ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.139
Committed: Sun May 6 23:19:05 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.138: +72 -0 lines
Log Message:
implement optimized bulk remove methods

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.33 * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 tim 1.13
9 dl 1.115 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 dl 1.86 import java.util.AbstractQueue;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Comparator;
15     import java.util.Iterator;
16     import java.util.NoSuchElementException;
17 jsr166 1.124 import java.util.Objects;
18 dl 1.86 import java.util.PriorityQueue;
19     import java.util.Queue;
20     import java.util.SortedSet;
21     import java.util.Spliterator;
22 jsr166 1.105 import java.util.concurrent.locks.Condition;
23     import java.util.concurrent.locks.ReentrantLock;
24     import java.util.function.Consumer;
25 jsr166 1.139 import java.util.function.Predicate;
26 jsr166 1.131 import jdk.internal.misc.SharedSecrets;
27 tim 1.1
28     /**
29 dl 1.25 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
30     * the same ordering rules as class {@link PriorityQueue} and supplies
31     * blocking retrieval operations. While this queue is logically
32 dl 1.24 * unbounded, attempted additions may fail due to resource exhaustion
33 jsr166 1.63 * (causing {@code OutOfMemoryError}). This class does not permit
34     * {@code null} elements. A priority queue relying on {@linkplain
35 jsr166 1.42 * Comparable natural ordering} also does not permit insertion of
36     * non-comparable objects (doing so results in
37 jsr166 1.63 * {@code ClassCastException}).
38 dl 1.20 *
39 jsr166 1.126 * <p>This class and its iterator implement all of the <em>optional</em>
40     * methods of the {@link Collection} and {@link Iterator} interfaces.
41     * The Iterator provided in method {@link #iterator()} and the
42     * Spliterator provided in method {@link #spliterator()} are <em>not</em>
43     * guaranteed to traverse the elements of the PriorityBlockingQueue in
44     * any particular order. If you need ordered traversal, consider using
45     * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
46     * be used to <em>remove</em> some or all elements in priority order and
47     * place them in another collection.
48 dl 1.41 *
49     * <p>Operations on this class make no guarantees about the ordering
50     * of elements with equal priority. If you need to enforce an
51     * ordering, you can define custom classes or comparators that use a
52     * secondary key to break ties in primary priority values. For
53     * example, here is a class that applies first-in-first-out
54     * tie-breaking to comparable elements. To use it, you would insert a
55 jsr166 1.63 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
56 dl 1.41 *
57 jsr166 1.109 * <pre> {@code
58 jsr166 1.56 * class FIFOEntry<E extends Comparable<? super E>>
59     * implements Comparable<FIFOEntry<E>> {
60 jsr166 1.58 * static final AtomicLong seq = new AtomicLong(0);
61 dl 1.41 * final long seqNum;
62     * final E entry;
63     * public FIFOEntry(E entry) {
64     * seqNum = seq.getAndIncrement();
65     * this.entry = entry;
66     * }
67     * public E getEntry() { return entry; }
68 jsr166 1.56 * public int compareTo(FIFOEntry<E> other) {
69 dl 1.41 * int res = entry.compareTo(other.entry);
70 jsr166 1.56 * if (res == 0 && other.entry != this.entry)
71     * res = (seqNum < other.seqNum ? -1 : 1);
72 dl 1.41 * return res;
73     * }
74 jsr166 1.56 * }}</pre>
75 dl 1.20 *
76 dl 1.35 * <p>This class is a member of the
77 jsr166 1.128 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 dl 1.35 * Java Collections Framework</a>.
79     *
80 dl 1.6 * @since 1.5
81     * @author Doug Lea
82 jsr166 1.104 * @param <E> the type of elements held in this queue
83 dl 1.28 */
84 jsr166 1.82 @SuppressWarnings("unchecked")
85 dl 1.5 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
86 dl 1.15 implements BlockingQueue<E>, java.io.Serializable {
87 dl 1.21 private static final long serialVersionUID = 5595510919245408276L;
88 tim 1.1
89 dl 1.59 /*
90 dl 1.66 * The implementation uses an array-based binary heap, with public
91     * operations protected with a single lock. However, allocation
92     * during resizing uses a simple spinlock (used only while not
93     * holding main lock) in order to allow takes to operate
94     * concurrently with allocation. This avoids repeated
95     * postponement of waiting consumers and consequent element
96     * build-up. The need to back away from lock during allocation
97     * makes it impossible to simply wrap delegated
98     * java.util.PriorityQueue operations within a lock, as was done
99     * in a previous version of this class. To maintain
100     * interoperability, a plain PriorityQueue is still used during
101 jsr166 1.77 * serialization, which maintains compatibility at the expense of
102 dl 1.66 * transiently doubling overhead.
103 dl 1.59 */
104    
105     /**
106     * Default array capacity.
107     */
108     private static final int DEFAULT_INITIAL_CAPACITY = 11;
109    
110     /**
111 dl 1.66 * The maximum size of array to allocate.
112     * Some VMs reserve some header words in an array.
113     * Attempts to allocate larger arrays may result in
114     * OutOfMemoryError: Requested array size exceeds VM limit
115     */
116     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
117    
118     /**
119 dl 1.59 * Priority queue represented as a balanced binary heap: the two
120     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
121     * priority queue is ordered by comparator, or by the elements'
122     * natural ordering, if comparator is null: For each node n in the
123     * heap and each descendant d of n, n <= d. The element with the
124     * lowest value is in queue[0], assuming the queue is nonempty.
