ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.142
Committed: Thu Oct 17 01:51:38 2019 UTC (4 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.141: +1 -0 lines
Log Message:
8232230: Suppress warnings on non-serializable non-transient instance fields in java.util.concurrent

File Contents

# User Rev Content
1 dl 1.2 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.33 * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.2 */
6    
7 tim 1.1 package java.util.concurrent;
8 tim 1.13
9 dl 1.115 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 dl 1.86 import java.util.AbstractQueue;
12     import java.util.Arrays;
13     import java.util.Collection;
14     import java.util.Comparator;
15     import java.util.Iterator;
16     import java.util.NoSuchElementException;
17 jsr166 1.124 import java.util.Objects;
18 dl 1.86 import java.util.PriorityQueue;
19     import java.util.Queue;
20     import java.util.SortedSet;
21     import java.util.Spliterator;
22 jsr166 1.105 import java.util.concurrent.locks.Condition;
23     import java.util.concurrent.locks.ReentrantLock;
24     import java.util.function.Consumer;
25 jsr166 1.139 import java.util.function.Predicate;
26 jsr166 1.141 // OPENJDK import jdk.internal.access.SharedSecrets;
27 tim 1.1
28     /**
29 dl 1.25 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
30     * the same ordering rules as class {@link PriorityQueue} and supplies
31     * blocking retrieval operations. While this queue is logically
32 dl 1.24 * unbounded, attempted additions may fail due to resource exhaustion
33 jsr166 1.63 * (causing {@code OutOfMemoryError}). This class does not permit
34     * {@code null} elements. A priority queue relying on {@linkplain
35 jsr166 1.42 * Comparable natural ordering} also does not permit insertion of
36     * non-comparable objects (doing so results in
37 jsr166 1.63 * {@code ClassCastException}).
38 dl 1.20 *
39 jsr166 1.126 * <p>This class and its iterator implement all of the <em>optional</em>
40     * methods of the {@link Collection} and {@link Iterator} interfaces.
41     * The Iterator provided in method {@link #iterator()} and the
42     * Spliterator provided in method {@link #spliterator()} are <em>not</em>
43     * guaranteed to traverse the elements of the PriorityBlockingQueue in
44     * any particular order. If you need ordered traversal, consider using
45     * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
46     * be used to <em>remove</em> some or all elements in priority order and
47     * place them in another collection.
48 dl 1.41 *
49     * <p>Operations on this class make no guarantees about the ordering
50     * of elements with equal priority. If you need to enforce an
51     * ordering, you can define custom classes or comparators that use a
52     * secondary key to break ties in primary priority values. For
53     * example, here is a class that applies first-in-first-out
54     * tie-breaking to comparable elements. To use it, you would insert a
55 jsr166 1.63 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
56 dl 1.41 *
57 jsr166 1.109 * <pre> {@code
58 jsr166 1.56 * class FIFOEntry<E extends Comparable<? super E>>
59     * implements Comparable<FIFOEntry<E>> {
60 jsr166 1.58 * static final AtomicLong seq = new AtomicLong(0);
61 dl 1.41 * final long seqNum;
62     * final E entry;
63     * public FIFOEntry(E entry) {
64     * seqNum = seq.getAndIncrement();
65     * this.entry = entry;
66     * }
67     * public E getEntry() { return entry; }
68 jsr166 1.56 * public int compareTo(FIFOEntry<E> other) {
69 dl 1.41 * int res = entry.compareTo(other.entry);
70 jsr166 1.56 * if (res == 0 && other.entry != this.entry)
71     * res = (seqNum < other.seqNum ? -1 : 1);
72 dl 1.41 * return res;
73     * }
74 jsr166 1.56 * }}</pre>
75 dl 1.20 *
76 dl 1.35 * <p>This class is a member of the
77 jsr166 1.140 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
78 dl 1.35 * Java Collections Framework</a>.
79     *
80 dl 1.6 * @since 1.5
81     * @author Doug Lea
82 jsr166 1.104 * @param <E> the type of elements held in this queue
83 dl 1.28 */
84 jsr166 1.82 @SuppressWarnings("unchecked")
85 dl 1.5 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
86 dl 1.15 implements BlockingQueue<E>, java.io.Serializable {
87 dl 1.21 private static final long serialVersionUID = 5595510919245408276L;
88 tim 1.1
89 dl 1.59 /*
90 dl 1.66 * The implementation uses an array-based binary heap, with public
91     * operations protected with a single lock. However, allocation
92     * during resizing uses a simple spinlock (used only while not
93     * holding main lock) in order to allow takes to operate
94     * concurrently with allocation. This avoids repeated
95     * postponement of waiting consumers and consequent element
96     * build-up. The need to back away from lock during allocation
97     * makes it impossible to simply wrap delegated
98     * java.util.PriorityQueue operations within a lock, as was done
99     * in a previous version of this class. To maintain
100     * interoperability, a plain PriorityQueue is still used during
101 jsr166 1.77 * serialization, which maintains compatibility at the expense of
102 dl 1.66 * transiently doubling overhead.
103 dl 1.59 */
104    
105     /**
106     * Default array capacity.
107     */
108     private static final int DEFAULT_INITIAL_CAPACITY = 11;
109    
110     /**
111 dl 1.66 * The maximum size of array to allocate.
112     * Some VMs reserve some header words in an array.
