windows for the
342 * common case of just decrementing unarrived field.
343 *
344 * @param adjust value to subtract from state;
345 * ONE_ARRIVAL for arrive,
346 * ONE_DEREGISTER for arriveAndDeregister
347 */
348 private int doArrive(int adjust) {
349 final Phaser root = this.root;
350 for (;;) {
351 long s = (root == this) ? state : reconcileState();
352 int phase = (int)(s >>> PHASE_SHIFT);
353 if (phase < 0)
354 return phase;
355 int counts = (int)s;
356 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
357 if (unarrived <= 0)
358 throw new IllegalStateException(badArrive(s));
359 if (STATE.compareAndSet(this, s, s-=adjust)) {
360 if (unarrived == 1) {
361 long n = s & PARTIES_MASK; // base of next state
362 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
363 if (root == this) {
364 if (onAdvance(phase, nextUnarrived))
365 n |= TERMINATION_BIT;
366 else if (nextUnarrived == 0)
367 n |= EMPTY;
368 else
369 n |= nextUnarrived;
370 int nextPhase = (phase + 1) & MAX_PHASE;
371 n |= (long)nextPhase << PHASE_SHIFT;
372 STATE.compareAndSet(this, s, n);
373 releaseWaiters(phase);
374 }
375 else if (nextUnarrived == 0) { // propagate deregistration
376 phase = parent.doArrive(ONE_DEREGISTER);
377 STATE.compareAndSet(this, s, s | EMPTY);
378 }
379 else
380 phase = parent.doArrive(ONE_ARRIVAL);
381 }
382 return phase;
383 }
384 }
385 }
386
387 /**
388 * Implementation of register, bulkRegister.
389 *
390 * @param registrations number to add to both parties and
391 * unarrived fields. Must be greater than zero.
392 */
393 private int doRegister(int registrations) {
394 // adjustment to state
395 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
396 final Phaser parent = this.parent;
397 int phase;
398 for (;;) {
399 long s = (parent == null) ? state : reconcileState();
400 int counts = (int)s;
401 int parties = counts >>> PARTIES_SHIFT;
402 int unarrived = counts & UNARRIVED_MASK;
403 if (registrations > MAX_PARTIES - parties)
404 throw new IllegalStateException(badRegister(s));
405 phase = (int)(s >>> PHASE_SHIFT);
406 if (phase < 0)
407 break;
408 if (counts != EMPTY) { // not 1st registration
409 if (parent == null || reconcileState() == s) {
410 if (unarrived == 0) // wait out advance
411 root.internalAwaitAdvance(phase, null);
412 else if (STATE.compareAndSet(this, s, s + adjust))
413 break;
414 }
415 }
416 else if (parent == null) { // 1st root registration
417 long next = ((long)phase << PHASE_SHIFT) | adjust;
418 if (STATE.compareAndSet(this, s, next))
419 break;
420 }
421 else {
422 synchronized (this) { // 1st sub registration
423 if (state == s) { // recheck under lock
424 phase = parent.doRegister(1);
425 if (phase < 0)
426 break;
427 // finish registration whenever parent registration
428 // succeeded, even when racing with termination,
429 // since these are part of the same "transaction".
430 while (!STATE.weakCompareAndSetVolatile
431 (this, s,
432 ((long)phase << PHASE_SHIFT) | adjust)) {
433 s = state;
434 phase = (int)(root.state >>> PHASE_SHIFT);
435 // assert (int)s == EMPTY;
436 }
437 break;
438 }
439 }
440 }
441 }
442 return phase;
443 }
444
445 /**
446 * Resolves lagged phase propagation from root if necessary.
447 * Reconciliation normally occurs when root has advanced but
448 * subphasers have not yet done so, in which case they must finish
449 * their own advance by setting unarrived to parties (or if
450 * parties is zero, resetting to unregistered EMPTY state).
451 *
452 * @return reconciled state
453 */
454 private long reconcileState() {
455 final Phaser root = this.root;
456 long s = state;
457 if (root != this) {
458 int phase, p;
459 // CAS to root phase with current parties, tripping unarrived
460 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
461 (int)(s >>> PHASE_SHIFT) &&
462 !STATE.weakCompareAndSetVolatile
463 (this, s,
464 s = (((long)phase << PHASE_SHIFT) |
465 ((phase < 0) ? (s & COUNTS_MASK) :
466 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
467 ((s & PARTIES_MASK) | p))))))
468 s = state;
469 }
470 return s;
471 }
472
473 /**
474 * Creates a new phaser with no initially registered parties, no
475 * parent, and initial phase number 0. Any thread using this
476 * phaser will need to first register for it.
