ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.132
Committed: Sun May 6 02:15:03 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.131: +16 -0 lines
Log Message:
optimized implementation of forEach

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.33 * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 tim 1.13
9 dl 1.115 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 dl 1.86 import java.util.AbstractQueue;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Comparator;
15     import java.util.Iterator;
16     import java.util.NoSuchElementException;
17 jsr166 1.124 import java.util.Objects;
18 dl 1.86 import java.util.PriorityQueue;
19     import java.util.Queue;
20     import java.util.SortedSet;
21     import java.util.Spliterator;
22 jsr166 1.105 import java.util.concurrent.locks.Condition;
23     import java.util.concurrent.locks.ReentrantLock;
24     import java.util.function.Consumer;
25 jsr166 1.131 import jdk.internal.misc.SharedSecrets;
26 tim 1.1
27     /**
28 dl 1.25 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
29     * the same ordering rules as class {@link PriorityQueue} and supplies
30     * blocking retrieval operations. While this queue is logically
31 dl 1.24 * unbounded, attempted additions may fail due to resource exhaustion
32 jsr166 1.63 * (causing {@code OutOfMemoryError}). This class does not permit
33     * {@code null} elements. A priority queue relying on {@linkplain
34 jsr166 1.42 * Comparable natural ordering} also does not permit insertion of
35     * non-comparable objects (doing so results in
36 jsr166 1.63 * {@code ClassCastException}).
37 dl 1.20 *
38 jsr166 1.126 * <p>This class and its iterator implement all of the <em>optional</em>
39     * methods of the {@link Collection} and {@link Iterator} interfaces.
40     * The Iterator provided in method {@link #iterator()} and the
41     * Spliterator provided in method {@link #spliterator()} are <em>not</em>
42     * guaranteed to traverse the elements of the PriorityBlockingQueue in
43     * any particular order. If you need ordered traversal, consider using
44     * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
45     * be used to <em>remove</em> some or all elements in priority order and
46     * place them in another collection.
47 dl 1.41 *
48     * <p>Operations on this class make no guarantees about the ordering
49     * of elements with equal priority. If you need to enforce an
50     * ordering, you can define custom classes or comparators that use a
51     * secondary key to break ties in primary priority values. For
52     * example, here is a class that applies first-in-first-out
53     * tie-breaking to comparable elements. To use it, you would insert a
54 jsr166 1.63 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
55 dl 1.41 *
56 jsr166 1.109 * <pre> {@code
57 jsr166 1.56 * class FIFOEntry<E extends Comparable<? super E>>
58     * implements Comparable<FIFOEntry<E>> {
59 jsr166 1.58 * static final AtomicLong seq = new AtomicLong(0);
60 dl 1.41 * final long seqNum;
61     * final E entry;
62     * public FIFOEntry(E entry) {
63     * seqNum = seq.getAndIncrement();
64     * this.entry = entry;
65     * }
66     * public E getEntry() { return entry; }
67 jsr166 1.56 * public int compareTo(FIFOEntry<E> other) {
68 dl 1.41 * int res = entry.compareTo(other.entry);
69 jsr166 1.56 * if (res == 0 && other.entry != this.entry)
70     * res = (seqNum < other.seqNum ? -1 : 1);
71 dl 1.41 * return res;
72     * }
73 jsr166 1.56 * }}</pre>
74 dl 1.20 *
75 dl 1.35 * <p>This class is a member of the
76 jsr166 1.128 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
77 dl 1.35 * Java Collections Framework</a>.
78     *
79 dl 1.6 * @since 1.5
80     * @author Doug Lea
81 jsr166 1.104 * @param <E> the type of elements held in this queue
82 dl 1.28 */
83 jsr166 1.82 @SuppressWarnings("unchecked")
84 dl 1.5 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
85 dl 1.15 implements BlockingQueue<E>, java.io.Serializable {
86 dl 1.21 private static final long serialVersionUID = 5595510919245408276L;
87 tim 1.1
88 dl 1.59 /*
89 dl 1.66 * The implementation uses an array-based binary heap, with public
90     * operations protected with a single lock. However, allocation
91     * during resizing uses a simple spinlock (used only while not
92     * holding main lock) in order to allow takes to operate
93     * concurrently with allocation. This avoids repeated
94     * postponement of waiting consumers and consequent element
95     * build-up. The need to back away from lock during allocation
96     * makes it impossible to simply wrap delegated
97     * java.util.PriorityQueue operations within a lock, as was done
98     * in a previous version of this class. To maintain
99     * interoperability, a plain PriorityQueue is still used during
100 jsr166 1.77 * serialization, which maintains compatibility at the expense of
101 dl 1.66 * transiently doubling overhead.
102 dl 1.59 */
103    
104     /**
105     * Default array capacity.
106     */
107     private static final int DEFAULT_INITIAL_CAPACITY = 11;
108    
109     /**
110 dl 1.66 * The maximum size of array to allocate.
111     * Some VMs reserve some header words in an array.