113     * Attempts to allocate larger arrays may result in
114     * OutOfMemoryError: Requested array size exceeds VM limit
115     */
116     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
117    
118     /**
119 dl 1.59 * Priority queue represented as a balanced binary heap: the two
120     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
121     * priority queue is ordered by comparator, or by the elements'
122     * natural ordering, if comparator is null: For each node n in the
123     * heap and each descendant d of n, n <= d. The element with the
124     * lowest value is in queue[0], assuming the queue is nonempty.
125     */
126     private transient Object[] queue;
127    
128     /**
129     * The number of elements in the priority queue.
130     */
131 dl 1.66 private transient int size;
132 dl 1.59
133     /**
134     * The comparator, or null if priority queue uses elements'
135     * natural ordering.
136     */
137     private transient Comparator<? super E> comparator;
138    
139     /**
140 jsr166 1.112 * Lock used for all public operations.
141 dl 1.59 */
142 jsr166 1.135 private final ReentrantLock lock = new ReentrantLock();
143 dl 1.59
144     /**
145 jsr166 1.112 * Condition for blocking when empty.
146 dl 1.59 */
147 jsr166 1.142 @SuppressWarnings("serial") // Classes implementing Condition may be serializable.
148 jsr166 1.135 private final Condition notEmpty = lock.newCondition();
149 dl 1.5
150 dl 1.2 /**
151 dl 1.59 * Spinlock for allocation, acquired via CAS.
152     */
153     private transient volatile int allocationSpinLock;
154    
155     /**
156 dl 1.66 * A plain PriorityQueue used only for serialization,
157     * to maintain compatibility with previous versions
158     * of this class. Non-null only during serialization/deserialization.
159     */
160 jsr166 1.72 private PriorityQueue<E> q;
161 dl 1.66
162     /**
163 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the default
164 jsr166 1.42 * initial capacity (11) that orders its elements according to
165     * their {@linkplain Comparable natural ordering}.
166 dl 1.2 */
167     public PriorityBlockingQueue() {
168 dl 1.59 this(DEFAULT_INITIAL_CAPACITY, null);
169 dl 1.2 }
170    
171     /**
172 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the specified
173 jsr166 1.42 * initial capacity that orders its elements according to their
174     * {@linkplain Comparable natural ordering}.
175 dl 1.2 *
176 jsr166 1.42 * @param initialCapacity the initial capacity for this priority queue
177 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
178 jsr166 1.52 * than 1
179 dl 1.2 */
180     public PriorityBlockingQueue(int initialCapacity) {
181 dl 1.59 this(initialCapacity, null);
182 dl 1.2 }
183    
184     /**
185 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} with the specified initial
186 jsr166 1.39 * capacity that orders its elements according to the specified
187     * comparator.
188 dl 1.2 *
189 jsr166 1.42 * @param initialCapacity the initial capacity for this priority queue
190 jsr166 1.52 * @param comparator the comparator that will be used to order this
191     * priority queue. If {@code null}, the {@linkplain Comparable
192     * natural ordering} of the elements will be used.
193 jsr166 1.63 * @throws IllegalArgumentException if {@code initialCapacity} is less
194 jsr166 1.52 * than 1
195 dl 1.2 */
196 tim 1.13 public PriorityBlockingQueue(int initialCapacity,
197 dholmes 1.14 Comparator<? super E> comparator) {
198 dl 1.59 if (initialCapacity < 1)
199     throw new IllegalArgumentException();
200 dl 1.66 this.comparator = comparator;
201 jsr166 1.135 this.queue = new Object[Math.max(1, initialCapacity)];
202 dl 1.2 }
203    
204     /**
205 jsr166 1.63 * Creates a {@code PriorityBlockingQueue} containing the elements
206 jsr166 1.52 * in the specified collection. If the specified collection is a
207 jsr166 1.99 * {@link SortedSet} or a {@link PriorityQueue}, this
208 jsr166 1.52 * priority queue will be ordered according to the same ordering.
209     * Otherwise, this priority queue will be ordered according to the
210     * {@linkplain Comparable natural ordering} of its elements.
211 dl 1.2 *
212 jsr166 1.52 * @param c the collection whose elements are to be placed
213     * into this priority queue
214 dl 1.2 * @throws ClassCastException if elements of the specified collection
215     * cannot be compared to one another according to the priority
216 jsr166 1.52 * queue's ordering
217 jsr166 1.42 * @throws NullPointerException if the specified collection or any
218     * of its elements are null
219 dl 1.2 */
220 dholmes 1.14 public PriorityBlockingQueue(Collection<? extends E> c) {
221 dl 1.66 boolean heapify = true; // true if not known to be in heap order
222     boolean screen = true; // true if must screen for nulls
223 dl 1.59 if (c instanceof SortedSet<?>) {
224     SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
225     this.comparator = (Comparator<? super E>) ss.comparator();
226 dl 1.66 heapify = false;
227 dl 1.59 }
228     else if (c instanceof PriorityBlockingQueue<?>) {
229 jsr166 1.61 PriorityBlockingQueue<? extends E> pq =
230 dl 1.59 (PriorityBlockingQueue<? extends E>) c;
231     this.comparator = (Comparator<? super E>) pq.comparator();
232 jsr166 1.67 screen = false;
233 dl 1.66 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
234     heapify = false;
235 dl 1.59 }
236 jsr166 1.134 Object[] es = c.toArray();
237     int n = es.length;
238 dl 1.59 // If c.toArray incorrectly doesn't return Object[], copy it.