125     */
126     private transient Object[] queue;
127    
128     /**
129     * The number of elements in the priority queue.
130     */
131 dl 1.66 private transient int size;
132 dl 1.59
133     /**
134     * The comparator, or null if priority queue uses elements'
135     * natural ordering.
136     */
137     private transient Comparator<? super E> comparator;
138    
139     /**
140 jsr166 1.112 * Lock used for all public operations.
141 dl 1.59 */
142 jsr166 1.135 private final ReentrantLock lock = new ReentrantLock();
143 dl 1.59
144     /**
145 jsr166 1.112 * Condition for blocking when empty.
146 dl 1.59 */
147 jsr166 1.135 private final Condition notEmpty = lock.newCondition();
148 dl 1.5
149 dl 1.2 /**
150 dl 1.59 * Spinlock for allocation, acquired via CAS.
151     */
152     private transient volatile int allocationSpinLock;
153    
154     /**
155 dl 1.66 * A plain PriorityQueue used only for serialization,
156     * to maintain compatibility with previous versions
157     * of this class. Non-null only during serialization/deserialization.
158     */
159 jsr166 1.72 private PriorityQueue<E> q;
160 dl 1.66
161     /**
162 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the default
163 jsr166 1.42 * initial capacity (11) that orders its elements according to
164     * their {@linkplain Comparable natural ordering}.
165 dl 1.2 */
166     public PriorityBlockingQueue() {
167 dl 1.59 this(DEFAULT_INITIAL_CAPACITY, null);
168 dl 1.2 }
169    
170     /**
171 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the specified
172 jsr166 1.42 * initial capacity that orders its elements according to their
173     * {@linkplain Comparable natural ordering}.
174 dl 1.2 *
175 jsr166 1.42 * @param initialCapacity the initial capacity for this priority queue
176 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
177 jsr166 1.52 * than 1
178 dl 1.2 */
179     public PriorityBlockingQueue(int initialCapacity) {
180 dl 1.59 this(initialCapacity, null);
181 dl 1.2 }
182    
183     /**
184 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the specified initial
185 jsr166 1.39 * capacity that orders its elements according to the specified
186     * comparator.
187 dl 1.2 *
188 jsr166 1.42 * @param initialCapacity the initial capacity for this priority queue
189 jsr166 1.52 * @param comparator the comparator that will be used to order this
190     * priority queue. If {@code null}, the {@linkplain Comparable
191     * natural ordering} of the elements will be used.
192 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
193 jsr166 1.52 * than 1
194 dl 1.2 */
195 tim 1.13 public PriorityBlockingQueue(int initialCapacity,
196 dholmes 1.14 Comparator<? super E> comparator) {
197 dl 1.59 if (initialCapacity < 1)
198     throw new IllegalArgumentException();
199 dl 1.66 this.comparator = comparator;
200 jsr166 1.135 this.queue = new Object[Math.max(1, initialCapacity)];
201 dl 1.2 }
202    
203     /**
204 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} containing the elements
205 jsr166 1.52 * in the specified collection. If the specified collection is a
206 jsr166 1.99 * {@link SortedSet} or a {@link PriorityQueue}, this
207 jsr166 1.52 * priority queue will be ordered according to the same ordering.
208     * Otherwise, this priority queue will be ordered according to the
209     * {@linkplain Comparable natural ordering} of its elements.
210 dl 1.2 *
211 jsr166 1.52 * @param c the collection whose elements are to be placed
212     * into this priority queue
213 dl 1.2 * @throws ClassCastException if elements of the specified collection
214     * cannot be compared to one another according to the priority
215 jsr166 1.52 * queue's ordering
216 jsr166 1.42 * @throws NullPointerException if the specified collection or any
217     * of its elements are null
218 dl 1.2 */
219 dholmes 1.14 public PriorityBlockingQueue(Collection<? extends E> c) {
220 dl 1.66 boolean heapify = true; // true if not known to be in heap order
221     boolean screen = true; // true if must screen for nulls
222 dl 1.59 if (c instanceof SortedSet<?>) {
223     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
224     this.comparator = (Comparator<? super E>) ss.comparator();
225 dl 1.66 heapify = false;
226 dl 1.59 }
227     else if (c instanceof PriorityBlockingQueue<?>) {
228 jsr166 1.61 PriorityBlockingQueue<? extends E> pq =
229 dl 1.59 (PriorityBlockingQueue<? extends E>) c;
230     this.comparator = (Comparator<? super E>) pq.comparator();
231 jsr166 1.67 screen = false;
232 dl 1.66 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
233     heapify = false;
234 dl 1.59 }
235 jsr166 1.134 Object[] es = c.toArray();
236     int n = es.length;
237 dl 1.59 // If c.toArray incorrectly doesn't return Object[], copy it.
238 jsr166 1.134 if (es.getClass() != Object[].class)
239     es = Arrays.copyOf(es, n, Object[].class);
240 dl 1.66 if (screen && (n == 1 || this.comparator != null)) {
241 jsr166 1.134 for (Object e : es)
242     if (e == null)
243 dl 1.59 throw new NullPointerException();
244 dl 1.66 }
245 jsr166 1.135 this.queue = ensureNonEmpty(es);
246 dl 1.66 this.size = n;
247     if (heapify)
248     heapify();
249 dl 1.59 }
250    
251 jsr166 1.135 /** Ensures that queue[0] exists, helping peek() and poll(). */
252     private static Object[] ensureNonEmpty(Object[] es) {
253     return (es.length > 0) ? es : new Object[1];
254     }
255    
256 dl 1.59 /**
257 dl 1.66 * Tries to grow array to accommodate at least one more element
258     * (but normally expand by about 50%), giving up (allowing retry)
259     * on contention (which we expect to be rare). Call only while
260     * holding lock.