112     * Attempts to allocate larger arrays may result in
113     * OutOfMemoryError: Requested array size exceeds VM limit
114     */
115     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
116    
117     /**
118 dl 1.59 * Priority queue represented as a balanced binary heap: the two
119     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
120     * priority queue is ordered by comparator, or by the elements'
121     * natural ordering, if comparator is null: For each node n in the
122     * heap and each descendant d of n, n <= d. The element with the
123     * lowest value is in queue[0], assuming the queue is nonempty.
124     */
125     private transient Object[] queue;
126    
127     /**
128     * The number of elements in the priority queue.
129     */
130 dl 1.66 private transient int size;
131 dl 1.59
132     /**
133     * The comparator, or null if priority queue uses elements'
134     * natural ordering.
135     */
136     private transient Comparator<? super E> comparator;
137    
138     /**
139 jsr166 1.112 * Lock used for all public operations.
140 dl 1.59 */
141 dl 1.66 private final ReentrantLock lock;
142 dl 1.59
143     /**
144 jsr166 1.112 * Condition for blocking when empty.
145 dl 1.59 */
146 dl 1.66 private final Condition notEmpty;
147 dl 1.5
148 dl 1.2 /**
149 dl 1.59 * Spinlock for allocation, acquired via CAS.
150     */
151     private transient volatile int allocationSpinLock;
152    
153     /**
154 dl 1.66 * A plain PriorityQueue used only for serialization,
155     * to maintain compatibility with previous versions
156     * of this class. Non-null only during serialization/deserialization.
157     */
158 jsr166 1.72 private PriorityQueue<E> q;
159 dl 1.66
160     /**
161 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the default
162 jsr166 1.42 * initial capacity (11) that orders its elements according to
163     * their {@linkplain Comparable natural ordering}.
164 dl 1.2 */
165     public PriorityBlockingQueue() {
166 dl 1.59 this(DEFAULT_INITIAL_CAPACITY, null);
167 dl 1.2 }
168    
169     /**
170 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the specified
171 jsr166 1.42 * initial capacity that orders its elements according to their
172     * {@linkplain Comparable natural ordering}.
173 dl 1.2 *
174 jsr166 1.42 * @param initialCapacity the initial capacity for this priority queue
175 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
176 jsr166 1.52 * than 1
177 dl 1.2 */
178     public PriorityBlockingQueue(int initialCapacity) {
179 dl 1.59 this(initialCapacity, null);
180 dl 1.2 }
181    
182     /**
183 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the specified initial
184 jsr166 1.39 * capacity that orders its elements according to the specified
185     * comparator.
186 dl 1.2 *
187 jsr166 1.42 * @param initialCapacity the initial capacity for this priority queue
188 jsr166 1.52 * @param comparator the comparator that will be used to order this
189     * priority queue. If {@code null}, the {@linkplain Comparable
190     * natural ordering} of the elements will be used.
191 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
192 jsr166 1.52 * than 1
193 dl 1.2 */
194 tim 1.13 public PriorityBlockingQueue(int initialCapacity,
195 dholmes 1.14 Comparator<? super E> comparator) {
196 dl 1.59 if (initialCapacity < 1)
197     throw new IllegalArgumentException();
198 dl 1.66 this.lock = new ReentrantLock();
199     this.notEmpty = lock.newCondition();
200     this.comparator = comparator;
201 dl 1.59 this.queue = new Object[initialCapacity];
202 dl 1.2 }
203    
204     /**
205 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} containing the elements
206 jsr166 1.52 * in the specified collection. If the specified collection is a
207 jsr166 1.99 * {@link SortedSet} or a {@link PriorityQueue}, this
208 jsr166 1.52 * priority queue will be ordered according to the same ordering.
209     * Otherwise, this priority queue will be ordered according to the
210     * {@linkplain Comparable natural ordering} of its elements.
211 dl 1.2 *
212 jsr166 1.52 * @param c the collection whose elements are to be placed
213     * into this priority queue
214 dl 1.2 * @throws ClassCastException if elements of the specified collection
215     * cannot be compared to one another according to the priority
216 jsr166 1.52 * queue's ordering
217 jsr166 1.42 * @throws NullPointerException if the specified collection or any
218     * of its elements are null
219 dl 1.2 */
220 dholmes 1.14 public PriorityBlockingQueue(Collection<? extends E> c) {
221 dl 1.66 this.lock = new ReentrantLock();
222     this.notEmpty = lock.newCondition();
223     boolean heapify = true; // true if not known to be in heap order
224     boolean screen = true; // true if must screen for nulls
225 dl 1.59 if (c instanceof SortedSet<?>) {
226     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
227     this.comparator = (Comparator<? super E>) ss.comparator();
228 dl 1.66 heapify = false;
229 dl 1.59 }
230     else if (c instanceof PriorityBlockingQueue<?>) {
231 jsr166 1.61 PriorityBlockingQueue<? extends E> pq =
232 dl 1.59 (PriorityBlockingQueue<? extends E>) c;
233     this.comparator = (Comparator<? super E>) pq.comparator();
234 jsr166 1.67 screen = false;
235 dl 1.66 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
236     heapify = false;
237 dl 1.59 }
238     Object[] a = c.toArray();
239 dl 1.66 int n = a.length;
240 dl 1.59 // If c.toArray incorrectly doesn't return Object[], copy it.