239 jsr166 1.134 if (es.getClass() != Object[].class)
240     es = Arrays.copyOf(es, n, Object[].class);
241 dl 1.66 if (screen && (n == 1 || this.comparator != null)) {
242 jsr166 1.134 for (Object e : es)
243     if (e == null)
244 dl 1.59 throw new NullPointerException();
245 dl 1.66 }
246 jsr166 1.135 this.queue = ensureNonEmpty(es);
247 dl 1.66 this.size = n;
248     if (heapify)
249     heapify();
250 dl 1.59 }
251    
252 jsr166 1.135 /** Ensures that queue[0] exists, helping peek() and poll(). */
253     private static Object[] ensureNonEmpty(Object[] es) {
254     return (es.length > 0) ? es : new Object[1];
255     }
256    
257 dl 1.59 /**
258 dl 1.66 * Tries to grow array to accommodate at least one more element
259     * (but normally expand by about 50%), giving up (allowing retry)
260     * on contention (which we expect to be rare). Call only while
261     * holding lock.
262 jsr166 1.67 *
263 dl 1.66 * @param array the heap array
264     * @param oldCap the length of the array
265 dl 1.59 */
266 dl 1.66 private void tryGrow(Object[] array, int oldCap) {
267 dl 1.59 lock.unlock(); // must release and then re-acquire main lock
268     Object[] newArray = null;
269     if (allocationSpinLock == 0 &&
270 dl 1.115 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
271 dl 1.59 try {
272     int newCap = oldCap + ((oldCap < 64) ?
273 dl 1.66 (oldCap + 2) : // grow faster if small
274 dl 1.59 (oldCap >> 1));
275 dl 1.66 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
276     int minCap = oldCap + 1;
277 dl 1.59 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
278     throw new OutOfMemoryError();
279     newCap = MAX_ARRAY_SIZE;
280     }
281 dl 1.66 if (newCap > oldCap && queue == array)
282 dl 1.59 newArray = new Object[newCap];
283     } finally {
284     allocationSpinLock = 0;
285     }
286     }
287 dl 1.66 if (newArray == null) // back off if another thread is allocating
288 dl 1.59 Thread.yield();
289     lock.lock();
290     if (newArray != null && queue == array) {
291     queue = newArray;
292 dl 1.66 System.arraycopy(array, 0, newArray, 0, oldCap);
293 dl 1.59 }
294     }
295    
296     /**
297 jsr166 1.62 * Mechanics for poll(). Call only while holding lock.
298 dl 1.59 */
299 jsr166 1.79 private E dequeue() {
300 jsr166 1.134 // assert lock.isHeldByCurrentThread();
301 jsr166 1.135 final Object[] es;
302     final E result;
303    
304     if ((result = (E) ((es = queue)[0])) != null) {
305     final int n;
306     final E x = (E) es[(n = --size)];
307 jsr166 1.134 es[n] = null;
308     if (n > 0) {
309 jsr166 1.135 final Comparator<? super E> cmp;
310     if ((cmp = comparator) == null)
311 jsr166 1.134 siftDownComparable(0, x, es, n);
312     else
313     siftDownUsingComparator(0, x, es, n, cmp);
314     }
315 dl 1.59 }
316 jsr166 1.135 return result;
317 dl 1.59 }
318    
319     /**
320     * Inserts item x at position k, maintaining heap invariant by
321     * promoting x up the tree until it is greater than or equal to
322     * its parent, or is the root.
323     *
324 jsr166 1.121 * To simplify and speed up coercions and comparisons, the
325 dl 1.59 * Comparable and Comparator versions are separated into different
326     * methods that are otherwise identical. (Similarly for siftDown.)
327     *
328     * @param k the position to fill
329     * @param x the item to insert
330 jsr166 1.134 * @param es the heap array
331 dl 1.59 */
332 jsr166 1.134 private static <T> void siftUpComparable(int k, T x, Object[] es) {
333 dl 1.66 Comparable<? super T> key = (Comparable<? super T>) x;
334 dl 1.59 while (k > 0) {
335     int parent = (k - 1) >>> 1;
336 jsr166 1.134 Object e = es[parent];
337 dl 1.66 if (key.compareTo((T) e) >= 0)
338 dl 1.59 break;
339 jsr166 1.134 es[k] = e;
340 dl 1.59 k = parent;
341     }
342 jsr166 1.134 es[k] = key;
343 dl 1.59 }
344    
345 jsr166 1.134 private static <T> void siftUpUsingComparator(
346     int k, T x, Object[] es, Comparator<? super T> cmp) {
347 dl 1.59 while (k > 0) {
348     int parent = (k - 1) >>> 1;
349 jsr166 1.134 Object e = es[parent];
350 dl 1.66 if (cmp.compare(x, (T) e) >= 0)
351 dl 1.59 break;
352 jsr166 1.134 es[k] = e;
353 dl 1.59 k = parent;
354     }
355 jsr166 1.134 es[k] = x;
356 dl 1.59 }
357    
358     /**
359     * Inserts item x at position k, maintaining heap invariant by
360     * demoting x down the tree repeatedly until it is less than or
361     * equal to its children or is a leaf.