477 */
478 public Phaser() {
479 this(null, 0);
480 }
481
482 /**
483 * Creates a new phaser with the given number of registered
484 * unarrived parties, no parent, and initial phase number 0.
485 *
486 * @param parties the number of parties required to advance to the
487 * next phase
488 * @throws IllegalArgumentException if parties less than zero
489 * or greater than the maximum number of parties supported
490 */
491 public Phaser(int parties) {
492 this(null, parties);
493 }
494
495 /**
496 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
497 *
498 * @param parent the parent phaser
499 */
500 public Phaser(Phaser parent) {
501 this(parent, 0);
502 }
503
504 /**
505 * Creates a new phaser with the given parent and number of
506 * registered unarrived parties. When the given parent is non-null
507 * and the given number of parties is greater than zero, this
508 * child phaser is registered with its parent.
509 *
510 * @param parent the parent phaser
511 * @param parties the number of parties required to advance to the
512 * next phase
513 * @throws IllegalArgumentException if parties less than zero
514 * or greater than the maximum number of parties supported
515 */
516 public Phaser(Phaser parent, int parties) {
517 if (parties >>> PARTIES_SHIFT != 0)
518 throw new IllegalArgumentException("Illegal number of parties");
519 int phase = 0;
520 this.parent = parent;
521 if (parent != null) {
522 final Phaser root = parent.root;
523 this.root = root;
524 this.evenQ = root.evenQ;
525 this.oddQ = root.oddQ;
526 if (parties != 0)
527 phase = parent.doRegister(1);
528 }
529 else {
530 this.root = this;
531 this.evenQ = new AtomicReference<QNode>();
532 this.oddQ = new AtomicReference<QNode>();
533 }
534 this.state = (parties == 0) ? (long)EMPTY :
535 ((long)phase << PHASE_SHIFT) |
536 ((long)parties << PARTIES_SHIFT) |
537 ((long)parties);
538 }
539
540 /**
541 * Adds a new unarrived party to this phaser. If an ongoing
542 * invocation of {@link #onAdvance} is in progress, this method
543 * may await its completion before returning. If this phaser has
544 * a parent, and this phaser previously had no registered parties,
545 * this child phaser is also registered with its parent. If
546 * this phaser is terminated, the attempt to register has
547 * no effect, and a negative value is returned.
548 *
549 * @return the arrival phase number to which this registration
550 * applied. If this value is negative, then this phaser has
551 * terminated, in which case registration has no effect.
552 * @throws IllegalStateException if attempting to register more
553 * than the maximum supported number of parties
554 */
555 public int register() {
556 return doRegister(1);
557 }
558
559 /**
560 * Adds the given number of new unarrived parties to this phaser.
561 * If an ongoing invocation of {@link #onAdvance} is in progress,
562 * this method may await its completion before returning. If this
563 * phaser has a parent, and the given number of parties is greater
564 * than zero, and this phaser previously had no registered
565 * parties, this child phaser is also registered with its parent.
566 * If this phaser is terminated, the attempt to register has no
567 * effect, and a negative value is returned.
568 *
569 * @param parties the number of additional parties required to
570 * advance to the next phase
571 * @return the arrival phase number to which this registration
572 * applied. If this value is negative, then this phaser has
573 * terminated, in which case registration has no effect.
574 * @throws IllegalStateException if attempting to register more
575 * than the maximum supported number of parties
576 * @throws IllegalArgumentException if {@code parties < 0}
577 */
578 public int bulkRegister(int parties) {
579 if (parties < 0)
580 throw new IllegalArgumentException();
581 if (parties == 0)
582 return getPhase();
583 return doRegister(parties);
584 }
585
586 /**
587 * Arrives at this phaser, without waiting for others to arrive.
588 *
589 * <p>It is a usage error for an unregistered party to invoke this
590 * method. However, this error may result in an {@code
591 * IllegalStateException} only upon some subsequent operation on
592 * this phaser, if ever.
593 *
594 * @return the arrival phase number, or a negative value if terminated
595 * @throws IllegalStateException if not terminated and the number
596 * of unarrived parties would become negative
597 */
598 public int arrive() {
599 return doArrive(ONE_ARRIVAL);
600 }
601
602 /**
603 * Arrives at this phaser and deregisters from it without waiting
604 * for others to arrive. Deregistration reduces the number of
605 * parties required to advance in future phases. If this phaser
606 * has a parent, and deregistration causes this phaser to have
607 * zero parties, this phaser is also deregistered from its parent.