241     if (a.getClass() != Object[].class)
242 dl 1.66 a = Arrays.copyOf(a, n, Object[].class);
243     if (screen && (n == 1 || this.comparator != null)) {
244 jsr166 1.129 for (Object elt : a)
245     if (elt == null)
246 dl 1.59 throw new NullPointerException();
247 dl 1.66 }
248 dl 1.59 this.queue = a;
249 dl 1.66 this.size = n;
250     if (heapify)
251     heapify();
252 dl 1.59 }
253    
254     /**
255 dl 1.66 * Tries to grow array to accommodate at least one more element
256     * (but normally expand by about 50%), giving up (allowing retry)
257     * on contention (which we expect to be rare). Call only while
258     * holding lock.
259 jsr166 1.67 *
260 dl 1.66 * @param array the heap array
261     * @param oldCap the length of the array
262 dl 1.59 */
263 dl 1.66 private void tryGrow(Object[] array, int oldCap) {
264 dl 1.59 lock.unlock(); // must release and then re-acquire main lock
265     Object[] newArray = null;
266     if (allocationSpinLock == 0 &&
267 dl 1.115 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
268 dl 1.59 try {
269     int newCap = oldCap + ((oldCap < 64) ?
270 dl 1.66 (oldCap + 2) : // grow faster if small
271 dl 1.59 (oldCap >> 1));
272 dl 1.66 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
273     int minCap = oldCap + 1;
274 dl 1.59 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
275     throw new OutOfMemoryError();
276     newCap = MAX_ARRAY_SIZE;
277     }
278 dl 1.66 if (newCap > oldCap && queue == array)
279 dl 1.59 newArray = new Object[newCap];
280     } finally {
281     allocationSpinLock = 0;
282     }
283     }
284 dl 1.66 if (newArray == null) // back off if another thread is allocating
285 dl 1.59 Thread.yield();
286     lock.lock();
287     if (newArray != null && queue == array) {
288     queue = newArray;
289 dl 1.66 System.arraycopy(array, 0, newArray, 0, oldCap);
290 dl 1.59 }
291     }
292    
293     /**
294 jsr166 1.62 * Mechanics for poll(). Call only while holding lock.
295 dl 1.59 */
296 jsr166 1.79 private E dequeue() {
297 dl 1.66 int n = size - 1;
298     if (n < 0)
299 jsr166 1.74 return null;
300 dl 1.66 else {
301     Object[] array = queue;
302 jsr166 1.74 E result = (E) array[0];
303 dl 1.66 E x = (E) array[n];
304     array[n] = null;
305     Comparator<? super E> cmp = comparator;
306     if (cmp == null)
307     siftDownComparable(0, x, array, n);
308 jsr166 1.67 else
309 dl 1.66 siftDownUsingComparator(0, x, array, n, cmp);
310     size = n;
311 jsr166 1.74 return result;
312 dl 1.59 }
313     }
314    
315     /**
316     * Inserts item x at position k, maintaining heap invariant by
317     * promoting x up the tree until it is greater than or equal to
318     * its parent, or is the root.
319     *
320 jsr166 1.121 * To simplify and speed up coercions and comparisons, the
321 dl 1.59 * Comparable and Comparator versions are separated into different
322     * methods that are otherwise identical. (Similarly for siftDown.)
323     *
324     * @param k the position to fill
325     * @param x the item to insert
326 dl 1.66 * @param array the heap array
327 dl 1.59 */
328 dl 1.66 private static <T> void siftUpComparable(int k, T x, Object[] array) {
329     Comparable<? super T> key = (Comparable<? super T>) x;
330 dl 1.59 while (k > 0) {
331     int parent = (k - 1) >>> 1;
332 dl 1.66 Object e = array[parent];
333     if (key.compareTo((T) e) >= 0)
334 dl 1.59 break;
335 dl 1.66 array[k] = e;
336 dl 1.59 k = parent;
337     }
338 dl 1.66 array[k] = key;
339 dl 1.59 }
340    
341 dl 1.66 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
342     Comparator<? super T> cmp) {
343 dl 1.59 while (k > 0) {
344     int parent = (k - 1) >>> 1;
345 dl 1.66 Object e = array[parent];
346     if (cmp.compare(x, (T) e) >= 0)
347 dl 1.59 break;
348 dl 1.66 array[k] = e;
349 dl 1.59 k = parent;
350     }
351 dl 1.66 array[k] = x;
352 dl 1.59 }
353    
354     /**
355     * Inserts item x at position k, maintaining heap invariant by
356     * demoting x down the tree repeatedly until it is less than or
357     * equal to its children or is a leaf.