362     *
363     * @param k the position to fill
364     * @param x the item to insert
365 jsr166 1.134 * @param es the heap array
366 dl 1.66 * @param n heap size
367 dl 1.59 */
368 jsr166 1.134 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
369     // assert n > 0;
370     Comparable<? super T> key = (Comparable<? super T>)x;
371     int half = n >>> 1; // loop while a non-leaf
372     while (k < half) {
373     int child = (k << 1) + 1; // assume left child is least
374     Object c = es[child];
375     int right = child + 1;
376     if (right < n &&
377     ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
378     c = es[child = right];
379     if (key.compareTo((T) c) <= 0)
380     break;
381     es[k] = c;
382     k = child;
383 dl 1.59 }
384 jsr166 1.134 es[k] = key;
385 dl 1.59 }
386    
387 jsr166 1.134 private static <T> void siftDownUsingComparator(
388     int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
389     // assert n > 0;
390     int half = n >>> 1;
391     while (k < half) {
392     int child = (k << 1) + 1;
393     Object c = es[child];
394     int right = child + 1;
395     if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
396     c = es[child = right];
397     if (cmp.compare(x, (T) c) <= 0)
398     break;
399     es[k] = c;
400     k = child;
401 dl 1.59 }
402 jsr166 1.134 es[k] = x;
403 dl 1.7 }
404    
405 dholmes 1.10 /**
406 dl 1.59 * Establishes the heap invariant (described above) in the entire tree,
407     * assuming nothing about the order of the elements prior to the call.
408 jsr166 1.118 * This classic algorithm due to Floyd (1964) is known to be O(size).
409 dl 1.59 */
410     private void heapify() {
411 jsr166 1.134 final Object[] es = queue;
412 jsr166 1.127 int n = size, i = (n >>> 1) - 1;
413 jsr166 1.135 final Comparator<? super E> cmp;
414     if ((cmp = comparator) == null)
415 jsr166 1.127 for (; i >= 0; i--)
416 jsr166 1.134 siftDownComparable(i, (E) es[i], es, n);
417     else
418 jsr166 1.127 for (; i >= 0; i--)
419 jsr166 1.134 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
420 dl 1.59 }
421    
422     /**
423 jsr166 1.42 * Inserts the specified element into this priority queue.
424     *
425 jsr166 1.40 * @param e the element to add
426 jsr166 1.63 * @return {@code true} (as specified by {@link Collection#add})
427 dholmes 1.16 * @throws ClassCastException if the specified element cannot be compared
428 jsr166 1.42 * with elements currently in the priority queue according to the
429     * priority queue's ordering
430     * @throws NullPointerException if the specified element is null
431 dholmes 1.10 */
432 jsr166 1.40 public boolean add(E e) {
433 jsr166 1.42 return offer(e);
434 dl 1.5 }
435    
436 dholmes 1.16 /**
437 dl 1.24 * Inserts the specified element into this priority queue.
438 jsr166 1.64 * As the queue is unbounded, this method will never return {@code false}.
439 dholmes 1.16 *
440 jsr166 1.40 * @param e the element to add
441 jsr166 1.63 * @return {@code true} (as specified by {@link Queue#offer})
442 dholmes 1.16 * @throws ClassCastException if the specified element cannot be compared
443 jsr166 1.42 * with elements currently in the priority queue according to the
444     * priority queue's ordering
445     * @throws NullPointerException if the specified element is null
446 dholmes 1.16 */
447 jsr166 1.40 public boolean offer(E e) {
448 dl 1.59 if (e == null)
449     throw new NullPointerException();
450 dl 1.31 final ReentrantLock lock = this.lock;
451 dl 1.5 lock.lock();
452 dl 1.66 int n, cap;
453 jsr166 1.138 Object[] es;
454     while ((n = size) >= (cap = (es = queue).length))
455     tryGrow(es, cap);
456 dl 1.59 try {
457 jsr166 1.135 final Comparator<? super E> cmp;
458     if ((cmp = comparator) == null)
459 jsr166 1.138 siftUpComparable(n, e, es);
460 dl 1.59 else
461 jsr166 1.138 siftUpUsingComparator(n, e, es, cmp);
462 dl 1.66 size = n + 1;
463 dl 1.5 notEmpty.signal();
464 tim 1.19 } finally {
465 tim 1.13 lock.unlock();
466 dl 1.5 }
467 dl 1.59 return true;
468 dl 1.5 }
469    
470 dholmes 1.16 /**
471 jsr166 1.64 * Inserts the specified element into this priority queue.
472     * As the queue is unbounded, this method will never block.
473 jsr166 1.42 *
474 jsr166 1.40 * @param e the element to add
475 jsr166 1.42 * @throws ClassCastException if the specified element cannot be compared
476     * with elements currently in the priority queue according to the
477     * priority queue's ordering
478     * @throws NullPointerException if the specified element is null
479 dholmes 1.16 */
480 jsr166 1.40 public void put(E e) {
481     offer(e); // never need to block
482 dl 1.5 }
483    
484 dholmes 1.16 /**
485 jsr166 1.64 * Inserts the specified element into this priority queue.
486     * As the queue is unbounded, this method will never block or
487     * return {@code false}.