608 *
609 * <p>It is a usage error for an unregistered party to invoke this
610 * method. However, this error may result in an {@code
611 * IllegalStateException} only upon some subsequent operation on
612 * this phaser, if ever.
613 *
614 * @return the arrival phase number, or a negative value if terminated
615 * @throws IllegalStateException if not terminated and the number
616 * of registered or unarrived parties would become negative
617 */
618 public int arriveAndDeregister() {
619 return doArrive(ONE_DEREGISTER);
620 }
621
622 /**
623 * Arrives at this phaser and awaits others. Equivalent in effect
624 * to {@code awaitAdvance(arrive())}. If you need to await with
625 * interruption or timeout, you can arrange this with an analogous
626 * construction using one of the other forms of the {@code
627 * awaitAdvance} method. If instead you need to deregister upon
628 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
629 *
630 * <p>It is a usage error for an unregistered party to invoke this
631 * method. However, this error may result in an {@code
632 * IllegalStateException} only upon some subsequent operation on
633 * this phaser, if ever.
634 *
635 * @return the arrival phase number, or the (negative)
636 * {@linkplain #getPhase() current phase} if terminated
637 * @throws IllegalStateException if not terminated and the number
638 * of unarrived parties would become negative
639 */
640 public int arriveAndAwaitAdvance() {
641 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
642 final Phaser root = this.root;
643 for (;;) {
644 long s = (root == this) ? state : reconcileState();
645 int phase = (int)(s >>> PHASE_SHIFT);
646 if (phase < 0)
647 return phase;
648 int counts = (int)s;
649 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
650 if (unarrived <= 0)
651 throw new IllegalStateException(badArrive(s));
652 if (STATE.compareAndSet(this, s, s -= ONE_ARRIVAL)) {
653 if (unarrived > 1)
654 return root.internalAwaitAdvance(phase, null);
655 if (root != this)
656 return parent.arriveAndAwaitAdvance();
657 long n = s & PARTIES_MASK; // base of next state
658 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
659 if (onAdvance(phase, nextUnarrived))
660 n |= TERMINATION_BIT;
661 else if (nextUnarrived == 0)
662 n |= EMPTY;
663 else
664 n |= nextUnarrived;
665 int nextPhase = (phase + 1) & MAX_PHASE;
666 n |= (long)nextPhase << PHASE_SHIFT;
667 if (!STATE.compareAndSet(this, s, n))
668 return (int)(state >>> PHASE_SHIFT); // terminated
669 releaseWaiters(phase);
670 return nextPhase;
671 }
672 }
673 }
674
675 /**
676 * Awaits the phase of this phaser to advance from the given phase
677 * value, returning immediately if the current phase is not equal
678 * to the given phase value or this phaser is terminated.
679 *
680 * @param phase an arrival phase number, or negative value if
681 * terminated; this argument is normally the value returned by a
682 * previous call to {@code arrive} or {@code arriveAndDeregister}.
683 * @return the next arrival phase number, or the argument if it is
684 * negative, or the (negative) {@linkplain #getPhase() current phase}
685 * if terminated
686 */
687 public int awaitAdvance(int phase) {
688 final Phaser root = this.root;
689 long s = (root == this) ? state : reconcileState();
690 int p = (int)(s >>> PHASE_SHIFT);
691 if (phase < 0)
692 return phase;
693 if (p == phase)
694 return root.internalAwaitAdvance(phase, null);
695 return p;
696 }
697
698 /**
699 * Awaits the phase of this phaser to advance from the given phase
700 * value, throwing {@code InterruptedException} if interrupted
701 * while waiting, or returning immediately if the current phase is
702 * not equal to the given phase value or this phaser is
703 * terminated.
704 *
705 * @param phase an arrival phase number, or negative value if
706 * terminated; this argument is normally the value returned by a
707 * previous call to {@code arrive} or {@code arriveAndDeregister}.