358     *
359     * @param k the position to fill
360     * @param x the item to insert
361 dl 1.66 * @param array the heap array
362     * @param n heap size
363 dl 1.59 */
364 jsr166 1.67 private static <T> void siftDownComparable(int k, T x, Object[] array,
365 dl 1.66 int n) {
366 dl 1.85 if (n > 0) {
367     Comparable<? super T> key = (Comparable<? super T>)x;
368     int half = n >>> 1; // loop while a non-leaf
369     while (k < half) {
370     int child = (k << 1) + 1; // assume left child is least
371     Object c = array[child];
372     int right = child + 1;
373     if (right < n &&
374     ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
375     c = array[child = right];
376     if (key.compareTo((T) c) <= 0)
377     break;
378     array[k] = c;
379     k = child;
380     }
381     array[k] = key;
382 dl 1.59 }
383     }
384    
385 dl 1.66 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
386     int n,
387     Comparator<? super T> cmp) {
388 dl 1.85 if (n > 0) {
389     int half = n >>> 1;
390     while (k < half) {
391     int child = (k << 1) + 1;
392     Object c = array[child];
393     int right = child + 1;
394     if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
395     c = array[child = right];
396     if (cmp.compare(x, (T) c) <= 0)
397     break;
398     array[k] = c;
399     k = child;
400     }
401     array[k] = x;
402 dl 1.59 }
403 dl 1.7 }
404    
405 dholmes 1.10 /**
406 dl 1.59 * Establishes the heap invariant (described above) in the entire tree,
407     * assuming nothing about the order of the elements prior to the call.
408 jsr166 1.118 * This classic algorithm due to Floyd (1964) is known to be O(size).
409 dl 1.59 */
410     private void heapify() {
411 dl 1.66 Object[] array = queue;
412 jsr166 1.127 int n = size, i = (n >>> 1) - 1;
413 dl 1.66 Comparator<? super E> cmp = comparator;
414     if (cmp == null) {
415 jsr166 1.127 for (; i >= 0; i--)
416 dl 1.66 siftDownComparable(i, (E) array[i], array, n);
417     }
418     else {
419 jsr166 1.127 for (; i >= 0; i--)
420 dl 1.66 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
421     }
422 dl 1.59 }
423    
424     /**
425 jsr166 1.42 * Inserts the specified element into this priority queue.
426     *
427 jsr166 1.40 * @param e the element to add
428 jsr166 1.63 * @return {@code true} (as specified by {@link Collection#add})
429 dholmes 1.16 * @throws ClassCastException if the specified element cannot be compared
430 jsr166 1.42 * with elements currently in the priority queue according to the
431     * priority queue's ordering
432     * @throws NullPointerException if the specified element is null
433 dholmes 1.10 */
434 jsr166 1.40 public boolean add(E e) {
435 jsr166 1.42 return offer(e);
436 dl 1.5 }
437    
438 dholmes 1.16 /**
439 dl 1.24 * Inserts the specified element into this priority queue.
440 jsr166 1.64 * As the queue is unbounded, this method will never return {@code false}.
441 dholmes 1.16 *
442 jsr166 1.40 * @param e the element to add
443 jsr166 1.63 * @return {@code true} (as specified by {@link Queue#offer})
444 dholmes 1.16 * @throws ClassCastException if the specified element cannot be compared
445 jsr166 1.42 * with elements currently in the priority queue according to the
446     * priority queue's ordering
447     * @throws NullPointerException if the specified element is null
448 dholmes 1.16 */
449 jsr166 1.40 public boolean offer(E e) {
450 dl 1.59 if (e == null)
451     throw new NullPointerException();
452 dl 1.31 final ReentrantLock lock = this.lock;
453 dl 1.5 lock.lock();
454 dl 1.66 int n, cap;
455 dl 1.59 Object[] array;
456 dl 1.66 while ((n = size) >= (cap = (array = queue).length))
457     tryGrow(array, cap);
458 dl 1.59 try {
459 dl 1.66 Comparator<? super E> cmp = comparator;
460     if (cmp == null)
461     siftUpComparable(n, e, array);
462 dl 1.59 else
463 dl 1.66 siftUpUsingComparator(n, e, array, cmp);
464     size = n + 1;
465 dl 1.5 notEmpty.signal();
466 tim 1.19 } finally {
467 tim 1.13 lock.unlock();
468 dl 1.5 }
469 dl 1.59 return true;
470 dl 1.5 }
471    
472 dholmes 1.16 /**
473 jsr166 1.64 * Inserts the specified element into this priority queue.
474     * As the queue is unbounded, this method will never block.
475 jsr166 1.42 *
476 jsr166 1.40 * @param e the element to add
477 jsr166 1.42 * @throws ClassCastException if the specified element cannot be compared
478     * with elements currently in the priority queue according to the
479     * priority queue's ordering
480     * @throws NullPointerException if the specified element is null
481 dholmes 1.16 */
482 jsr166 1.40 public void put(E e) {
483     offer(e); // never need to block
484 dl 1.5 }
485    
486 dholmes 1.16 /**
487 jsr166 1.64 * Inserts the specified element into this priority queue.