488 jsr166 1.42 *
489 jsr166 1.40 * @param e the element to add
490 dholmes 1.16 * @param timeout This parameter is ignored as the method never blocks
491     * @param unit This parameter is ignored as the method never blocks
492 jsr166 1.65 * @return {@code true} (as specified by
493     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
494 jsr166 1.42 * @throws ClassCastException if the specified element cannot be compared
495     * with elements currently in the priority queue according to the
496     * priority queue's ordering
497     * @throws NullPointerException if the specified element is null
498 dholmes 1.16 */
499 jsr166 1.40 public boolean offer(E e, long timeout, TimeUnit unit) {
500     return offer(e); // never need to block
501 dl 1.5 }
502    
503 jsr166 1.42 public E poll() {
504     final ReentrantLock lock = this.lock;
505     lock.lock();
506     try {
507 jsr166 1.79 return dequeue();
508 jsr166 1.42 } finally {
509     lock.unlock();
510     }
511     }
512    
513 dl 1.5 public E take() throws InterruptedException {
514 dl 1.31 final ReentrantLock lock = this.lock;
515 dl 1.5 lock.lockInterruptibly();
516 dl 1.66 E result;
517 dl 1.5 try {
518 jsr166 1.79 while ( (result = dequeue()) == null)
519 jsr166 1.55 notEmpty.await();
520 tim 1.19 } finally {
521 dl 1.5 lock.unlock();
522     }
523 dl 1.59 return result;
524 dl 1.5 }
525    
526     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
527 dholmes 1.10 long nanos = unit.toNanos(timeout);
528 dl 1.31 final ReentrantLock lock = this.lock;
529 dl 1.5 lock.lockInterruptibly();
530 dl 1.66 E result;
531 dl 1.5 try {
532 jsr166 1.79 while ( (result = dequeue()) == null && nanos > 0)
533 jsr166 1.55 nanos = notEmpty.awaitNanos(nanos);
534 tim 1.19 } finally {
535 dl 1.5 lock.unlock();
536     }
537 dl 1.59 return result;
538 dl 1.5 }
539    
540     public E peek() {
541 dl 1.31 final ReentrantLock lock = this.lock;
542 dl 1.5 lock.lock();
543     try {
544 jsr166 1.135 return (E) queue[0];
545 tim 1.19 } finally {
546 tim 1.13 lock.unlock();
547 dl 1.5 }
548     }
549 jsr166 1.61
550 jsr166 1.42 /**
551     * Returns the comparator used to order the elements in this queue,
552 jsr166 1.63 * or {@code null} if this queue uses the {@linkplain Comparable
553 jsr166 1.42 * natural ordering} of its elements.
554     *
555     * @return the comparator used to order the elements in this queue,
556 jsr166 1.63 * or {@code null} if this queue uses the natural
557 jsr166 1.52 * ordering of its elements
558 jsr166 1.42 */
559     public Comparator<? super E> comparator() {
560 dl 1.59 return comparator;
561 jsr166 1.42 }
562    
563 dl 1.5 public int size() {
564 dl 1.31 final ReentrantLock lock = this.lock;
565 dl 1.5 lock.lock();
566     try {
567 jsr166 1.68 return size;
568 tim 1.19 } finally {
569 dl 1.5 lock.unlock();
570     }
571     }
572    
573     /**
574 jsr166 1.63 * Always returns {@code Integer.MAX_VALUE} because
575     * a {@code PriorityBlockingQueue} is not capacity constrained.
576     * @return {@code Integer.MAX_VALUE} always
577 dl 1.5 */
578     public int remainingCapacity() {
579     return Integer.MAX_VALUE;
580     }
581    
582 dl 1.59 private int indexOf(Object o) {
583     if (o != null) {
584 jsr166 1.133 final Object[] es = queue;
585     for (int i = 0, n = size; i < n; i++)
586     if (o.equals(es[i]))
587 dl 1.59 return i;
588     }
589     return -1;
590     }
591    
592     /**
593     * Removes the ith element from queue.
594     */
595     private void removeAt(int i) {
596 jsr166 1.134 final Object[] es = queue;
597 jsr166 1.135 final int n = size - 1;
598 dl 1.66 if (n == i) // removed last element
599 jsr166 1.134 es[i] = null;
600 dl 1.59 else {
601 jsr166 1.134 E moved = (E) es[n];
602     es[n] = null;
603 jsr166 1.135 final Comparator<? super E> cmp;
604     if ((cmp = comparator) == null)
605 jsr166 1.134 siftDownComparable(i, moved, es, n);
606 dl 1.66 else
607 jsr166 1.134 siftDownUsingComparator(i, moved, es, n, cmp);
608     if (es[i] == moved) {
609 dl 1.66 if (cmp == null)
610 jsr166 1.134 siftUpComparable(i, moved, es);
611 dl 1.66 else
612 jsr166 1.134 siftUpUsingComparator(i, moved, es, cmp);
613 dl 1.66 }
614 dl 1.59 }
615 dl 1.66 size = n;
616 dl 1.59 }
617    
618 dl 1.37 /**
619 jsr166 1.42 * Removes a single instance of the specified element from this queue,
620 jsr166 1.52 * if it is present. More formally, removes an element {@code e} such
621     * that {@code o.equals(e)}, if this queue contains one or more such
622     * elements. Returns {@code true} if and only if this queue contained
623     * the specified element (or equivalently, if this queue changed as a
624     * result of the call).
625 jsr166 1.42 *
626     * @param o element to be removed from this queue, if present
627 jsr166 1.63 * @return {@code true} if this queue changed as a result of the call
628 dl 1.37 */
629 dholmes 1.14 public boolean remove(Object o) {
630 dl 1.31 final ReentrantLock lock = this.lock;
631 dl 1.5 lock.lock();
632     try {
633 dl 1.59 int i = indexOf(o);
634 jsr166 1.78 if (i == -1)
635     return false;
636     removeAt(i);
637     return true;
638 dl 1.59 } finally {
639     lock.unlock();
640     }
641     }
642    
643     /**
644 jsr166 1.112 * Identity-based version for use in Itr.remove.
645 jsr166 1.133 *
646     * @param o element to be removed from this queue, if present
647 dl 1.59 */
648 jsr166 1.133 void removeEq(Object o) {
649 dl 1.59 final ReentrantLock lock = this.lock;
650     lock.lock();
651     try {
652 jsr166 1.133 final Object[] es = queue;
653 jsr166 1.78 for (int i = 0, n = size; i < n; i++) {
654 jsr166 1.133 if (o == es[i]) {
655 dl 1.59 removeAt(i);
656     break;
657     }
658     }
659 tim 1.19 } finally {
660 dl 1.5 lock.unlock();
661     }
662     }
663    
664 jsr166 1.42 /**
665 jsr166 1.52 * Returns {@code true} if this queue contains the specified element.