261 jsr166 1.67 *
262 dl 1.66 * @param array the heap array
263     * @param oldCap the length of the array
264 dl 1.59 */
265 dl 1.66 private void tryGrow(Object[] array, int oldCap) {
266 dl 1.59 lock.unlock(); // must release and then re-acquire main lock
267     Object[] newArray = null;
268     if (allocationSpinLock == 0 &&
269 dl 1.115 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
270 dl 1.59 try {
271     int newCap = oldCap + ((oldCap < 64) ?
272 dl 1.66 (oldCap + 2) : // grow faster if small
273 dl 1.59 (oldCap >> 1));
274 dl 1.66 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
275     int minCap = oldCap + 1;
276 dl 1.59 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
277     throw new OutOfMemoryError();
278     newCap = MAX_ARRAY_SIZE;
279     }
280 dl 1.66 if (newCap > oldCap && queue == array)
281 dl 1.59 newArray = new Object[newCap];
282     } finally {
283     allocationSpinLock = 0;
284     }
285     }
286 dl 1.66 if (newArray == null) // back off if another thread is allocating
287 dl 1.59 Thread.yield();
288     lock.lock();
289     if (newArray != null && queue == array) {
290     queue = newArray;
291 dl 1.66 System.arraycopy(array, 0, newArray, 0, oldCap);
292 dl 1.59 }
293     }
294    
295     /**
296 jsr166 1.62 * Mechanics for poll(). Call only while holding lock.
297 dl 1.59 */
298 jsr166 1.79 private E dequeue() {
299 jsr166 1.134 // assert lock.isHeldByCurrentThread();
300 jsr166 1.135 final Object[] es;
301     final E result;
302    
303     if ((result = (E) ((es = queue)[0])) != null) {
304     final int n;
305     final E x = (E) es[(n = --size)];
306 jsr166 1.134 es[n] = null;
307     if (n > 0) {
308 jsr166 1.135 final Comparator<? super E> cmp;
309     if ((cmp = comparator) == null)
310 jsr166 1.134 siftDownComparable(0, x, es, n);
311     else
312     siftDownUsingComparator(0, x, es, n, cmp);
313     }
314 dl 1.59 }
315 jsr166 1.135 return result;
316 dl 1.59 }
317    
318     /**
319     * Inserts item x at position k, maintaining heap invariant by
320     * promoting x up the tree until it is greater than or equal to
321     * its parent, or is the root.
322     *
323 jsr166 1.121 * To simplify and speed up coercions and comparisons, the
324 dl 1.59 * Comparable and Comparator versions are separated into different
325     * methods that are otherwise identical. (Similarly for siftDown.)
326     *
327     * @param k the position to fill
328     * @param x the item to insert
329 jsr166 1.134 * @param es the heap array
330 dl 1.59 */
331 jsr166 1.134 private static <T> void siftUpComparable(int k, T x, Object[] es) {
332 dl 1.66 Comparable<? super T> key = (Comparable<? super T>) x;
333 dl 1.59 while (k > 0) {
334     int parent = (k - 1) >>> 1;
335 jsr166 1.134 Object e = es[parent];
336 dl 1.66 if (key.compareTo((T) e) >= 0)
337 dl 1.59 break;
338 jsr166 1.134 es[k] = e;
339 dl 1.59 k = parent;
340     }
341 jsr166 1.134 es[k] = key;
342 dl 1.59 }
343    
344 jsr166 1.134 private static <T> void siftUpUsingComparator(
345     int k, T x, Object[] es, Comparator<? super T> cmp) {
346 dl 1.59 while (k > 0) {
347     int parent = (k - 1) >>> 1;
348 jsr166 1.134 Object e = es[parent];
349 dl 1.66 if (cmp.compare(x, (T) e) >= 0)
350 dl 1.59 break;
351 jsr166 1.134 es[k] = e;
352 dl 1.59 k = parent;
353     }
354 jsr166 1.134 es[k] = x;
355 dl 1.59 }
356    
357     /**
358     * Inserts item x at position k, maintaining heap invariant by
359     * demoting x down the tree repeatedly until it is less than or
360     * equal to its children or is a leaf.
361     *
362     * @param k the position to fill
363     * @param x the item to insert
364 jsr166 1.134 * @param es the heap array
365 dl 1.66 * @param n heap size
366 dl 1.59 */
367 jsr166 1.134 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
368     // assert n > 0;
369     Comparable<? super T> key = (Comparable<? super T>)x;
370     int half = n >>> 1; // loop while a non-leaf
371     while (k < half) {
372     int child = (k << 1) + 1; // assume left child is least
373     Object c = es[child];
374     int right = child + 1;
375     if (right < n &&
376     ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
377     c = es[child = right];
378     if (key.compareTo((T) c) <= 0)
379     break;
380     es[k] = c;
381     k = child;
382 dl 1.59 }
383 jsr166 1.134 es[k] = key;
384 dl 1.59 }
385    
386 jsr166 1.134 private static <T> void siftDownUsingComparator(
387     int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
388     // assert n > 0;
389     int half = n >>> 1;
390     while (k < half) {
391     int child = (k << 1) + 1;
392     Object c = es[child];
393     int right = child + 1;
394     if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
395     c = es[child = right];
396     if (cmp.compare(x, (T) c) <= 0)
397     break;
398     es[k] = c;
399     k = child;
400 dl 1.59 }
401 jsr166 1.134 es[k] = x;
402 dl 1.7 }
403    
404 dholmes 1.10 /**
405 dl 1.59 * Establishes the heap invariant (described above) in the entire tree,
406     * assuming nothing about the order of the elements prior to the call.