488     * As the queue is unbounded, this method will never block or
489     * return {@code false}.
490 jsr166 1.42 *
491 jsr166 1.40 * @param e the element to add
492 dholmes 1.16 * @param timeout This parameter is ignored as the method never blocks
493     * @param unit This parameter is ignored as the method never blocks
494 jsr166 1.65 * @return {@code true} (as specified by
495     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
496 jsr166 1.42 * @throws ClassCastException if the specified element cannot be compared
497     * with elements currently in the priority queue according to the
498     * priority queue's ordering
499     * @throws NullPointerException if the specified element is null
500 dholmes 1.16 */
501 jsr166 1.40 public boolean offer(E e, long timeout, TimeUnit unit) {
502     return offer(e); // never need to block
503 dl 1.5 }
504    
505 jsr166 1.42 public E poll() {
506     final ReentrantLock lock = this.lock;
507     lock.lock();
508     try {
509 jsr166 1.79 return dequeue();
510 jsr166 1.42 } finally {
511     lock.unlock();
512     }
513     }
514    
515 dl 1.5 public E take() throws InterruptedException {
516 dl 1.31 final ReentrantLock lock = this.lock;
517 dl 1.5 lock.lockInterruptibly();
518 dl 1.66 E result;
519 dl 1.5 try {
520 jsr166 1.79 while ( (result = dequeue()) == null)
521 jsr166 1.55 notEmpty.await();
522 tim 1.19 } finally {
523 dl 1.5 lock.unlock();
524     }
525 dl 1.59 return result;
526 dl 1.5 }
527    
528     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
529 dholmes 1.10 long nanos = unit.toNanos(timeout);
530 dl 1.31 final ReentrantLock lock = this.lock;
531 dl 1.5 lock.lockInterruptibly();
532 dl 1.66 E result;
533 dl 1.5 try {
534 jsr166 1.79 while ( (result = dequeue()) == null && nanos > 0)
535 jsr166 1.55 nanos = notEmpty.awaitNanos(nanos);
536 tim 1.19 } finally {
537 dl 1.5 lock.unlock();
538     }
539 dl 1.59 return result;
540 dl 1.5 }
541    
542     public E peek() {
543 dl 1.31 final ReentrantLock lock = this.lock;
544 dl 1.5 lock.lock();
545     try {
546 jsr166 1.74 return (size == 0) ? null : (E) queue[0];
547 tim 1.19 } finally {
548 tim 1.13 lock.unlock();
549 dl 1.5 }
550     }
551 jsr166 1.61
552 jsr166 1.42 /**
553     * Returns the comparator used to order the elements in this queue,
554 jsr166 1.63 * or {@code null} if this queue uses the {@linkplain Comparable
555 jsr166 1.42 * natural ordering} of its elements.
556     *
557     * @return the comparator used to order the elements in this queue,
558 jsr166 1.63 * or {@code null} if this queue uses the natural
559 jsr166 1.52 * ordering of its elements
560 jsr166 1.42 */
561     public Comparator<? super E> comparator() {
562 dl 1.59 return comparator;
563 jsr166 1.42 }
564    
565 dl 1.5 public int size() {
566 dl 1.31 final ReentrantLock lock = this.lock;
567 dl 1.5 lock.lock();
568     try {
569 jsr166 1.68 return size;
570 tim 1.19 } finally {
571 dl 1.5 lock.unlock();
572     }
573     }
574    
575     /**
576 jsr166 1.63 * Always returns {@code Integer.MAX_VALUE} because
577     * a {@code PriorityBlockingQueue} is not capacity constrained.
578     * @return {@code Integer.MAX_VALUE} always
579 dl 1.5 */
580     public int remainingCapacity() {
581     return Integer.MAX_VALUE;
582     }
583    
584 dl 1.59 private int indexOf(Object o) {
585     if (o != null) {
586 dl 1.66 Object[] array = queue;
587     int n = size;
588     for (int i = 0; i < n; i++)
589     if (o.equals(array[i]))
590 dl 1.59 return i;
591     }
592     return -1;
593     }
594    
595     /**
596     * Removes the ith element from queue.
597     */
598     private void removeAt(int i) {
599 dl 1.66 Object[] array = queue;
600     int n = size - 1;
601     if (n == i) // removed last element
602     array[i] = null;
603 dl 1.59 else {
604 dl 1.66 E moved = (E) array[n];
605     array[n] = null;
606     Comparator<? super E> cmp = comparator;
607 jsr166 1.67 if (cmp == null)
608 dl 1.66 siftDownComparable(i, moved, array, n);
609     else
610     siftDownUsingComparator(i, moved, array, n, cmp);
611     if (array[i] == moved) {
612     if (cmp == null)
613     siftUpComparable(i, moved, array);
614     else
615     siftUpUsingComparator(i, moved, array, cmp);
616     }
617 dl 1.59 }
618 dl 1.66 size = n;
619 dl 1.59 }
620    
621 dl 1.37 /**
622 jsr166 1.42 * Removes a single instance of the specified element from this queue,
623 jsr166 1.52 * if it is present. More formally, removes an element {@code e} such
624     * that {@code o.equals(e)}, if this queue contains one or more such
625     * elements. Returns {@code true} if and only if this queue contained
626     * the specified element (or equivalently, if this queue changed as a
627     * result of the call).