666     * More formally, returns {@code true} if and only if this queue contains
667     * at least one element {@code e} such that {@code o.equals(e)}.
668 jsr166 1.42 *
669     * @param o object to be checked for containment in this queue
670 jsr166 1.63 * @return {@code true} if this queue contains the specified element
671 jsr166 1.42 */
672 dholmes 1.14 public boolean contains(Object o) {
673 dl 1.31 final ReentrantLock lock = this.lock;
674 dl 1.5 lock.lock();
675     try {
676 jsr166 1.78 return indexOf(o) != -1;
677 tim 1.19 } finally {
678 dl 1.5 lock.unlock();
679     }
680     }
681    
682     public String toString() {
683 jsr166 1.111 return Helpers.collectionToString(this);
684 dl 1.5 }
685    
686 jsr166 1.42 /**
687     * @throws UnsupportedOperationException {@inheritDoc}
688     * @throws ClassCastException {@inheritDoc}
689     * @throws NullPointerException {@inheritDoc}
690     * @throws IllegalArgumentException {@inheritDoc}
691     */
692 dl 1.26 public int drainTo(Collection<? super E> c) {
693 jsr166 1.76 return drainTo(c, Integer.MAX_VALUE);
694 dl 1.26 }
695    
696 jsr166 1.42 /**
697     * @throws UnsupportedOperationException {@inheritDoc}
698     * @throws ClassCastException {@inheritDoc}
699     * @throws NullPointerException {@inheritDoc}
700     * @throws IllegalArgumentException {@inheritDoc}
701     */
702 dl 1.26 public int drainTo(Collection<? super E> c, int maxElements) {
703 jsr166 1.124 Objects.requireNonNull(c);
704 dl 1.26 if (c == this)
705     throw new IllegalArgumentException();
706     if (maxElements <= 0)
707     return 0;
708 dl 1.31 final ReentrantLock lock = this.lock;
709 dl 1.26 lock.lock();
710     try {
711 jsr166 1.76 int n = Math.min(size, maxElements);
712     for (int i = 0; i < n; i++) {
713     c.add((E) queue[0]); // In this order, in case add() throws.
714 jsr166 1.79 dequeue();
715 dl 1.26 }
716     return n;
717     } finally {
718     lock.unlock();
719     }
720     }
721    
722 dl 1.17 /**
723 dl 1.37 * Atomically removes all of the elements from this queue.
724 dl 1.17 * The queue will be empty after this call returns.
725     */
726     public void clear() {
727 dl 1.31 final ReentrantLock lock = this.lock;
728 dl 1.17 lock.lock();
729     try {
730 jsr166 1.133 final Object[] es = queue;
731     for (int i = 0, n = size; i < n; i++)
732     es[i] = null;
733 dl 1.59 size = 0;
734 tim 1.19 } finally {
735 dl 1.17 lock.unlock();
736     }
737     }
738    
739 jsr166 1.42 /**
740 jsr166 1.110 * Returns an array containing all of the elements in this queue.
741     * The returned array elements are in no particular order.
742     *
743     * <p>The returned array will be "safe" in that no references to it are
744     * maintained by this queue. (In other words, this method must allocate
745     * a new array). The caller is thus free to modify the returned array.
746     *
747     * <p>This method acts as bridge between array-based and collection-based
748     * APIs.
749     *
750     * @return an array containing all of the elements in this queue
751     */
752     public Object[] toArray() {
753     final ReentrantLock lock = this.lock;
754     lock.lock();
755     try {
756     return Arrays.copyOf(queue, size);
757     } finally {
758     lock.unlock();
759     }
760     }
761    
762     /**
763 jsr166 1.42 * Returns an array containing all of the elements in this queue; the
764     * runtime type of the returned array is that of the specified array.
765     * The returned array elements are in no particular order.
766     * If the queue fits in the specified array, it is returned therein.
767     * Otherwise, a new array is allocated with the runtime type of the
768     * specified array and the size of this queue.
769     *
770     * <p>If this queue fits in the specified array with room to spare
771     * (i.e., the array has more elements than this queue), the element in
772     * the array immediately following the end of the queue is set to
773 jsr166 1.63 * {@code null}.
774 jsr166 1.42 *
775     * <p>Like the {@link #toArray()} method, this method acts as bridge between
776     * array-based and collection-based APIs. Further, this method allows
777     * precise control over the runtime type of the output array, and may,
778     * under certain circumstances, be used to save allocation costs.
779     *
780 jsr166 1.63 * <p>Suppose {@code x} is a queue known to contain only strings.
781 jsr166 1.42 * The following code can be used to dump the queue into a newly
782 jsr166 1.63 * allocated array of {@code String}:
783 jsr166 1.42 *
784 jsr166 1.109 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
785 jsr166 1.42 *
786 jsr166 1.63 * Note that {@code toArray(new Object[0])} is identical in function to
787     * {@code toArray()}.