407 jsr166 1.118 * This classic algorithm due to Floyd (1964) is known to be O(size).
408 dl 1.59 */
409     private void heapify() {
410 jsr166 1.134 final Object[] es = queue;
411 jsr166 1.127 int n = size, i = (n >>> 1) - 1;
412 jsr166 1.135 final Comparator<? super E> cmp;
413     if ((cmp = comparator) == null)
414 jsr166 1.127 for (; i >= 0; i--)
415 jsr166 1.134 siftDownComparable(i, (E) es[i], es, n);
416     else
417 jsr166 1.127 for (; i >= 0; i--)
418 jsr166 1.134 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
419 dl 1.59 }
420    
421     /**
422 jsr166 1.42 * Inserts the specified element into this priority queue.
423     *
424 jsr166 1.40 * @param e the element to add
425 jsr166 1.63 * @return {@code true} (as specified by {@link Collection#add})
426 dholmes 1.16 * @throws ClassCastException if the specified element cannot be compared
427 jsr166 1.42 * with elements currently in the priority queue according to the
428     * priority queue's ordering
429     * @throws NullPointerException if the specified element is null
430 dholmes 1.10 */
431 jsr166 1.40 public boolean add(E e) {
432 jsr166 1.42 return offer(e);
433 dl 1.5 }
434    
435 dholmes 1.16 /**
436 dl 1.24 * Inserts the specified element into this priority queue.
437 jsr166 1.64 * As the queue is unbounded, this method will never return {@code false}.
438 dholmes 1.16 *
439 jsr166 1.40 * @param e the element to add
440 jsr166 1.63 * @return {@code true} (as specified by {@link Queue#offer})
441 dholmes 1.16 * @throws ClassCastException if the specified element cannot be compared
442 jsr166 1.42 * with elements currently in the priority queue according to the
443     * priority queue's ordering
444     * @throws NullPointerException if the specified element is null
445 dholmes 1.16 */
446 jsr166 1.40 public boolean offer(E e) {
447 dl 1.59 if (e == null)
448     throw new NullPointerException();
449 dl 1.31 final ReentrantLock lock = this.lock;
450 dl 1.5 lock.lock();
451 dl 1.66 int n, cap;
452 jsr166 1.138 Object[] es;
453     while ((n = size) >= (cap = (es = queue).length))
454     tryGrow(es, cap);
455 dl 1.59 try {
456 jsr166 1.135 final Comparator<? super E> cmp;
457     if ((cmp = comparator) == null)
458 jsr166 1.138 siftUpComparable(n, e, es);
459 dl 1.59 else
460 jsr166 1.138 siftUpUsingComparator(n, e, es, cmp);
461 dl 1.66 size = n + 1;
462 dl 1.5 notEmpty.signal();
463 tim 1.19 } finally {
464 tim 1.13 lock.unlock();
465 dl 1.5 }
466 dl 1.59 return true;
467 dl 1.5 }
468    
469 dholmes 1.16 /**
470 jsr166 1.64 * Inserts the specified element into this priority queue.
471     * As the queue is unbounded, this method will never block.
472 jsr166 1.42 *
473 jsr166 1.40 * @param e the element to add
474 jsr166 1.42 * @throws ClassCastException if the specified element cannot be compared
475     * with elements currently in the priority queue according to the
476     * priority queue's ordering
477     * @throws NullPointerException if the specified element is null
478 dholmes 1.16 */
479 jsr166 1.40 public void put(E e) {
480     offer(e); // never need to block
481 dl 1.5 }
482    
483 dholmes 1.16 /**
484 jsr166 1.64 * Inserts the specified element into this priority queue.
485     * As the queue is unbounded, this method will never block or
486     * return {@code false}.