628 jsr166 1.42 *
629     * @param o element to be removed from this queue, if present
630 jsr166 1.63 * @return {@code true} if this queue changed as a result of the call
631 dl 1.37 */
632 dholmes 1.14 public boolean remove(Object o) {
633 dl 1.31 final ReentrantLock lock = this.lock;
634 dl 1.5 lock.lock();
635     try {
636 dl 1.59 int i = indexOf(o);
637 jsr166 1.78 if (i == -1)
638     return false;
639     removeAt(i);
640     return true;
641 dl 1.59 } finally {
642     lock.unlock();
643     }
644     }
645    
646     /**
647 jsr166 1.112 * Identity-based version for use in Itr.remove.
648 dl 1.59 */
649 jsr166 1.80 void removeEQ(Object o) {
650 dl 1.59 final ReentrantLock lock = this.lock;
651     lock.lock();
652     try {
653 dl 1.66 Object[] array = queue;
654 jsr166 1.78 for (int i = 0, n = size; i < n; i++) {
655 dl 1.66 if (o == array[i]) {
656 dl 1.59 removeAt(i);
657     break;
658     }
659     }
660 tim 1.19 } finally {
661 dl 1.5 lock.unlock();
662     }
663     }
664    
665 jsr166 1.42 /**
666 jsr166 1.52 * Returns {@code true} if this queue contains the specified element.
667     * More formally, returns {@code true} if and only if this queue contains
668     * at least one element {@code e} such that {@code o.equals(e)}.
669 jsr166 1.42 *
670     * @param o object to be checked for containment in this queue
671 jsr166 1.63 * @return {@code true} if this queue contains the specified element
672 jsr166 1.42 */
673 dholmes 1.14 public boolean contains(Object o) {
674 dl 1.31 final ReentrantLock lock = this.lock;
675 dl 1.5 lock.lock();
676     try {
677 jsr166 1.78 return indexOf(o) != -1;
678 tim 1.19 } finally {
679 dl 1.5 lock.unlock();
680     }
681     }
682    
683     public String toString() {
684 jsr166 1.111 return Helpers.collectionToString(this);
685 dl 1.5 }
686    
687 jsr166 1.42 /**
688     * @throws UnsupportedOperationException {@inheritDoc}
689     * @throws ClassCastException {@inheritDoc}
690     * @throws NullPointerException {@inheritDoc}
691     * @throws IllegalArgumentException {@inheritDoc}
692     */
693 dl 1.26 public int drainTo(Collection<? super E> c) {
694 jsr166 1.76 return drainTo(c, Integer.MAX_VALUE);
695 dl 1.26 }
696    
697 jsr166 1.42 /**
698     * @throws UnsupportedOperationException {@inheritDoc}
699     * @throws ClassCastException {@inheritDoc}
700     * @throws NullPointerException {@inheritDoc}
701     * @throws IllegalArgumentException {@inheritDoc}
702     */
703 dl 1.26 public int drainTo(Collection<? super E> c, int maxElements) {
704 jsr166 1.124 Objects.requireNonNull(c);
705 dl 1.26 if (c == this)
706     throw new IllegalArgumentException();
707     if (maxElements <= 0)
708     return 0;
709 dl 1.31 final ReentrantLock lock = this.lock;
710 dl 1.26 lock.lock();
711     try {
712 jsr166 1.76 int n = Math.min(size, maxElements);
713     for (int i = 0; i < n; i++) {
714     c.add((E) queue[0]); // In this order, in case add() throws.
715 jsr166 1.79 dequeue();
716 dl 1.26 }
717     return n;
718     } finally {
719     lock.unlock();
720     }
721     }
722    
723 dl 1.17 /**
724 dl 1.37 * Atomically removes all of the elements from this queue.
725 dl 1.17 * The queue will be empty after this call returns.
726     */
727     public void clear() {
728 dl 1.31 final ReentrantLock lock = this.lock;
729 dl 1.17 lock.lock();
730     try {
731 dl 1.66 Object[] array = queue;
732     int n = size;
733 dl 1.59 size = 0;
734 dl 1.66 for (int i = 0; i < n; i++)
735     array[i] = null;
736 tim 1.19 } finally {
737 dl 1.17 lock.unlock();
738     }
739     }
740    
741 jsr166 1.42 /**
742 jsr166 1.110 * Returns an array containing all of the elements in this queue.
743     * The returned array elements are in no particular order.
744     *
745     * <p>The returned array will be "safe" in that no references to it are
746     * maintained by this queue. (In other words, this method must allocate
747     * a new array). The caller is thus free to modify the returned array.