708 * @return the next arrival phase number, or the argument if it is
709 * negative, or the (negative) {@linkplain #getPhase() current phase}
710 * if terminated
711 * @throws InterruptedException if thread interrupted while waiting
712 */
713 public int awaitAdvanceInterruptibly(int phase)
714 throws InterruptedException {
715 final Phaser root = this.root;
716 long s = (root == this) ? state : reconcileState();
717 int p = (int)(s >>> PHASE_SHIFT);
718 if (phase < 0)
719 return phase;
720 if (p == phase) {
721 QNode node = new QNode(this, phase, true, false, 0L);
722 p = root.internalAwaitAdvance(phase, node);
723 if (node.wasInterrupted)
724 throw new InterruptedException();
725 }
726 return p;
727 }
728
729 /**
730 * Awaits the phase of this phaser to advance from the given phase
731 * value or the given timeout to elapse, throwing {@code
732 * InterruptedException} if interrupted while waiting, or
733 * returning immediately if the current phase is not equal to the
734 * given phase value or this phaser is terminated.
735 *
736 * @param phase an arrival phase number, or negative value if
737 * terminated; this argument is normally the value returned by a
738 * previous call to {@code arrive} or {@code arriveAndDeregister}.
739 * @param timeout how long to wait before giving up, in units of
740 * {@code unit}
741 * @param unit a {@code TimeUnit} determining how to interpret the
742 * {@code timeout} parameter
743 * @return the next arrival phase number, or the argument if it is
744 * negative, or the (negative) {@linkplain #getPhase() current phase}
745 * if terminated
746 * @throws InterruptedException if thread interrupted while waiting
747 * @throws TimeoutException if timed out while waiting
748 */
749 public int awaitAdvanceInterruptibly(int phase,
750 long timeout, TimeUnit unit)
751 throws InterruptedException, TimeoutException {
752 long nanos = unit.toNanos(timeout);
753 final Phaser root = this.root;
754 long s = (root == this) ? state : reconcileState();
755 int p = (int)(s >>> PHASE_SHIFT);
756 if (phase < 0)
757 return phase;
758 if (p == phase) {
759 QNode node = new QNode(this, phase, true, true, nanos);
760 p = root.internalAwaitAdvance(phase, node);
761 if (node.wasInterrupted)
762 throw new InterruptedException();
763 else if (p == phase)
764 throw new TimeoutException();
765 }
766 return p;
767 }
768
769 /**
770 * Forces this phaser to enter termination state. Counts of
771 * registered parties are unaffected. If this phaser is a member
772 * of a tiered set of phasers, then all of the phasers in the set
773 * are terminated. If this phaser is already terminated, this
774 * method has no effect. This method may be useful for
775 * coordinating recovery after one or more tasks encounter
776 * unexpected exceptions.
777 */
778 public void forceTermination() {
779 // Only need to change root state
780 final Phaser root = this.root;
781 long s;
782 while ((s = root.state) >= 0) {
783 if (STATE.compareAndSet(root, s, s | TERMINATION_BIT)) {
784 // signal all threads
785 releaseWaiters(0); // Waiters on evenQ
786 releaseWaiters(1); // Waiters on oddQ
787 return;
788 }
789 }
790 }
791
792 /**
793 * Returns the current phase number. The maximum phase number is
794 * {@code Integer.MAX_VALUE}, after which it restarts at
795 * zero. Upon termination, the phase number is negative,
796 * in which case the prevailing phase prior to termination
797 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
798 *
799 * @return the phase number, or a negative value if terminated
800 */
801 public final int getPhase() {
802 return (int)(root.state >>> PHASE_SHIFT);
803 }
804
805 /**
806 * Returns the number of parties registered at this phaser.
807 *
808 * @return the number of parties
809 */
810 public int getRegisteredParties() {
811 return partiesOf(state);
812 }
813
814 /**
815 * Returns the number of registered parties that have arrived at
816 * the current phase of this phaser. If this phaser has terminated,
817 * the returned value is meaningless and arbitrary.
818 *
819 * @return the number of arrived parties
820 */
821 public int getArrivedParties() {
822 return arrivedOf(reconcileState());
823 }
824
825 /**
826 * Returns the number of registered parties that have not yet
827 * arrived at the current phase of this phaser. If this phaser has
828 * terminated, the returned value is meaningless and arbitrary.
829 *
830 * @return the number of unarrived parties
831 */
832 public int getUnarrivedParties() {
833 return unarrivedOf(reconcileState());
834 }
835
836 /**
837 * Returns the parent of this phaser, or {@code null} if none.
838 *
839 * @return the parent of this phaser, or {@code null} if none
840 */
841 public Phaser getParent() {
842 return parent;
843 }
844
845 /**
846 * Returns the root ancestor of this phaser, which is the same as
847 * this phaser if it has no parent.
848 *
849 * @return the root ancestor of this phaser
850 */
851 public Phaser getRoot() {
852 return root;
853 }
854
855 /**
856 * Returns {@code true} if this phaser has been terminated.