487 jsr166 1.42 *
488 jsr166 1.40 * @param e the element to add
489 dholmes 1.16 * @param timeout This parameter is ignored as the method never blocks
490     * @param unit This parameter is ignored as the method never blocks
491 jsr166 1.65 * @return {@code true} (as specified by
492     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
493 jsr166 1.42 * @throws ClassCastException if the specified element cannot be compared
494     * with elements currently in the priority queue according to the
495     * priority queue's ordering
496     * @throws NullPointerException if the specified element is null
497 dholmes 1.16 */
498 jsr166 1.40 public boolean offer(E e, long timeout, TimeUnit unit) {
499     return offer(e); // never need to block
500 dl 1.5 }
501    
502 jsr166 1.42 public E poll() {
503     final ReentrantLock lock = this.lock;
504     lock.lock();
505     try {
506 jsr166 1.79 return dequeue();
507 jsr166 1.42 } finally {
508     lock.unlock();
509     }
510     }
511    
512 dl 1.5 public E take() throws InterruptedException {
513 dl 1.31 final ReentrantLock lock = this.lock;
514 dl 1.5 lock.lockInterruptibly();
515 dl 1.66 E result;
516 dl 1.5 try {
517 jsr166 1.79 while ( (result = dequeue()) == null)
518 jsr166 1.55 notEmpty.await();
519 tim 1.19 } finally {
520 dl 1.5 lock.unlock();
521     }
522 dl 1.59 return result;
523 dl 1.5 }
524    
525     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
526 dholmes 1.10 long nanos = unit.toNanos(timeout);
527 dl 1.31 final ReentrantLock lock = this.lock;
528 dl 1.5 lock.lockInterruptibly();
529 dl 1.66 E result;
530 dl 1.5 try {
531 jsr166 1.79 while ( (result = dequeue()) == null && nanos > 0)
532 jsr166 1.55 nanos = notEmpty.awaitNanos(nanos);
533 tim 1.19 } finally {
534 dl 1.5 lock.unlock();
535     }
536 dl 1.59 return result;
537 dl 1.5 }
538    
539     public E peek() {
540 dl 1.31 final ReentrantLock lock = this.lock;
541 dl 1.5 lock.lock();
542     try {
543 jsr166 1.135 return (E) queue[0];
544 tim 1.19 } finally {
545 tim 1.13 lock.unlock();
546 dl 1.5 }
547     }
548 jsr166 1.61
549 jsr166 1.42 /**
550     * Returns the comparator used to order the elements in this queue,
551 jsr166 1.63 * or {@code null} if this queue uses the {@linkplain Comparable
552 jsr166 1.42 * natural ordering} of its elements.
553     *
554     * @return the comparator used to order the elements in this queue,
555 jsr166 1.63 * or {@code null} if this queue uses the natural
556 jsr166 1.52 * ordering of its elements
557 jsr166 1.42 */
558     public Comparator<? super E> comparator() {
559 dl 1.59 return comparator;
560 jsr166 1.42 }
561    
562 dl 1.5 public int size() {
563 dl 1.31 final ReentrantLock lock = this.lock;
564 dl 1.5 lock.lock();
565     try {
566 jsr166 1.68 return size;
567 tim 1.19 } finally {
568 dl 1.5 lock.unlock();
569     }
570     }
571    
572     /**
573 jsr166 1.63 * Always returns {@code Integer.MAX_VALUE} because
574     * a {@code PriorityBlockingQueue} is not capacity constrained.
575     * @return {@code Integer.MAX_VALUE} always
576 dl 1.5 */
577     public int remainingCapacity() {
578     return Integer.MAX_VALUE;
579     }
580    
581 dl 1.59 private int indexOf(Object o) {
582     if (o != null) {
583 jsr166 1.133 final Object[] es = queue;
584     for (int i = 0, n = size; i < n; i++)
585     if (o.equals(es[i]))
586 dl 1.59 return i;
587     }
588     return -1;
589     }
590    
591     /**
592     * Removes the ith element from queue.
593     */
594     private void removeAt(int i) {
595 jsr166 1.134 final Object[] es = queue;
596 jsr166 1.135 final int n = size - 1;
597 dl 1.66 if (n == i) // removed last element
598 jsr166 1.134 es[i] = null;
599 dl 1.59 else {
600 jsr166 1.134 E moved = (E) es[n];
601     es[n] = null;
602 jsr166 1.135 final Comparator<? super E> cmp;
603     if ((cmp = comparator) == null)
604 jsr166 1.134 siftDownComparable(i, moved, es, n);
605 dl 1.66 else
606 jsr166 1.134 siftDownUsingComparator(i, moved, es, n, cmp);
607     if (es[i] == moved) {
608 dl 1.66 if (cmp == null)
609 jsr166 1.134 siftUpComparable(i, moved, es);
610 dl 1.66 else
611 jsr166 1.134 siftUpUsingComparator(i, moved, es, cmp);
612 dl 1.66 }
613 dl 1.59 }
614 dl 1.66 size = n;
615 dl 1.59 }
616    
617 dl 1.37 /**
618 jsr166 1.42 * Removes a single instance of the specified element from this queue,
619 jsr166 1.52 * if it is present. More formally, removes an element {@code e} such
620     * that {@code o.equals(e)}, if this queue contains one or more such
621     * elements. Returns {@code true} if and only if this queue contained
622     * the specified element (or equivalently, if this queue changed as a
623     * result of the call).
624 jsr166 1.42 *
625     * @param o element to be removed from this queue, if present
626 jsr166 1.63 * @return {@code true} if this queue changed as a result of the call
627 dl 1.37 */
628 dholmes 1.14 public boolean remove(Object o) {
629 dl 1.31 final ReentrantLock lock = this.lock;
630 dl 1.5 lock.lock();
631     try {
632 dl 1.59 int i = indexOf(o);
633 jsr166 1.78 if (i == -1)
634     return false;
635     removeAt(i);
636     return true;
637 dl 1.59 } finally {
638     lock.unlock();
639     }
640     }
641    
642     /**
643 jsr166 1.112 * Identity-based version for use in Itr.remove.
644 jsr166 1.133 *
645     * @param o element to be removed from this queue, if present
646 dl 1.59 */
647 jsr166 1.133 void removeEq(Object o) {
648 dl 1.59 final ReentrantLock lock = this.lock;
649     lock.lock();
650     try {
651 jsr166 1.133 final Object[] es = queue;
652 jsr166 1.78 for (int i = 0, n = size; i < n; i++) {
653 jsr166 1.133 if (o == es[i]) {
654 dl 1.59 removeAt(i);
655     break;
656     }
657     }
658 tim 1.19 } finally {
659 dl 1.5 lock.unlock();
660     }
661     }
662    
663 jsr166 1.42 /**
664 jsr166 1.52 * Returns {@code true} if this queue contains the specified element.