748     *
749     * <p>This method acts as bridge between array-based and collection-based
750     * APIs.
751     *
752     * @return an array containing all of the elements in this queue
753     */
754     public Object[] toArray() {
755     final ReentrantLock lock = this.lock;
756     lock.lock();
757     try {
758     return Arrays.copyOf(queue, size);
759     } finally {
760     lock.unlock();
761     }
762     }
763    
764     /**
765 jsr166 1.42 * Returns an array containing all of the elements in this queue; the
766     * runtime type of the returned array is that of the specified array.
767     * The returned array elements are in no particular order.
768     * If the queue fits in the specified array, it is returned therein.
769     * Otherwise, a new array is allocated with the runtime type of the
770     * specified array and the size of this queue.
771     *
772     * <p>If this queue fits in the specified array with room to spare
773     * (i.e., the array has more elements than this queue), the element in
774     * the array immediately following the end of the queue is set to
775 jsr166 1.63 * {@code null}.
776 jsr166 1.42 *
777     * <p>Like the {@link #toArray()} method, this method acts as bridge between
778     * array-based and collection-based APIs. Further, this method allows
779     * precise control over the runtime type of the output array, and may,
780     * under certain circumstances, be used to save allocation costs.
781     *
782 jsr166 1.63 * <p>Suppose {@code x} is a queue known to contain only strings.
783 jsr166 1.42 * The following code can be used to dump the queue into a newly
784 jsr166 1.63 * allocated array of {@code String}:
785 jsr166 1.42 *
786 jsr166 1.109 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
787 jsr166 1.42 *
788 jsr166 1.63 * Note that {@code toArray(new Object[0])} is identical in function to
789     * {@code toArray()}.
790 jsr166 1.42 *
791     * @param a the array into which the elements of the queue are to
792     * be stored, if it is big enough; otherwise, a new array of the
793     * same runtime type is allocated for this purpose
794     * @return an array containing all of the elements in this queue
795     * @throws ArrayStoreException if the runtime type of the specified array
796     * is not a supertype of the runtime type of every element in
797     * this queue
798     * @throws NullPointerException if the specified array is null
799     */
800 dl 1.5 public <T> T[] toArray(T[] a) {
801 dl 1.31 final ReentrantLock lock = this.lock;
802 dl 1.5 lock.lock();
803     try {
804 dl 1.66 int n = size;
805     if (a.length < n)
806 dl 1.59 // Make a new array of a's runtime type, but my contents:
807     return (T[]) Arrays.copyOf(queue, size, a.getClass());
808 dl 1.66 System.arraycopy(queue, 0, a, 0, n);
809     if (a.length > n)
810     a[n] = null;
811 dl 1.59 return a;
812 tim 1.19 } finally {
813 dl 1.5 lock.unlock();
814     }
815     }
816    
817 dholmes 1.16 /**
818 dl 1.23 * Returns an iterator over the elements in this queue. The
819     * iterator does not return the elements in any particular order.
820 jsr166 1.69 *
821 jsr166 1.103 * <p>The returned iterator is
822     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
823 dholmes 1.16 *
824 jsr166 1.42 * @return an iterator over the elements in this queue
825 dholmes 1.16 */
826 dl 1.5 public Iterator<E> iterator() {
827 dl 1.51 return new Itr(toArray());
828 dl 1.5 }
829    
830 dl 1.49 /**
831     * Snapshot iterator that works off copy of underlying q array.
832     */
833 dl 1.59 final class Itr implements Iterator<E> {
834 dl 1.49 final Object[] array; // Array of all elements
835 jsr166 1.81 int cursor; // index of next element to return
836 jsr166 1.54 int lastRet; // index of last element, or -1 if no such
837 jsr166 1.50
838 dl 1.49 Itr(Object[] array) {
839     lastRet = -1;
840     this.array = array;
841 dl 1.5 }
842    
843 tim 1.13 public boolean hasNext() {
844 dl 1.49 return cursor < array.length;
845 tim 1.13 }
846    
847     public E next() {
848 dl 1.49 if (cursor >= array.length)
849     throw new NoSuchElementException();
850 jsr166 1.120 return (E)array[lastRet = cursor++];
851 tim 1.13 }
852    
853     public void remove() {
854 jsr166 1.50 if (lastRet < 0)
855 jsr166 1.54 throw new IllegalStateException();
856 dl 1.59 removeEQ(array[lastRet]);
857 dl 1.49 lastRet = -1;
858 tim 1.13 }
859 dl 1.5 }
860    
861     /**
862 jsr166 1.83 * Saves this queue to a stream (that is, serializes it).
863     *
864     * For compatibility with previous version of this class, elements
865     * are first copied to a java.util.PriorityQueue, which is then
866     * serialized.