788 jsr166 1.42 *
789     * @param a the array into which the elements of the queue are to
790     * be stored, if it is big enough; otherwise, a new array of the
791     * same runtime type is allocated for this purpose
792     * @return an array containing all of the elements in this queue
793     * @throws ArrayStoreException if the runtime type of the specified array
794     * is not a supertype of the runtime type of every element in
795     * this queue
796     * @throws NullPointerException if the specified array is null
797     */
798 dl 1.5 public <T> T[] toArray(T[] a) {
799 dl 1.31 final ReentrantLock lock = this.lock;
800 dl 1.5 lock.lock();
801     try {
802 dl 1.66 int n = size;
803     if (a.length < n)
804 dl 1.59 // Make a new array of a's runtime type, but my contents:
805     return (T[]) Arrays.copyOf(queue, size, a.getClass());
806 dl 1.66 System.arraycopy(queue, 0, a, 0, n);
807     if (a.length > n)
808     a[n] = null;
809 dl 1.59 return a;
810 tim 1.19 } finally {
811 dl 1.5 lock.unlock();
812     }
813     }
814    
815 dholmes 1.16 /**
816 dl 1.23 * Returns an iterator over the elements in this queue. The
817     * iterator does not return the elements in any particular order.
818 jsr166 1.69 *
819 jsr166 1.103 * <p>The returned iterator is
820     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
821 dholmes 1.16 *
822 jsr166 1.42 * @return an iterator over the elements in this queue
823 dholmes 1.16 */
824 dl 1.5 public Iterator<E> iterator() {
825 dl 1.51 return new Itr(toArray());
826 dl 1.5 }
827    
828 dl 1.49 /**
829     * Snapshot iterator that works off copy of underlying q array.
830     */
831 dl 1.59 final class Itr implements Iterator<E> {
832 dl 1.49 final Object[] array; // Array of all elements
833 jsr166 1.81 int cursor; // index of next element to return
834 jsr166 1.136 int lastRet = -1; // index of last element, or -1 if no such
835 jsr166 1.50
836 dl 1.49 Itr(Object[] array) {
837     this.array = array;
838 dl 1.5 }
839    
840 tim 1.13 public boolean hasNext() {
841 dl 1.49 return cursor < array.length;
842 tim 1.13 }
843    
844     public E next() {
845 dl 1.49 if (cursor >= array.length)
846     throw new NoSuchElementException();
847 jsr166 1.120 return (E)array[lastRet = cursor++];
848 tim 1.13 }
849    
850     public void remove() {
851 jsr166 1.50 if (lastRet < 0)
852 jsr166 1.54 throw new IllegalStateException();
853 jsr166 1.133 removeEq(array[lastRet]);
854 dl 1.49 lastRet = -1;
855 tim 1.13 }
856 jsr166 1.137
857     public void forEachRemaining(Consumer<? super E> action) {
858     Objects.requireNonNull(action);
859     final Object[] es = array;
860     int i;
861     if ((i = cursor) < es.length) {
862     lastRet = -1;
863     cursor = es.length;
864     for (; i < es.length; i++)
865     action.accept((E) es[i]);
866     lastRet = es.length - 1;
867     }
868     }
869 dl 1.5 }
870    
871     /**
872 jsr166 1.83 * Saves this queue to a stream (that is, serializes it).
873     *
874     * For compatibility with previous version of this class, elements
875     * are first copied to a java.util.PriorityQueue, which is then
876     * serialized.
877 jsr166 1.97 *
878     * @param s the stream
879 jsr166 1.98 * @throws java.io.IOException if an I/O error occurs
880 dl 1.5 */
881     private void writeObject(java.io.ObjectOutputStream s)
882     throws java.io.IOException {
883     lock.lock();
884     try {
885 jsr166 1.78 // avoid zero capacity argument
886     q = new PriorityQueue<E>(Math.max(size, 1), comparator);
887 dl 1.59 q.addAll(this);
888 dl 1.5 s.defaultWriteObject();
889 dl 1.66 } finally {
890 dl 1.59 q = null;
891 dl 1.5 lock.unlock();
892     }
893 tim 1.1 }
894    
895 dl 1.59 /**
896 jsr166 1.83 * Reconstitutes this queue from a stream (that is, deserializes it).
897 jsr166 1.97 * @param s the stream
898 jsr166 1.98 * @throws ClassNotFoundException if the class of a serialized object
899     * could not be found
900     * @throws java.io.IOException if an I/O error occurs
901 dl 1.59 */
902     private void readObject(java.io.ObjectInputStream s)
903     throws java.io.IOException, ClassNotFoundException {
904 jsr166 1.67 try {
905 dl 1.66 s.defaultReadObject();
906 jsr166 1.131 int sz = q.size();
907 jsr166 1.141 jsr166.Platform.checkArray(s, Object[].class, sz);
908 jsr166 1.135 this.queue = new Object[Math.max(1, sz)];
909 dl 1.66 comparator = q.comparator();
910     addAll(q);
911 jsr166 1.67 } finally {
912 dl 1.66 q = null;
913     }
914 dl 1.59 }
915    
916 jsr166 1.116 /**
917     * Immutable snapshot spliterator that binds to elements "late".