665     * More formally, returns {@code true} if and only if this queue contains
666     * at least one element {@code e} such that {@code o.equals(e)}.
667 jsr166 1.42 *
668     * @param o object to be checked for containment in this queue
669 jsr166 1.63 * @return {@code true} if this queue contains the specified element
670 jsr166 1.42 */
671 dholmes 1.14 public boolean contains(Object o) {
672 dl 1.31 final ReentrantLock lock = this.lock;
673 dl 1.5 lock.lock();
674     try {
675 jsr166 1.78 return indexOf(o) != -1;
676 tim 1.19 } finally {
677 dl 1.5 lock.unlock();
678     }
679     }
680    
681     public String toString() {
682 jsr166 1.111 return Helpers.collectionToString(this);
683 dl 1.5 }
684    
685 jsr166 1.42 /**
686     * @throws UnsupportedOperationException {@inheritDoc}
687     * @throws ClassCastException {@inheritDoc}
688     * @throws NullPointerException {@inheritDoc}
689     * @throws IllegalArgumentException {@inheritDoc}
690     */
691 dl 1.26 public int drainTo(Collection<? super E> c) {
692 jsr166 1.76 return drainTo(c, Integer.MAX_VALUE);
693 dl 1.26 }
694    
695 jsr166 1.42 /**
696     * @throws UnsupportedOperationException {@inheritDoc}
697     * @throws ClassCastException {@inheritDoc}
698     * @throws NullPointerException {@inheritDoc}
699     * @throws IllegalArgumentException {@inheritDoc}
700     */
701 dl 1.26 public int drainTo(Collection<? super E> c, int maxElements) {
702 jsr166 1.124 Objects.requireNonNull(c);
703 dl 1.26 if (c == this)
704     throw new IllegalArgumentException();
705     if (maxElements <= 0)
706     return 0;
707 dl 1.31 final ReentrantLock lock = this.lock;
708 dl 1.26 lock.lock();
709     try {
710 jsr166 1.76 int n = Math.min(size, maxElements);
711     for (int i = 0; i < n; i++) {
712     c.add((E) queue[0]); // In this order, in case add() throws.
713 jsr166 1.79 dequeue();
714 dl 1.26 }
715     return n;
716     } finally {
717     lock.unlock();
718     }
719     }
720    
721 dl 1.17 /**
722 dl 1.37 * Atomically removes all of the elements from this queue.
723 dl 1.17 * The queue will be empty after this call returns.
724     */
725     public void clear() {
726 dl 1.31 final ReentrantLock lock = this.lock;
727 dl 1.17 lock.lock();
728     try {
729 jsr166 1.133 final Object[] es = queue;
730     for (int i = 0, n = size; i < n; i++)
731     es[i] = null;
732 dl 1.59 size = 0;
733 tim 1.19 } finally {
734 dl 1.17 lock.unlock();
735     }
736     }
737    
738 jsr166 1.42 /**
739 jsr166 1.110 * Returns an array containing all of the elements in this queue.
740     * The returned array elements are in no particular order.
741     *
742     * <p>The returned array will be "safe" in that no references to it are
743     * maintained by this queue. (In other words, this method must allocate
744     * a new array). The caller is thus free to modify the returned array.
745     *
746     * <p>This method acts as bridge between array-based and collection-based
747     * APIs.
748     *
749     * @return an array containing all of the elements in this queue
750     */
751     public Object[] toArray() {
752     final ReentrantLock lock = this.lock;
753     lock.lock();
754     try {
755     return Arrays.copyOf(queue, size);
756     } finally {
757     lock.unlock();
758     }
759     }
760    
761     /**
762 jsr166 1.42 * Returns an array containing all of the elements in this queue; the
763     * runtime type of the returned array is that of the specified array.
764     * The returned array elements are in no particular order.
765     * If the queue fits in the specified array, it is returned therein.
766     * Otherwise, a new array is allocated with the runtime type of the
767     * specified array and the size of this queue.
768     *
769     * <p>If this queue fits in the specified array with room to spare
770     * (i.e., the array has more elements than this queue), the element in
771     * the array immediately following the end of the queue is set to
772 jsr166 1.63 * {@code null}.
773 jsr166 1.42 *
774     * <p>Like the {@link #toArray()} method, this method acts as bridge between
775     * array-based and collection-based APIs. Further, this method allows
776     * precise control over the runtime type of the output array, and may,
777     * under certain circumstances, be used to save allocation costs.
778     *
779 jsr166 1.63 * <p>Suppose {@code x} is a queue known to contain only strings.
780 jsr166 1.42 * The following code can be used to dump the queue into a newly
781 jsr166 1.63 * allocated array of {@code String}:
782 jsr166 1.42 *
783 jsr166 1.109 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
784 jsr166 1.42 *
785 jsr166 1.63 * Note that {@code toArray(new Object[0])} is identical in function to
786     * {@code toArray()}.