857 *
858 * @return {@code true} if this phaser has been terminated
859 */
860 public boolean isTerminated() {
861 return root.state < 0L;
862 }
863
864 /**
865 * Overridable method to perform an action upon impending phase
866 * advance, and to control termination. This method is invoked
867 * upon arrival of the party advancing this phaser (when all other
868 * waiting parties are dormant). If this method returns {@code
869 * true}, this phaser will be set to a final termination state
870 * upon advance, and subsequent calls to {@link #isTerminated}
871 * will return true. Any (unchecked) Exception or Error thrown by
872 * an invocation of this method is propagated to the party
873 * attempting to advance this phaser, in which case no advance
874 * occurs.
875 *
876 * <p>The arguments to this method provide the state of the phaser
877 * prevailing for the current transition. The effects of invoking
878 * arrival, registration, and waiting methods on this phaser from
879 * within {@code onAdvance} are unspecified and should not be
880 * relied on.
881 *
882 * <p>If this phaser is a member of a tiered set of phasers, then
883 * {@code onAdvance} is invoked only for its root phaser on each
884 * advance.
885 *
886 * <p>To support the most common use cases, the default
887 * implementation of this method returns {@code true} when the
888 * number of registered parties has become zero as the result of a
889 * party invoking {@code arriveAndDeregister}. You can disable
890 * this behavior, thus enabling continuation upon future
891 * registrations, by overriding this method to always return
892 * {@code false}:
893 *
894 * <pre> {@code
895 * Phaser phaser = new Phaser() {
896 * protected boolean onAdvance(int phase, int parties) { return false; }
897 * }}</pre>
898 *
899 * @param phase the current phase number on entry to this method,
900 * before this phaser is advanced
901 * @param registeredParties the current number of registered parties
902 * @return {@code true} if this phaser should terminate
903 */
904 protected boolean onAdvance(int phase, int registeredParties) {
905 return registeredParties == 0;
906 }
907
908 /**
909 * Returns a string identifying this phaser, as well as its
910 * state. The state, in brackets, includes the String {@code
911 * "phase = "} followed by the phase number, {@code "parties = "}
912 * followed by the number of registered parties, and {@code
913 * "arrived = "} followed by the number of arrived parties.
914 *
915 * @return a string identifying this phaser, as well as its state
916 */
917 public String toString() {
918 return stateToString(reconcileState());
919 }
920
921 /**
922 * Implementation of toString and string-based error messages.
923 */
924 private String stateToString(long s) {
925 return super.toString() +
926 "[phase = " + phaseOf(s) +
927 " parties = " + partiesOf(s) +
928 " arrived = " + arrivedOf(s) + "]";
929 }
930
931 // Waiting mechanics
932
933 /**
934 * Removes and signals threads from queue for phase.
935 */
936 private void releaseWaiters(int phase) {
937 QNode q; // first element of queue
938 Thread t; // its thread
939 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
940 while ((q = head.get()) != null &&
941 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
942 if (head.compareAndSet(q, q.next) &&
943 (t = q.thread) != null) {
944 q.thread = null;
945 LockSupport.unpark(t);
946 }
947 }
948 }
949
950 /**
951 * Variant of releaseWaiters that additionally tries to remove any
952 * nodes no longer waiting for advance due to timeout or
953 * interrupt. Currently, nodes are removed only if they are at
954 * head of queue, which suffices to reduce memory footprint in
955 * most usages.
956 *
957 * @return current phase on exit
958 */
959 private int abortWait(int phase) {
960 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
961 for (;;) {
962 Thread t;
963 QNode q = head.get();
964 int p = (int)(root.state >>> PHASE_SHIFT);
965 if (q == null || ((t = q.thread) != null && q.phase == p))
966 return p;
967 if (head.compareAndSet(q, q.next) && t != null) {
968 q.thread = null;
969 LockSupport.unpark(t);
970 }
971 }
972 }
973
974 /** The number of CPUs, for spin control */
975 private static final int NCPU = Runtime.getRuntime().availableProcessors();
976
977 /**
978 * The number of times to spin before blocking while waiting for
979 * advance, per arrival while waiting. On multiprocessors, fully
980 * blocking and waking up a large number of threads all at once is
981 * usually a very slow process, so we use rechargeable spins to
982 * avoid it when threads regularly arrive: When a thread in
983 * internalAwaitAdvance notices another arrival before blocking,
984 * and there appear to be enough CPUs available, it spins
985 * SPINS_PER_ARRIVAL more times before blocking. The value trades
986 * off good-citizenship vs big unnecessary slowdowns.