867 jsr166 1.97 *
868     * @param s the stream
869 jsr166 1.98 * @throws java.io.IOException if an I/O error occurs
870 dl 1.5 */
871     private void writeObject(java.io.ObjectOutputStream s)
872     throws java.io.IOException {
873     lock.lock();
874     try {
875 jsr166 1.78 // avoid zero capacity argument
876     q = new PriorityQueue<E>(Math.max(size, 1), comparator);
877 dl 1.59 q.addAll(this);
878 dl 1.5 s.defaultWriteObject();
879 dl 1.66 } finally {
880 dl 1.59 q = null;
881 dl 1.5 lock.unlock();
882     }
883 tim 1.1 }
884    
885 dl 1.59 /**
886 jsr166 1.83 * Reconstitutes this queue from a stream (that is, deserializes it).
887 jsr166 1.97 * @param s the stream
888 jsr166 1.98 * @throws ClassNotFoundException if the class of a serialized object
889     * could not be found
890     * @throws java.io.IOException if an I/O error occurs
891 dl 1.59 */
892     private void readObject(java.io.ObjectInputStream s)
893     throws java.io.IOException, ClassNotFoundException {
894 jsr166 1.67 try {
895 dl 1.66 s.defaultReadObject();
896 jsr166 1.131 int sz = q.size();
897     SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, sz);
898     this.queue = new Object[sz];
899 dl 1.66 comparator = q.comparator();
900     addAll(q);
901 jsr166 1.67 } finally {
902 dl 1.66 q = null;
903     }
904 dl 1.59 }
905    
906 jsr166 1.116 /**
907     * Immutable snapshot spliterator that binds to elements "late".
908     */
909 jsr166 1.119 final class PBQSpliterator implements Spliterator<E> {
910 jsr166 1.125 Object[] array; // null until late-bound-initialized
911 dl 1.93 int index;
912     int fence;
913    
914 jsr166 1.125 PBQSpliterator() {}
915    
916 jsr166 1.119 PBQSpliterator(Object[] array, int index, int fence) {
917 dl 1.93 this.array = array;
918     this.index = index;
919     this.fence = fence;
920     }
921    
922 jsr166 1.125 private int getFence() {
923     if (array == null)
924     fence = (array = toArray()).length;
925     return fence;
926 dl 1.93 }
927    
928 jsr166 1.119 public PBQSpliterator trySplit() {
929 dl 1.93 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
930     return (lo >= mid) ? null :
931 jsr166 1.119 new PBQSpliterator(array, lo, index = mid);
932 dl 1.93 }
933    
934 dl 1.95 public void forEachRemaining(Consumer<? super E> action) {
935 jsr166 1.124 Objects.requireNonNull(action);
936 jsr166 1.125 final int hi = getFence(), lo = index;
937     final Object[] a = array;
938     index = hi; // ensure exhaustion
939     for (int i = lo; i < hi; i++)
940     action.accept((E) a[i]);
941 dl 1.93 }
942    
943     public boolean tryAdvance(Consumer<? super E> action) {
944 jsr166 1.124 Objects.requireNonNull(action);
945 dl 1.93 if (getFence() > index && index >= 0) {
946 jsr166 1.125 action.accept((E) array[index++]);
947 dl 1.93 return true;
948     }
949     return false;
950     }
951    
952 jsr166 1.119 public long estimateSize() { return getFence() - index; }
953 dl 1.93
954     public int characteristics() {
955 jsr166 1.123 return (Spliterator.NONNULL |
956     Spliterator.SIZED |
957     Spliterator.SUBSIZED);
958 dl 1.93 }
959     }
960    
961 jsr166 1.102 /**
962     * Returns a {@link Spliterator} over the elements in this queue.
963 jsr166 1.117 * The spliterator does not traverse elements in any particular order
964     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
965 jsr166 1.102 *
966 jsr166 1.103 * <p>The returned spliterator is
967     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
968     *
969 jsr166 1.102 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
970     * {@link Spliterator#NONNULL}.
971     *
972     * @implNote
973     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
974     *
975     * @return a {@code Spliterator} over the elements in this queue
976     * @since 1.8
977     */
978 dl 1.94 public Spliterator<E> spliterator() {
979 jsr166 1.125 return new PBQSpliterator();
980 dl 1.86 }
981    
982 jsr166 1.132 /**
983     * @throws NullPointerException {@inheritDoc}
984     */
985     public void forEach(Consumer<? super E> action) {
986     Objects.requireNonNull(action);
987     final ReentrantLock lock = this.lock;
988     lock.lock();
989     try {
990     final Object[] es = queue;
991     for (int i = 0, n = size; i < n; i++)
992     action.accept((E) es[i]);
993     } finally {
994     lock.unlock();
995     }
996     }
997    
998 dl 1.115 // VarHandle mechanics
999     private static final VarHandle ALLOCATIONSPINLOCK;
1000 dl 1.70 static {
1001 dl 1.59 try {
1002 dl 1.115 MethodHandles.Lookup l = MethodHandles.lookup();
1003     ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
1004     "allocationSpinLock",
1005     int.class);
1006 jsr166 1.107 } catch (ReflectiveOperationException e) {
1007 jsr166 1.130 throw new ExceptionInInitializerError(e);
1008 dl 1.59 }
1009     }
1010 tim 1.1 }