787 jsr166 1.42 *
788     * @param a the array into which the elements of the queue are to
789     * be stored, if it is big enough; otherwise, a new array of the
790     * same runtime type is allocated for this purpose
791     * @return an array containing all of the elements in this queue
792     * @throws ArrayStoreException if the runtime type of the specified array
793     * is not a supertype of the runtime type of every element in
794     * this queue
795     * @throws NullPointerException if the specified array is null
796     */
797 dl 1.5 public <T> T[] toArray(T[] a) {
798 dl 1.31 final ReentrantLock lock = this.lock;
799 dl 1.5 lock.lock();
800     try {
801 dl 1.66 int n = size;
802     if (a.length < n)
803 dl 1.59 // Make a new array of a's runtime type, but my contents:
804     return (T[]) Arrays.copyOf(queue, size, a.getClass());
805 dl 1.66 System.arraycopy(queue, 0, a, 0, n);
806     if (a.length > n)
807     a[n] = null;
808 dl 1.59 return a;
809 tim 1.19 } finally {
810 dl 1.5 lock.unlock();
811     }
812     }
813    
814 dholmes 1.16 /**
815 dl 1.23 * Returns an iterator over the elements in this queue. The
816     * iterator does not return the elements in any particular order.
817 jsr166 1.69 *
818 jsr166 1.103 * <p>The returned iterator is
819     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
820 dholmes 1.16 *
821 jsr166 1.42 * @return an iterator over the elements in this queue
822 dholmes 1.16 */
823 dl 1.5 public Iterator<E> iterator() {
824 dl 1.51 return new Itr(toArray());
825 dl 1.5 }
826    
827 dl 1.49 /**
828     * Snapshot iterator that works off copy of underlying q array.
829     */
830 dl 1.59 final class Itr implements Iterator<E> {
831 dl 1.49 final Object[] array; // Array of all elements
832 jsr166 1.81 int cursor; // index of next element to return
833 jsr166 1.136 int lastRet = -1; // index of last element, or -1 if no such
834 jsr166 1.50
835 dl 1.49 Itr(Object[] array) {
836     this.array = array;
837 dl 1.5 }
838    
839 tim 1.13 public boolean hasNext() {
840 dl 1.49 return cursor < array.length;
841 tim 1.13 }
842    
843     public E next() {
844 dl 1.49 if (cursor >= array.length)
845     throw new NoSuchElementException();
846 jsr166 1.120 return (E)array[lastRet = cursor++];
847 tim 1.13 }
848    
849     public void remove() {
850 jsr166 1.50 if (lastRet < 0)
851 jsr166 1.54 throw new IllegalStateException();
852 jsr166 1.133 removeEq(array[lastRet]);
853 dl 1.49 lastRet = -1;
854 tim 1.13 }
855 jsr166 1.137
856     public void forEachRemaining(Consumer<? super E> action) {
857     Objects.requireNonNull(action);
858     final Object[] es = array;
859     int i;
860     if ((i = cursor) < es.length) {
861     lastRet = -1;
862     cursor = es.length;
863     for (; i < es.length; i++)
864     action.accept((E) es[i]);
865     lastRet = es.length - 1;
866     }
867     }
868 dl 1.5 }
869    
870     /**
871 jsr166 1.83 * Saves this queue to a stream (that is, serializes it).
872     *
873     * For compatibility with previous version of this class, elements
874     * are first copied to a java.util.PriorityQueue, which is then
875     * serialized.
876 jsr166 1.97 *
877     * @param s the stream
878 jsr166 1.98 * @throws java.io.IOException if an I/O error occurs
879 dl 1.5 */
880     private void writeObject(java.io.ObjectOutputStream s)
881     throws java.io.IOException {
882     lock.lock();
883     try {
884 jsr166 1.78 // avoid zero capacity argument
885     q = new PriorityQueue<E>(Math.max(size, 1), comparator);
886 dl 1.59 q.addAll(this);
887 dl 1.5 s.defaultWriteObject();
888 dl 1.66 } finally {
889 dl 1.59 q = null;
890 dl 1.5 lock.unlock();
891     }
892 tim 1.1 }
893    
894 dl 1.59 /**
895 jsr166 1.83 * Reconstitutes this queue from a stream (that is, deserializes it).
896 jsr166 1.97 * @param s the stream
897 jsr166 1.98 * @throws ClassNotFoundException if the class of a serialized object
898     * could not be found
899     * @throws java.io.IOException if an I/O error occurs
900 dl 1.59 */
901     private void readObject(java.io.ObjectInputStream s)
902     throws java.io.IOException, ClassNotFoundException {
903 jsr166 1.67 try {
904 dl 1.66 s.defaultReadObject();
905 jsr166 1.131 int sz = q.size();
906     SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, sz);
907 jsr166 1.135 this.queue = new Object[Math.max(1, sz)];
908 dl 1.66 comparator = q.comparator();
909     addAll(q);
910 jsr166 1.67 } finally {
911 dl 1.66 q = null;
912     }
913 dl 1.59 }
914    
915 jsr166 1.116 /**
916     * Immutable snapshot spliterator that binds to elements "late".