987 */
988 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
989
990 /**
991 * Possibly blocks and waits for phase to advance unless aborted.
992 * Call only on root phaser.
993 *
994 * @param phase current phase
995 * @param node if non-null, the wait node to track interrupt and timeout;
996 * if null, denotes noninterruptible wait
997 * @return current phase
998 */
999 private int internalAwaitAdvance(int phase, QNode node) {
1000 // assert root == this;
1001 releaseWaiters(phase-1); // ensure old queue clean
1002 boolean queued = false; // true when node is enqueued
1003 int lastUnarrived = 0; // to increase spins upon change
1004 int spins = SPINS_PER_ARRIVAL;
1005 long s;
1006 int p;
1007 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1008 if (node == null) { // spinning in noninterruptible mode
1009 int unarrived = (int)s & UNARRIVED_MASK;
1010 if (unarrived != lastUnarrived &&
1011 (lastUnarrived = unarrived) < NCPU)
1012 spins += SPINS_PER_ARRIVAL;
1013 boolean interrupted = Thread.interrupted();
1014 if (interrupted || --spins < 0) { // need node to record intr
1015 node = new QNode(this, phase, false, false, 0L);
1016 node.wasInterrupted = interrupted;
1017 }
1018 else
1019 Thread.onSpinWait();
1020 }
1021 else if (node.isReleasable()) // done or aborted
1022 break;
1023 else if (!queued) { // push onto queue
1024 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1025 QNode q = node.next = head.get();
1026 if ((q == null || q.phase == phase) &&
1027 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1028 queued = head.compareAndSet(q, node);
1029 }
1030 else {
1031 try {
1032 ForkJoinPool.managedBlock(node);
1033 } catch (InterruptedException cantHappen) {
1034 node.wasInterrupted = true;
1035 }
1036 }
1037 }
1038
1039 if (node != null) {
1040 if (node.thread != null)
1041 node.thread = null; // avoid need for unpark()
1042 if (node.wasInterrupted && !node.interruptible)
1043 Thread.currentThread().interrupt();
1044 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1045 return abortWait(phase); // possibly clean up on abort
1046 }
1047 releaseWaiters(phase);
1048 return p;
1049 }
1050
1051 /**
1052 * Wait nodes for Treiber stack representing wait queue.
1053 */
1054 static final class QNode implements ForkJoinPool.ManagedBlocker {
1055 final Phaser phaser;
1056 final int phase;
1057 final boolean interruptible;
1058 final boolean timed;
1059 boolean wasInterrupted;
1060 long nanos;
1061 final long deadline;
1062 volatile Thread thread; // nulled to cancel wait
1063 QNode next;
1064
1065 QNode(Phaser phaser, int phase, boolean interruptible,
1066 boolean timed, long nanos) {
1067 this.phaser = phaser;
1068 this.phase = phase;
1069 this.interruptible = interruptible;
1070 this.nanos = nanos;
1071 this.timed = timed;
1072 this.deadline = timed ? System.nanoTime() + nanos : 0L;
1073 thread = Thread.currentThread();
1074 }
1075
1076 public boolean isReleasable() {
1077 if (thread == null)
1078 return true;
1079 if (phaser.getPhase() != phase) {
1080 thread = null;
1081 return true;
1082 }
1083 if (Thread.interrupted())
1084 wasInterrupted = true;
1085 if (wasInterrupted && interruptible) {
1086 thread = null;
1087 return true;
1088 }
1089 if (timed &&
1090 (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
1091 thread = null;
1092 return true;
1093 }
1094 return false;
1095 }
1096
1097 public boolean block() {
1098 while (!isReleasable()) {
1099 if (timed)
1100 LockSupport.parkNanos(this, nanos);
1101 else
1102 LockSupport.park(this);
1103 }
1104 return true;
1105 }
1106 }
1107
1108 // VarHandle mechanics
1109 private static final VarHandle STATE;
1110 static {
1111 try {
1112 MethodHandles.Lookup l = MethodHandles.lookup();
1113 STATE = l.findVarHandle(Phaser.class, "state", long.class);
1114 } catch (ReflectiveOperationException e) {
1115 throw new Error(e);
1116 }
1117
1118 // Reduce the risk of rare disastrous classloading in first call to
1119 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1120 Class<?> ensureLoaded = LockSupport.class;
1121 }
1122 }