918     */
919 jsr166 1.119 final class PBQSpliterator implements Spliterator<E> {
920 jsr166 1.125 Object[] array; // null until late-bound-initialized
921 dl 1.93 int index;
922     int fence;
923    
924 jsr166 1.125 PBQSpliterator() {}
925    
926 jsr166 1.119 PBQSpliterator(Object[] array, int index, int fence) {
927 dl 1.93 this.array = array;
928     this.index = index;
929     this.fence = fence;
930     }
931    
932 jsr166 1.125 private int getFence() {
933     if (array == null)
934     fence = (array = toArray()).length;
935     return fence;
936 dl 1.93 }
937    
938 jsr166 1.119 public PBQSpliterator trySplit() {
939 dl 1.93 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
940     return (lo >= mid) ? null :
941 jsr166 1.119 new PBQSpliterator(array, lo, index = mid);
942 dl 1.93 }
943    
944 dl 1.95 public void forEachRemaining(Consumer<? super E> action) {
945 jsr166 1.124 Objects.requireNonNull(action);
946 jsr166 1.125 final int hi = getFence(), lo = index;
947 jsr166 1.134 final Object[] es = array;
948 jsr166 1.125 index = hi; // ensure exhaustion
949     for (int i = lo; i < hi; i++)
950 jsr166 1.134 action.accept((E) es[i]);
951 dl 1.93 }
952    
953     public boolean tryAdvance(Consumer<? super E> action) {
954 jsr166 1.124 Objects.requireNonNull(action);
955 dl 1.93 if (getFence() > index && index >= 0) {
956 jsr166 1.125 action.accept((E) array[index++]);
957 dl 1.93 return true;
958     }
959     return false;
960     }
961    
962 jsr166 1.119 public long estimateSize() { return getFence() - index; }
963 dl 1.93
964     public int characteristics() {
965 jsr166 1.123 return (Spliterator.NONNULL |
966     Spliterator.SIZED |
967     Spliterator.SUBSIZED);
968 dl 1.93 }
969     }
970    
971 jsr166 1.102 /**
972     * Returns a {@link Spliterator} over the elements in this queue.
973 jsr166 1.117 * The spliterator does not traverse elements in any particular order
974     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
975 jsr166 1.102 *
976 jsr166 1.103 * <p>The returned spliterator is
977     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
978     *
979 jsr166 1.102 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
980     * {@link Spliterator#NONNULL}.
981     *
982     * @implNote
983     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
984     *
985     * @return a {@code Spliterator} over the elements in this queue
986     * @since 1.8
987     */
988 dl 1.94 public Spliterator<E> spliterator() {
989 jsr166 1.125 return new PBQSpliterator();
990 dl 1.86 }
991    
992 jsr166 1.132 /**
993     * @throws NullPointerException {@inheritDoc}
994     */
995 jsr166 1.139 public boolean removeIf(Predicate<? super E> filter) {
996     Objects.requireNonNull(filter);
997     return bulkRemove(filter);
998     }
999    
1000     /**
1001     * @throws NullPointerException {@inheritDoc}
1002     */
1003     public boolean removeAll(Collection<?> c) {
1004     Objects.requireNonNull(c);
1005     return bulkRemove(e -> c.contains(e));
1006     }
1007    
1008     /**
1009     * @throws NullPointerException {@inheritDoc}
1010     */
1011     public boolean retainAll(Collection<?> c) {
1012     Objects.requireNonNull(c);
1013     return bulkRemove(e -> !c.contains(e));
1014     }
1015    
1016     // A tiny bit set implementation
1017    
1018     private static long[] nBits(int n) {
1019     return new long[((n - 1) >> 6) + 1];
1020     }
1021     private static void setBit(long[] bits, int i) {
1022     bits[i >> 6] |= 1L << i;
1023     }
1024     private static boolean isClear(long[] bits, int i) {
1025     return (bits[i >> 6] & (1L << i)) == 0;
1026     }
1027    
1028     /** Implementation of bulk remove methods. */
1029     private boolean bulkRemove(Predicate<? super E> filter) {
1030     final ReentrantLock lock = this.lock;
1031     lock.lock();
1032     try {
1033     final Object[] es = queue;
1034     final int end = size;
1035     int i;
1036     // Optimize for initial run of survivors
1037     for (i = 0; i < end && !filter.test((E) es[i]); i++)
1038     ;
1039     if (i >= end)
1040     return false;
1041     // Tolerate predicates that reentrantly access the
1042     // collection for read, so traverse once to find elements
1043     // to delete, a second pass to physically expunge.
1044     final int beg = i;
1045     final long[] deathRow = nBits(end - beg);
1046     deathRow[0] = 1L; // set bit 0
1047     for (i = beg + 1; i < end; i++)
1048     if (filter.test((E) es[i]))
1049     setBit(deathRow, i - beg);
1050     int w = beg;
1051     for (i = beg; i < end; i++)
1052     if (isClear(deathRow, i - beg))
1053     es[w++] = es[i];
1054     for (i = size = w; i < end; i++)
1055     es[i] = null;
1056     heapify();
1057     return true;
1058     } finally {
1059     lock.unlock();
1060     }
1061     }
1062    
1063     /**
1064     * @throws NullPointerException {@inheritDoc}
1065     */
1066 jsr166 1.132 public void forEach(Consumer<? super E> action) {
1067     Objects.requireNonNull(action);
1068     final ReentrantLock lock = this.lock;
1069     lock.lock();
1070     try {
1071     final Object[] es = queue;
1072     for (int i = 0, n = size; i < n; i++)
1073     action.accept((E) es[i]);
1074     } finally {
1075     lock.unlock();
1076     }
1077     }
1078    
1079 dl 1.115 // VarHandle mechanics
1080     private static final VarHandle ALLOCATIONSPINLOCK;
1081 dl 1.70 static {
1082 dl 1.59 try {
1083 dl 1.115 MethodHandles.Lookup l = MethodHandles.lookup();
1084     ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
1085     "allocationSpinLock",
1086     int.class);
1087 jsr166 1.107 } catch (ReflectiveOperationException e) {
1088 jsr166 1.130 throw new ExceptionInInitializerError(e);
1089 dl 1.59 }
1090     }
1091 tim 1.1 }