917     */
918 jsr166 1.119 final class PBQSpliterator implements Spliterator<E> {
919 jsr166 1.125 Object[] array; // null until late-bound-initialized
920 dl 1.93 int index;
921     int fence;
922    
923 jsr166 1.125 PBQSpliterator() {}
924    
925 jsr166 1.119 PBQSpliterator(Object[] array, int index, int fence) {
926 dl 1.93 this.array = array;
927     this.index = index;
928     this.fence = fence;
929     }
930    
931 jsr166 1.125 private int getFence() {
932     if (array == null)
933     fence = (array = toArray()).length;
934     return fence;
935 dl 1.93 }
936    
937 jsr166 1.119 public PBQSpliterator trySplit() {
938 dl 1.93 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
939     return (lo >= mid) ? null :
940 jsr166 1.119 new PBQSpliterator(array, lo, index = mid);
941 dl 1.93 }
942    
943 dl 1.95 public void forEachRemaining(Consumer<? super E> action) {
944 jsr166 1.124 Objects.requireNonNull(action);
945 jsr166 1.125 final int hi = getFence(), lo = index;
946 jsr166 1.134 final Object[] es = array;
947 jsr166 1.125 index = hi; // ensure exhaustion
948     for (int i = lo; i < hi; i++)
949 jsr166 1.134 action.accept((E) es[i]);
950 dl 1.93 }
951    
952     public boolean tryAdvance(Consumer<? super E> action) {
953 jsr166 1.124 Objects.requireNonNull(action);
954 dl 1.93 if (getFence() > index && index >= 0) {
955 jsr166 1.125 action.accept((E) array[index++]);
956 dl 1.93 return true;
957     }
958     return false;
959     }
960    
961 jsr166 1.119 public long estimateSize() { return getFence() - index; }
962 dl 1.93
963     public int characteristics() {
964 jsr166 1.123 return (Spliterator.NONNULL |
965     Spliterator.SIZED |
966     Spliterator.SUBSIZED);
967 dl 1.93 }
968     }
969    
970 jsr166 1.102 /**
971     * Returns a {@link Spliterator} over the elements in this queue.
972 jsr166 1.117 * The spliterator does not traverse elements in any particular order
973     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
974 jsr166 1.102 *
975 jsr166 1.103 * <p>The returned spliterator is
976     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
977     *
978 jsr166 1.102 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
979     * {@link Spliterator#NONNULL}.
980     *
981     * @implNote
982     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
983     *
984     * @return a {@code Spliterator} over the elements in this queue
985     * @since 1.8
986     */
987 dl 1.94 public Spliterator<E> spliterator() {
988 jsr166 1.125 return new PBQSpliterator();
989 dl 1.86 }
990    
991 jsr166 1.132 /**
992     * @throws NullPointerException {@inheritDoc}
993     */
994 jsr166 1.139 public boolean removeIf(Predicate<? super E> filter) {
995     Objects.requireNonNull(filter);
996     return bulkRemove(filter);
997     }
998    
999     /**
1000     * @throws NullPointerException {@inheritDoc}
1001     */
1002     public boolean removeAll(Collection<?> c) {
1003     Objects.requireNonNull(c);
1004     return bulkRemove(e -> c.contains(e));
1005     }
1006    
1007     /**
1008     * @throws NullPointerException {@inheritDoc}
1009     */
1010     public boolean retainAll(Collection<?> c) {
1011     Objects.requireNonNull(c);
1012     return bulkRemove(e -> !c.contains(e));
1013     }
1014    
1015     // A tiny bit set implementation
1016    
1017     private static long[] nBits(int n) {
1018     return new long[((n - 1) >> 6) + 1];
1019     }
1020     private static void setBit(long[] bits, int i) {
1021     bits[i >> 6] |= 1L << i;
1022     }
1023     private static boolean isClear(long[] bits, int i) {
1024     return (bits[i >> 6] & (1L << i)) == 0;
1025     }
1026    
1027     /** Implementation of bulk remove methods. */
1028     private boolean bulkRemove(Predicate<? super E> filter) {
1029     final ReentrantLock lock = this.lock;
1030     lock.lock();
1031     try {
1032     final Object[] es = queue;
1033     final int end = size;
1034     int i;
1035     // Optimize for initial run of survivors
1036     for (i = 0; i < end && !filter.test((E) es[i]); i++)
1037     ;
1038     if (i >= end)
1039     return false;
1040     // Tolerate predicates that reentrantly access the
1041     // collection for read, so traverse once to find elements
1042     // to delete, a second pass to physically expunge.
1043     final int beg = i;
1044     final long[] deathRow = nBits(end - beg);
1045     deathRow[0] = 1L; // set bit 0
1046     for (i = beg + 1; i < end; i++)
1047     if (filter.test((E) es[i]))
1048     setBit(deathRow, i - beg);
1049     int w = beg;
1050     for (i = beg; i < end; i++)
1051     if (isClear(deathRow, i - beg))
1052     es[w++] = es[i];
1053     for (i = size = w; i < end; i++)
1054     es[i] = null;
1055     heapify();
1056     return true;
1057     } finally {
1058     lock.unlock();
1059     }
1060     }
1061    
1062     /**
1063     * @throws NullPointerException {@inheritDoc}
1064     */
1065 jsr166 1.132 public void forEach(Consumer<? super E> action) {
1066     Objects.requireNonNull(action);
1067     final ReentrantLock lock = this.lock;
1068     lock.lock();
1069     try {
1070     final Object[] es = queue;
1071     for (int i = 0, n = size; i < n; i++)
1072     action.accept((E) es[i]);
1073     } finally {
1074     lock.unlock();
1075     }
1076     }
1077    
1078 dl 1.115 // VarHandle mechanics
1079     private static final VarHandle ALLOCATIONSPINLOCK;
1080 dl 1.70 static {
1081 dl 1.59 try {
1082 dl 1.115 MethodHandles.Lookup l = MethodHandles.lookup();
1083     ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
1084     "allocationSpinLock",
1085     int.class);
1086 jsr166 1.107 } catch (ReflectiveOperationException e) {
1087 jsr166 1.130 throw new ExceptionInInitializerError(e);
1088 dl 1.59 }
1089     }
1090 tim 1.1 }